首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the linear electric field effect in pulsed EPR of the "EPR-detectable copper" signal of beef heart cytochrome c oxidase and have compared our results with those for a variety of square planar and tetrahedral Cu(II) model compounds and with Cu(II) proteins containing either type 1 or type 2 copper. The electric field induced g shifts (linear electric field effect) for cytochrome oxidase are comparable in magnitude to those for simple Cu(II) complexes and for some copper proteins containing type 2 sites. The shifts are smaller than those for tetrahedral copper complexes and for type 1 copper sites. However, the magnetic field dependence of the linear electric field effect does not resemble that observed for any Cu(II) complex studied nor for type 1 copper. These findings cannot be reconciled with the tetrahedral Cu(II) model proposed by Greenaway, Chan, and Vincow ((1977) Biochim. Biophys. Acta 490, 62-78, 1977) to explain the unusual EPR spectrum of cytochrome oxidase.  相似文献   

2.
In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field‐induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity. Bioelectromagnetics 34:253–263, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Fragmentation and "top-down" sequencing of intact proteins by mass spectrometry (MS) is most commonly performed by infusion of protein solutions into Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. However, the high cost of this instrumentation, coupled with the need to infuse "clean" solutions (lacking standard biological buffers), limits broad application of this technique. The current study describes an alternative approach to top-down sequencing using in-source fragmentation on quadrupole time-of-flight (Q-Tof) instrumentation coupled with reversed-phase liquid chromatography (LC). Application of this technique to purified recombinant samples yielded protein fragments during routine LC-MS analysis. The presence of multiple N- and C-terminal fragments allowed localization of structural modifications without proteolytic digestion. The method was extended to complex samples by using LC conditions that provided high-resolution protein separation. Utility of the method was illustrated by real-time monitoring of protein modifications occurring in reconstituted apoptosomes. These experiments illustrate that intact protein mass and limited sequence information can be obtained simultaneously on an LC timescale. This approach will allow a wide variety of laboratories to routinely apply top-down sequencing to problems in structural characterization, protein purification, and biomarker identification.  相似文献   

4.
At present, mass spectrometry provides a rapid and sensitive means for making conclusive protein identifications from complex mixtures. Sequencing tryptic peptides derived from proteolyzed protein samples, also known as the "Bottom Up" approach, is the mass spectrometric gold standard for identifying unknowns. An alternative technology, "Top Down" characterization, is emerging as a viable option for protein identifications, which involves analyzing the intact unknowns for accurate mass and amino acid sequence tags. In this paper, both characterization methods were employed to more comprehensively differentiate two early-eluting peaks in a process-scale size-exclusion chromatography (SEC) step for a recombinant, immunoglobulin gamma-1 (IgG-1) fusion protein. The contents of each SEC peak were enzymatically digested, and the resulting peptides were mapped using reversed-phase (RP) HPLC-ion trap MS. Many low-level UV signals were observed among the fusion protein-related peptide peaks. These unknowns were collected, concentrated, and analyzed using nanoelectrospray (nanoES) collision-induced dissociation (CID) tandem (MS/MS) mass spectrometry for identification. The peptide sequencing experiments resulted in the identification of twenty host cell-related proteins. Following peptide mapping, the contents of the two SEC peaks were protein mass profiled using on-line RP HPLC coupled to a high-resolution, quadrupole time-of-flight (Qq/TOF) MS. Unknown proteins were also collected, concentrated, and dissociated using nanoES CID MS/MS. Intact protein CID experiments and accurate molecular weight information allowed for the identification of three full length host cell-derived proteins and numerous clips from these and additional proteins. The accurate molecular weight values allowed for the assignment of N- and C-terminal processing, which is difficult to conclusively access from peptide mapping data. The peptide-mapping experiments proved to be far more effective for making protein identifications from complex mixtures, whereas the protein mass profiling was useful for assessing modifications and distinguishing protein clips from full length species.  相似文献   

5.
Proteomic workflows involving liquid-based protein separations are an alternative to gel-based protein analysis, however the trypsin digestion procedure is usually difficult to implement, particularly when processing low abundance proteins from capillary column effluent. To convert the protein to peptides for the purpose of identification, current protocols require several sample handling steps, and sample losses become an issue. In this study, we present an improved system that conducts reversed-phase protein chromatography and rapid on-line tryptic digestion requiring sub-nanogram quantities of protein. This system employs a novel mirror-gradient concept that allows for dynamic titration of the column effluent to create optimal conditions for real-time tryptic digestion. The purpose behind this development was to improve the limits of detection of the online concept, to support flow-based alternatives to gel-based proteomics and to simplify the characterization of low abundance proteins. Using test mixtures of proteins, we show that peptide mass fingerprinting with high sequence representation can be easily achieved at the 20 fmol level, with detection limits down to 5 fmol (85 pg myoglobin). Limits of identification using standard data-dependent MS/MS experiments are as low as 10 fmol. These results suggest that the nanoLC-trypsin-MS/MS system could represent an alternative to the conventional "1D-gel to MS" proteomic strategy.  相似文献   

6.
A "one-pot" alternative method for processing proteins and isolating peptide mixtures from bacterial samples is presented for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and data reduction. The conventional in-solution digestion of the protein contents of bacteria is compared to a small disposable filter unit placed inside a centrifuge vial for processing and digestion of bacterial proteins. Each processing stage allows filtration of excess reactants and unwanted byproduct while retaining the proteins. Upon addition of trypsin, the peptide mixture solution is passed through the filter while retaining the trypsin enzyme. The peptide mixture is then analyzed by LC-MS/MS with an in-house BACid algorithm for a comparison of the experimental unique peptides to a constructed proteome database of bacterial genus, specie, and strain entries. The concentration of bacteria was varied from 10 × 10(7) to 3.3 × 10(3) cfu/mL for analysis of the effect of concentration on the ability of the sample processing, LC-MS/MS, and data analysis methods to identify bacteria. The protein processing method and dilution procedure result in reliable identification of pure suspensions and mixtures at high and low bacterial concentrations.  相似文献   

7.
Ly L  Wasinger VC 《Proteomics》2008,8(20):4197-4208
In recent times, the analysis of the peptidome has become increasingly valuable to gain a better understanding of the critical roles native peptides play in biological processes. Here, we show a technique using a novel electrophoretic device named MF10, for the fractionation of proteins and peptides based on size and also pH in low volume liquid phase under an electric field. A 1 microM, 7-protein and peptide standard mix ranging from 1 to 25 kDa has been used to show peptide migration into a fraction contained by 1-5 kDa membranes. Simultaneous fractionation of the higher mass protein standards to the correct fraction also occurred. To assess the MF10's ability to fractionate more complex samples, human plasma was used to enrich for the peptidome below 5 kDa in the presence of the proteome. Peptide enrichment was achieved while simultaneously fractionating higher mass proteins to three other mass restricted fractions. The utility of this approach is demonstrated with the identification (with at least 2 ppm mass accuracy) of 76 unique peptides, equating to 22 proteins enriched to the 1-5 kDa fraction of the MF10.  相似文献   

8.
With the completion of the sequencing of the Arabidopsis genome and with the significant increase in the amount of other plant genome and expressed sequence tags (ESTs) data, plant proteomics is rapidly becoming a very active field. We have pursued a high-throughput mass spectrometry-based proteomics approach to identify and characterize membrane proteins localized to the Arabidopsis thaliana chloroplastic envelope membrane. In this study, chloroplasts were prepared from plate- or soil-grown Arabidopsis plants using a novel isolation procedure, and "mixed" envelopes were subsequently isolated using sucrose step gradients. We applied two alternative methodologies, off-line multidimensional protein identification technology (Off-line MUDPIT) and one-dimensional (1D) gel electrophoresis followed by proteolytic digestion and liquid chromatography coupled with tandem mass spectrometry (Gel-C-MS/MS), to identify envelope membrane proteins. This proteomic study enabled us to identify 392 nonredundant proteins.  相似文献   

9.
Ahern CA  Horn R 《Neuron》2005,48(1):25-29
Voltage-gated ion channels respond to changes in membrane potential by movement of their voltage sensors across the electric field between cytoplasmic and extracellular solutions. The principal voltage sensors in these proteins are positively charged S4 segments. The absolute magnitude of S4 movement discriminates two competing classes of gating models. In one class, the movement is <10 Angstrom due to the fact that the electric field is focused by aqueous crevices in the channel protein. In an alternative model, based in part on the crystal structure of a potassium channel, the side chains of S4 arginines move their charges across the bilayer's electric field, a distance of >25 Angstrom. Here, using tethered charges attached to an S4 segment, we provide evidence that the electric field falls across a distance of <4 Angstrom, supporting a model in which the relative movement between S4 and the electric field is very small.  相似文献   

10.
11.
We present modern conceptions concerning movement of biopolymer molecules in a gel under the action of static and pulsed electric fields, and we basically analyse some mostly used techniques of pulsed electrophoresis and the results yielded by using them. Pulsed procedures are shown to essentially widen the possibilities of analytical electrophoresis and electrophoretic transblotting are elaborated. Cameras and buffer systems used are the same as in classical methods involving the constant electric field. Promising results were collected while using sine-mode voltage in the constant and pulsed variants of electrophoresis. It is stated that the exceptionally wide application of pulsed methods in laboratory practice requires development of adequate theoretical conceptions concerning the movement of linear and globular polymers in gel under alternating field. In this connection the investigation of potentials of pulsed electrophoresis with inversions of field direction as the most simple and universal process of DNA division in a wide range of molecular masses and the use in electrophoretic techniques of sine-mode voltage obtained directly from the industrial circuit are most significant.  相似文献   

12.
The common methods for inactivation of bacteria involve heating or exposure to toxic chemicals. These methods are not suitable for heat-sensitive materials, food, and pharmaceutical products. Recently, a complete inactivation of many microorganisms was achieved with high-pressure carbon dioxide at ambient temperature and in the absence of organic solvent and irradiation. The inactivation of spores with CO(2) required long residence time and high temperatures, such as 60 degrees C. In this study the synergistic effect of pulsed electric field (PEF) in combination with high-pressure CO(2) for inactivation was investigated. The bacteria Escherichia coli, Staphylococcus aureus, and Bacillus cereus were suspended in glycerol solution and treated in the first step with PEF (up to 25 KV/cm) and then with high-pressure CO(2) not higher than 40 degrees C and 200 bar. The inactivation efficiency was determined by counting the colony formation units of control and sample. Samples of the cells subjected to PEF treatment alone and in combination with CO(2) treatment were examined by scanning electron microscopy to determine the effect of the processes on the cell wall. Experimental results indicate that the viability decreased with increasing electrical field strength and number of pulses. A further batch treatment with supercritical CO(2) lead to complete inactivation of bacterial species and decreased the count of the spores by at least three orders of magnitude, the inactivation being enhanced by an increase of contact time between CO(2) and the sample. A synergistic effect between the pulsed electric field and the high-pressure CO(2) was evident in all the species treated. The new low temperature process is an alternative for pasteurization of thermally labile compounds such as protein and plasma and minimizes denaturation of important nutrient compounds in the liquid media.  相似文献   

13.
The effect of the external high voltage electric field pulses on the suspension of rat peritoneal phagocytes has been investigated using chemiluminescent and turbodimetric methods. Single electric field pulses were found to activate macrophages, which was accompanied by a "flash" of chemiluminescence. Subthreshold electric field strength up to 0.8 kV/cm failed to alter macrophage activity. Maximum activation was observed at 2.2 kV/cm; with higher electric field intensity the effect diminished to zero. Drastic changes in light-scattering suspension properties at high electric field intensity indicate irreversible alterations of the barrier function of phagocyte membranes.  相似文献   

14.

Background

The immense diagnostic potential of human plasma has prompted great interest and effort in cataloging its contents, exemplified by the Human Proteome Organization (HUPO) Plasma Proteome Project (PPP) pilot project. Due to challenges in obtaining a reliable blood plasma protein list, HUPO later re-analysed their own original dataset with a more stringent statistical treatment that resulted in a much reduced list of high confidence (at least 95%) proteins compared with their original findings. In order to facilitate the discovery of novel biomarkers in the future and to realize the full diagnostic potential of blood plasma, we feel that there is still a need for an ultra-high confidence reference list (at least 99% confidence) of blood plasma proteins.

Methods

To address the complexity and dynamic protein concentration range of the plasma proteome, we employed a linear ion-trap-Fourier transform (LTQ-FT) and a linear ion trap-Orbitrap (LTQ-Orbitrap) for mass spectrometry (MS) analysis. Both instruments allow the measurement of peptide masses in the low ppm range. Furthermore, we employed a statistical score that allows database peptide identification searching using the products of two consecutive stages of tandem mass spectrometry (MS3). The combination of MS3 with very high mass accuracy in the parent peptide allows peptide identification with orders of magnitude more confidence than that typically achieved.

Results

Herein we established a high confidence set of 697 blood plasma proteins and achieved a high 'average sequence coverage' of more than 14 peptides per protein and a median of 6 peptides per protein. All proteins annotated as belonging to the immunoglobulin family as well as all hypothetical proteins whose peptides completely matched immunoglobulin sequences were excluded from this protein list. We also compared the results of using two high-end MS instruments as well as the use of various peptide and protein separation approaches. Furthermore, we characterized the plasma proteins using cellular localization information, as well as comparing our list of proteins to data from other sources, including the HUPO PPP dataset.

Conclusion

Superior instrumentation combined with rigorous validation criteria gave rise to a set of 697 plasma proteins in which we have very high confidence, demonstrated by an exceptionally low false peptide identification rate of 0.29%.  相似文献   

15.
The human proteome is a highly complex extension of the genome wherein a single gene often produces distinct protein forms due to alternative splicing, RNA editing, polymorphisms, and posttranslational modifications. Such biological variation compounded by the high sequence identity within gene families currently overwhelms the complete and routine characterization of mammalian proteins by MS. A new data base of human proteins (and their possible variants) was created and searched using tandem mass spectrometric data from intact proteins. This first application of top down MS/MS to wild-type human proteins demonstrates both gene-specific identification and the unambiguous characterization of multifaceted mass shifts (Deltam values). Such Deltam values found from the precise identification of 45 protein forms from HeLa cells reveal 34 coding single nucleotide polymorphisms, two protein forms from alternative splicing, and 12 diverse modifications (not including simple N-terminal processing), including a previously unknown phosphorylation at 10% occupancy. Automated protein identification was achieved with a median expectation value of 10(-13) and often occurred simultaneously with dissection of diverse sources of protein variability as they occur in combination. Top down MS therefore has a bright future for enabling precise annotation of gene products expressed from the human genome by non-mass spectrometrists.  相似文献   

16.
Electroreceptive fish detect nearby objects by processing the information contained in the pattern of electric currents through the skin. The distribution of local transepidermal voltage or current density on the sensory surface of the fish's skin is the electric image of the surrounding environment. This article reports a model study of the quantitative effect of the conductance of the internal tissues and the skin on electric image generation in Gnathonemus petersii (Günther 1862). Using realistic modelling, we calculated the electric image of a metal object on a simulated fish having different combinations of internal tissues and skin conductances. An object perturbs an electric field as if it were a distribution of electric sources. The equivalent distribution of electric sources is referred to as an object's imprimence. The high conductivity of the fish body lowers the load resistance of a given object's imprimence, increasing the electric image. It also funnels the current generated by the electric organ in such a way that the field and the imprimence of objects in the vicinity of the rostral electric fovea are enhanced. Regarding skin conductance, our results show that the actual value is in the optimal range for transcutaneous voltage modulation by nearby objects. This result suggests that "voltage" is the answer to the long-standing question as to whether current or voltage is the effective stimulus for electroreceptors. Our analysis shows that the fish body should be conceived as an object that interacts with nearby objects, conditioning the electric image. The concept of imprimence can be extended to other sensory systems, facilitating the identification of features common to different perceptual systems.  相似文献   

17.
A uniform electric field of 10 V/cm applied across the surface of embryonic toad Xenopus muscle cells results in the asymmetric accumulation of concanavalin A (Con A) receptors toward one side of the cells within 10 min, as visualized by postfield fluorescent Con A labeling. This field produces an extracellular voltage difference of 20 mV across these 20-microns wide cells. The effect is reversible in two respects: (a) Additional exposure of the cell to the same field of opposite polarity for 10 min completely reverses the asymmetric accumulation to the other side of the cell. (b) Relaxation occurs after the removal of the field and results in complete recovery of the uniform distribution in 30 min. Both the accumulation and the recovery movements are independent of cell metabolism, and appear to be electrophoretic and diffusional in nature. The threshold field required to induce a detectable accumulation by the present method is between 1.0 and 1.5 V/cm (corresponding to a voltage difference of 2-3 mV across a 20-microns wide cell). The electrophoretic mobility of the most mobile population of nonliganded Con A receptors is estimated to be about 2 x 10(-3) microns/s per V/cm, while their diffusion coefficient is in the range of 4-7 x 10(-10) cm2/s. Extensive accumulation of the Con A receptors by an electric field results in the formation of immobile aggregates. The Con A receptors appear to consist of a heterogeneous population of membrane components different in their charge properties, mobility, and capability in forming aggregates.  相似文献   

18.
Affinity purification of proteins using antibodies coupled to beads and subsequent mass spectrometric analysis has become a standard technique for the identification of protein complexes. With the recent transfer of the isotope dilution mass spectrometry principle (IDMS) to the field of proteomics, quantitative analyses-such as the stoichiometry determination of protein complexes-have become achievable. Traditionally proteins were eluted from antibody-conjugated beads using glycine at low pH or using diluted acids such as HCl, TFA, or FA, but elution was often found to be incomplete. Using the cohesin complex and the anaphase promoting complex/cyclosome (APC/C) as examples, we show that a short 15-60 min predigestion with a protease such as LysC (modified on-bead digest termed protease elution) increases the elution efficiency 2- to 3-fold compared to standard acid elution protocols. While longer incubation periods-as performed in standard on-bead digestion-led to partial proteolysis of the cross-linked antibodies, no or only insignificant cleavage was observed after 15-60 min protease mediated elution. Using the protease elution method, we successfully determined the stoichiometry of the cohesin complex by absolute quantification of the four core subunits using LC-SRM analysis and 19 reference peptides generated with the EtEP strategy. Protease elution was 3-fold more efficient compared to HCl elution, but measurements using both elution techniques are in agreement with a 1:1:1:1 stoichiometry. Furthermore, using isoform specific reference peptides, we determined the exact STAG1:STAG2 stoichiometry within the population of cohesin complexes. In summary, we show that the protease elution protocol increases the recovery from affinity beads and is compatible with quantitative measurements such as the stoichiometry determination of protein complexes.  相似文献   

19.
目的:探讨高压电场对A549细胞中ABCG2和V-ATPase表达量的影响;探讨高压电场对A549细胞耐药性的影响。方法:MTT法测细胞生长曲线,明确能导致细胞可逆性电穿孔的最高电场强度。慢病毒构建ABCG2和V-ATPase低表达的A549细胞系,并用电场处理,用q-RT-PCR和Western-blot法检测处理前后ABCG2和V-ATPase的m RNA和蛋白表达量的变化。最适强度的高压电场处理各组细胞,在处理前后的细胞中分别加入阿霉素,用高效液相色谱法检测各组细胞中阿霉素浓度。结果:当电场强度为1500 V/cm时,肿瘤细胞增殖最慢;电场强度为1500 V/cm时,肿瘤细胞中ABCG2和V-ATPase的m RNA和蛋白的表达量分别降至对照组的58%和61%,具有统计学差异;1500 V/cm强度的电场可以提高肿瘤细胞内阿霉素的浓度3-4倍。结论:高压电场可以显著降低肿瘤细胞中V-ATPase和ABCG2的m RNA和蛋白的表达量并降低肿瘤细胞的耐药性。  相似文献   

20.
Sample preconcentration is an important step that increases the accuracy of subsequent detection, especially for samples with extremely low concentrations. Due to the overlapping of electrical double layers in the nanofluidic channel, the concentration polarization effect can be generated by applying an electric field. Therefore, a nonlinear electrokinetic flow is induced, which results in the fast accumulation of proteins in front of the induced ionic depletion zone, the so-called exclusion-enrichment effect. Nanofractures were created in this work to preconcentrate proteins via the exclusion-enrichment effect. The protein sample was driven by electroosmotic flow and accumulated at a specific location. The preconcentration chip for proteins was fabricated using simple standard soft lithography with a polydimethylsiloxane replica. Nanofractures were formed by utilizing nanoparticle-assisted electric breakdown. The proposed method for nanofracture formation that utilizes nanoparticle deposition at the junction gap between microchannels greatly decreases the required electric breakdown voltage. The experimental results indicate that a protein sample with an extremely low concentration of 1 nM was concentrated to 1.5×104-fold in 60 min using the proposed chip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号