首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Fungal ecology lags behind in the use of traits (i.e. phenotypic characteristics) to understand ecological phenomena. We argue that this is a missed opportunity and that the selection and systematic collection of trait data throughout the fungal kingdom will reap major benefits in ecological and evolutionary understanding of fungi. To develop our argument, we first employ plant trait examples to show the power of trait-based approaches in understanding ecological phenomena such as identifying species allocation resources patterns, inferring community assembly and understanding diversity–ecosystem functioning relationships. Second, we discuss ecologically relevant traits in fungi that could be used to answer such ecological phenomena and can be measured on a large proportion of the fungal kingdom. Third, we identify major challenges and opportunities for widespread, coordinated collection and sharing of fungal trait data. The view that we propose has the potential to allow mycologists to contribute considerably more influential studies in the area of fungal ecology and evolution, as has been demonstrated by comparable earlier efforts by plant ecologists. This represents a change of paradigm, from community profiling efforts through massive sequencing tools, to a more mechanistic understanding of fungal ecology.  相似文献   

3.
Lineage-specific traits determine how plants interact with their surrounding environment. Unrelated species may evolve similar phenotypic characteristics to tolerate, persist in, and invade environments with certain characteristics, resulting in some traits becoming relatively more common in certain types of habitats. Analyses of these general patterns of geographical trait distribution have led to the proposal of general principles to explain how plants diversify in space over time. Trait–environment correlation analyses quantify to what extent unrelated lineages have similar evolutionary responses to a given type of habitat. In this synthesis, I give a short historical overview on trait–environment correlation analyses, from some key observations from classic naturalists to modern approaches using trait evolution models, large phylogenies, and massive data sets of traits and distributions. I discuss some limitations of modern approaches, including the need for more realistic models, the lack of data from tropical areas, and the necessary focus on trait scoring that goes beyond macromorphology. Overcoming these limitations will allow the field to explore new questions related to trait lability and niche evolution and to better identify generalities and exceptions in how plants diversify in space over time.  相似文献   

4.
5.
Molecular markers in plant ecology   总被引:9,自引:1,他引:8  
  相似文献   

6.
Landscape issues in plant ecology   总被引:8,自引:0,他引:8  
In the last decade, we have seen the emergence and consolidation of a conceptual framework that recognizes the landscape as an ecological unit of interest. Plant ecologists have long emphasized landscape-scale issues, but there has been no recent attempt to define how landscape concepts are now integrated in vegetation studies. To help define common research paradigms in both landscape and plant ecology, we discuss issues related to three main landscape concepts in vegetation researches, reviewing theoretical influences and emphasizing recent developments. We first focus on environmental relationships, documenting how vegetation patterns emerge from the influence of local abiotic conditions. The landscape is the physical environment. Disturbances are then considered, with a particular attention to human-driven processes that often overrule natural dynamics. The landscape is a dynamic space. As environmental and historical processes generate heterogeneous patterns, we finally move on to stress current evidence relating spatial structure and vegetation dynamics. This relates to the concept of a landscape as a patch-corridor-matrix mosaic. Future challenges involve: 1) the capacity to evaluate the relative importance of multiple controlling processes at broad spatial scale; 2) better assessment of the real importance of the spatial configuration of landscape elements for plant species and finally; 3) the integration of natural and cultural processes and the recognition of their interdependence in relation to vegetation management issues in human landscapes.  相似文献   

7.
Daniel C. Laughlin 《Plant Ecology》2012,213(11):1769-1780
Plant ecology spans multiple levels of biological organization and spatio-temporal scales, and over four dozen plant ecology textbooks have been published since Warming??s (1895) ??Oecology of Plants.?? With increasing emphasis on specialization, students and teachers can feel paralyzed by the vast literature, and as such may lack an adequate appreciation of the history of the field. The objective of this study was to derive a comprehensive set of topics that are covered in plant ecology textbooks, and to ask (1) what are the most important topical gradients among textbooks, and (2) has the emphasis of topics changed over time? The NMS ordination determined that the first gradient represented a clear contrast in emphasis on physiological ecology versus community ecology. The second gradient represented a contrast in emphasis on abiotic environmental factors versus biotic factors. Negative interactions, growth, demography, gas exchange, mineral nutrition, stress, diversity, disturbance, herbivory, paleoecology, ecosystem ecology, pollution, and global change have increased in emphasis over time. The increasing reliance on data and the number of authors per textbook illustrates how the discipline has matured into a rigorous quantitative science that requires a diversity of specializations. These results can be used to inform the development of curricula within a single course or across several years of study, and to assist the development of new and revised textbooks. Plant ecologists need to be familiar with this core set of topics in addition to becoming an expert in a few of them.  相似文献   

8.
ABSTRACT

In this review, I discuss, and partly challenge, a number of paradigms, assumptions and definitions that apply to many fields of plant ecology. The main points include the need for a distinction between a growth- or yield-oriented versus a fitness- or biodiversity-oriented concept of limitation and stress, and the challenges of a meaningful handling of plant traits and their functional significance. Further, I discuss the central role of biological variation in plant ecology, including the various forms of adaptive adjustments, and the task of scaling plant responses in space and time. I close this review with a critical comment on data stratification in the analysis of large biological datasets (e.g. meta-analysis).  相似文献   

9.
10.
11.
Abstract. Generalized additive models (GAMs) are a non-parametric extension of generalized linear models (GLMs). They are introduced here as an exploratory tool in the analysis of species distributions with respect to climate. An important result is that the long-debated question of whether a response curve, in one dimension, is actually symmetric and bell-shaped or not, can be tested using GAMs. GAMs and GLMs are discussed and are illustrated by three examples using binary data. A grey-scale plot of one of the fits is constructed to indicate which areas on a map seem climatically suitable for that species. This is useful for species introductions. Further applications are mentioned.  相似文献   

12.
Species distributions are changing, and knowing whether certain character traits predispose species to decline or increase during times of environmental change can shed light on the main drivers of distribution change. Here we conduct a trait-based analysis of range change in the flora of Britain since the 1930s using some of the best plant distribution and trait data available in Europe. We use phylogenetically-informed models based on a recently published, dated, species level plant phylogeny. Traits associated with habitat specialism and competitive ability were related to range change, with more competitive habitat generalists faring better than habitat specialists. We attribute this result to the greater ability of generalists to adapt to environmental perturbation, but also to the negative impacts of agricultural intensification on the flora of Britain, in particular the loss of open, dry habitats. We discovered spatial variation in the main drivers of plant range change and find support for previous evidence that agricultural intensification has been a major driver of distribution change in the flora of Britain over the past 70 years, particularly in southern England.  相似文献   

13.
种子微生物生态学研究进展   总被引:3,自引:1,他引:3  
邹媛媛  刘洋  王建华  宋未 《生态学报》2011,31(10):2906-2914
植物种子微生物生态学是研究与种子相联合的微生物的组成﹑功能﹑演替、它们之间关系及其与宿主之间相互关系的科学。种子中蕴含着丰富的微生物资源,它们对种子以及植物的健康具有重要的影响。不同种类植物种子联合的微生物群落由于受到种子本身及外界环境因素的影响而有所差异。论述了种子微生物生态学的概念、主要研究方法、种子微生物生态系统中的微生物种类、相关影响因素,以及种子微生物生态学研究的发展方向。种子微生物生态学的研究对生产实践有重要意义,同时也将丰富种子生物学的内容,对种子科学的发展起到促进作用。  相似文献   

14.
15.
16.
基于功能性状的常绿阔叶植物防火性能评价   总被引:4,自引:0,他引:4  
植物功能性状不仅便于评价植物的防火性能,也有利于筛选防火植物。本研究以宁波地区的29个常绿木本植物为对象,在测定植物比叶面积、叶干物质含量、叶片含水量、枝条干物质含量和树皮厚度5个功能性状,以及鲜叶的7个防火性能指标的基础上,通过因子分析将防火性能指标划分为抗燃性fa(包含抗火性因子f1和燃烧速度因子f22个公因子)与燃烧性fb 2个防火因子,然后利用Pearson相关和偏相关建立了5个功能性状与各个防火因子的相关性,并对29物种的防火性能进行评价。结果表明:1)比叶面积和树皮厚度与抗火性因子f1,枝条干物质含量、树皮厚度和当年生叶片含水量与燃烧速度因子f2,比叶面积与抗燃性因子fa,叶片干物质含量、比叶面积和当年生叶片含水量与燃烧性因子fb间存在显著的相关关系;2)偏相关简化植物防火性状后,比叶面积和叶干物质含量分别对抗燃性因子fa与燃烧性因子fb的指示性最好;3)分别基于功能性状和燃烧试验的物种抗燃性排序相似度为0.80。本研究证明,基于简易观测的植物功能性状可较好地反映树种的抗火性和燃烧性,可作为植物防火性能有效的评价方法。  相似文献   

17.
The fixed and plastic traits possessed by a plant, which may be collectively thought of as its strategy, are commonly modelled as density‐independent adaptations to its environment. However, plant strategies may also represent density‐ or frequency‐dependent adaptations to the strategies used by neighbours. Game theory provides the tools to characterise such density‐ and frequency‐dependent interactions. Here, we review the contributions of game theory to plant ecology. After briefly reviewing game theory from the perspective of plant ecology, we divide our review into three sections. First, game theoretical models of allocation to shoots and roots often predict investment in those organs beyond what would be optimal in the absence of competition. Second, game theoretical models of enemy defence suggest that an individual's investment in defence is not only a means of reducing its own tissue damage but also a means of deflecting enemies onto competitors. Finally, game theoretical models of trade with mutualistic partners suggest that the optimal trade may reflect competition for access to mutualistic partners among plants. In short, our review provides an accessible entrance to game theory that will help plant ecologists enrich their research with its worldview and existing predictions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号