首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
为观察内质网应激条件下血管内皮细胞生长因子的表达情况,用不同浓度的衣霉素处理体外培养的人脑微血管内皮细胞,建立内质网应激模型,采用RT—PCR、蛋白质免疫印迹以及免疫细胞化学的方法检测了细胞内血管内皮细胞生长因子的表达。结果发现血管内皮细胞生长因子在人脑微血管内皮细胞中存在一定的表达;内质网应激可诱导血管内皮细胞生长因子表达升高,随着衣霉素浓度的增高,血管内皮细胞生长因子的表达逐渐增加,与mRNA水平相比,血管内皮细胞生长因子蛋白量的增加更明显。实验结果提示人脑微血管内皮细胞中存在血管内皮细胞生长因子自分泌,血管内皮细胞生长因子可能是内质网应激的靶基因。  相似文献   

2.
过氧化亚硝酸盐是一氧化氮和超氧离子产生的强氧化剂,已知是促动脉粥样硬化发生的重要因子,但对其发病机制的认识存在较大争议。最近Dickhout JG等在Arterioscler Thromb Vasc Biol上报道了过氧化亚硝酸盐通过激活内质网应激途径致动脉粥样硬化的新机制。  相似文献   

3.
内质网应激与自噬及其交互作用影响内皮细胞凋亡   总被引:1,自引:0,他引:1  
内质网应激是普遍存在于真核细胞中的应激-防御机制。在内环境稳态遭到破坏的情况下,未折叠蛋白质反应的3条信号通路,分别通过增强蛋白质折叠能力、减少蛋白质生成和促进内质网相关蛋白质降解等途径缓解细胞内压力。同时,也通过多种分子信号机制调控细胞凋亡。自噬是一种生理性的降解机制。通过形成自噬泡并与溶酶体结合摄取并水解胞内受损细胞器和蛋白质等,清除代谢废物,维持细胞正常功能。自噬缺陷或过度激活均可导致细胞凋亡或非程序性死亡。自噬的程度和细胞内压力水平有关。内质网应激通过未折叠蛋白质反应和Ca2+浓度变化及其相关分子信号调控自噬。自噬又可反馈性调节内质网应激反应,二者相互作用,在内皮细胞凋亡过程中发挥重要作用。未来内质网应激和自噬可作为药物靶点为内皮相关性疾病提供诊疗策略。  相似文献   

4.
内质网在细胞内分布广泛,是细胞内蛋白质、脂类和糖类合成的重要场所,是细胞内钙离子的储存场所,与物质运输、交换等作用密切相关。内质网稳态失衡会诱导内质网应激(Endoplasmic reticulum stress,ERS),持久应激会导致细胞凋亡。多项研究显示内质网应激与多种肝脏疾病密切相关。本文就内质网应激与肝脏疾病发病机制作一综述。  相似文献   

5.
内质网应激   总被引:9,自引:0,他引:9  
Lin L  Tang CS  Yuan WJ 《生理科学进展》2003,34(4):333-335
内质网应激表现为内质网腔内错误折叠与未折叠蛋白聚集以及Ca^2 平衡紊乱,可激活未折叠蛋白反应、内质网超负荷反应和caspase-12介导的凋亡通路等信号途径,既能诱导糖调节蛋白(glucose-regulated protein 78kD,GRP78)、GRP94等内质网分子伴侣表达而产生保护效应,亦能独立地诱导细胞凋亡。内质网应激直接影响应激细胞的转归,如适应、损伤或凋亡。  相似文献   

6.
内质网应激与心脏疾病   总被引:1,自引:0,他引:1  
内质网是细胞内蛋白质合成折叠、Ca2+储存和脂质合成的重要部位.内质网稳态的破坏将导致大量错误或者未折叠蛋白质在内质网中的聚集,通过相应的信号通路,引起一系列的细胞反应,即内质网应激.内质网应激参与心脏的发育和多种心脏疾病的发生发展,包括心肌缺血和再灌注损伤、心肌病、心力衰竭等.内质网应激可能是研究心血管疾病发病机制和防治措施的新靶点.  相似文献   

7.
<正>内质网(Endoplasmic reticulum,ER)是真核细胞中一种重要的细胞器,它的主要功能是参与蛋白质合成,折叠和分泌。如果ER的功能受损、紊乱,继而会导致细胞一系列的病理生理变化,称为内质网应激(Endoplasmic reticulum stress,ERS)~([1])。ERS诱导一系列疾病的产生,包括动脉粥样硬化~([2]),神经退行性疾病~([3])和应激疾病~([4])。以往的研究只发现硫化氢(Hydrogen sulfide,H2S)是一种有毒气体,而且具  相似文献   

8.
内质网(endoplasmic reticulum,ER)在蛋白质质量控制体系中占据极其重要的地位.当未折叠和错误折叠蛋白质在ER中累积,会导致所谓"ER应激",进而启动未折叠蛋白响应(unfolded protein response,UPR)以恢复蛋白质稳态.如果ER应激不能得到缓解,UPR也会启动凋亡途径,清除累...  相似文献   

9.
内质网应激与帕金森病   总被引:1,自引:0,他引:1  
王晟东  白洁 《生命科学》2010,(4):326-330
内质网是细胞内最重要的细胞器之一,内质网功能与细胞状态密切相关。异常蛋白在内质网的堆积、胆固醇代谢异常、钙代谢紊乱等均能引起内质网应激。内质网应激在细胞生理病理中发挥重要作用。研究表明:内质网应激与神经退行性疾病,如帕金森病密切相关。该文简单概述了内质网应激与帕金森病之间的关系。  相似文献   

10.
内质网是分泌型蛋白和膜蛋白折叠及翻译后修饰的主要场所.病毒感染所引起的宿主细胞内环境的改变可使细胞或病毒的未折叠和/或错误折叠蛋白在内质网中大量聚集,使内质网处于生理功能紊乱的应激状态.为了缓解这种应激压力,细胞会启动未折叠蛋白反应(UPR),并通过一系列分子的信号转导维持内质网稳态;同时病毒也会通过对UPR的精密调控...  相似文献   

11.
《Free radical research》2013,47(9):1083-1092
Abstract

The aim of this study was to determine the reasons why the intravitreal level of extracellular-superoxide dismutase (EC-SOD) increases in proliferative diabetic retinopathy patients by the investigation of two possibilities: first, change of EC-SOD expression in the retina; and secondly, leakage of EC-SOD through the endothelial monolayer by the treatment with endoplasmic reticulum (ER) stress inducers because ER stress is known to be involved in the vascular impairment in diabetic retinopathy. Intravitreous injection of tunicamycin in mice increased the permeability of tracer dye across retinal blood vessels while the retinal EC-SOD mRNA level was not changed. The leakage of EC-SOD through the retinal endothelial cell layer was elevated by the treatment with thapsigargin or tunicamycin. The expression of claudin-5 was significantly decreased by the treatment with the ER stress inducers. These phenomena were significantly suppressed by the pre-treatment of endothelial cells with a chemical chaperone 4-phenylbutyric acid. Our observations suggest that ER stress leads to the down-regulation of claudin-5 among tight junction proteins and may induce the elevation of endothelial permeability and leakage of EC-SOD into the vitreous body.  相似文献   

12.
The aim of this study was to determine the reasons why the intravitreal level of extracellular-superoxide dismutase (EC-SOD) increases in proliferative diabetic retinopathy patients by the investigation of two possibilities: first, change of EC-SOD expression in the retina; and secondly, leakage of EC-SOD through the endothelial monolayer by the treatment with endoplasmic reticulum (ER) stress inducers because ER stress is known to be involved in the vascular impairment in diabetic retinopathy. Intravitreous injection of tunicamycin in mice increased the permeability of tracer dye across retinal blood vessels while the retinal EC-SOD mRNA level was not changed. The leakage of EC-SOD through the retinal endothelial cell layer was elevated by the treatment with thapsigargin or tunicamycin. The expression of claudin-5 was significantly decreased by the treatment with the ER stress inducers. These phenomena were significantly suppressed by the pre-treatment of endothelial cells with a chemical chaperone 4-phenylbutyric acid. Our observations suggest that ER stress leads to the down-regulation of claudin-5 among tight junction proteins and may induce the elevation of endothelial permeability and leakage of EC-SOD into the vitreous body.  相似文献   

13.
Calreticulin an endoplasmic reticulum (ER) chaperone that is involved in the quality control process and plays an important role as a regulator of intracellular calcium homeostasis. Previously, we illustrated that loss of calreticulin (crt−/−) results in the activation of ubiquitin-proteasome pathway facilitating the increased resistance to apoptosis. Our preliminary data illustrated a significant increase in the endocytosis in the calreticulin knockout mouse embryonic fibroblast cells (crt−/−). Therefore, we hypothesized that the mechanism for this increased endocytosis in the crt−/− cells is due to onset of ER stress. To test this hypothesis, we measured endocytosis in the wild type (wt) and crt−/− cells using uptake of fluorescent dextran and showed a significant increase in the rate of its uptake in crt−/− cells as compared to wt cells.To determine the endocytic pathway involved we examined both clathrin and caveolin-1 dependent endocytosis. Our results illustrated no change in the expression of clathrin heavy chain while there was a significant increase in the expression of caveolin-1 in the crt−/− cells as compared to the wt cells. Furthermore, using shRNA we illustrated that knockdown of clathrin heavy chain had no effect on endocytosis in the crt−/− cells. While knock-down of caveolin-1 significantly reduced endocytosis in the crt−/− cells. Finally, we illustrated that a chemical chaperone, 4‑phenylbutyrate significantly reduced both the endoplasmic reticulum stress and endocytosis in the crt−/− cells. Our data shows for the first time, that ER stress led to enhanced caveolin-1 mediated endocytosis and reversal of ER stress reduces endocytosis.  相似文献   

14.
Endoplasmic reticulum stress and apoptosis   总被引:3,自引:0,他引:3  
Cell death is an essential event in normal life and development, as well as in the pathophysiological processes that lead to disease. It has become clear that each of the main cellular organelles can participate in cell death signalling pathways, and recent advances have highlighted the importance of the endoplasmic reticulum (ER) in cell death processes. In cells, the ER functions as the organelle where proteins mature, and as such, is very responsive to extracellular-intracellular changes of environment. This short overview focuses on the known pathways of programmed cell death triggering from or involving the ER.  相似文献   

15.

Aims

Both advanced glycation end products (AGEs) and endoplasmic reticulum (ER) stress play important roles in the development of various diseases. This study aimed to clarify the consequence of AGE-induced ER stress and its underlying mechanisms in human umbilical venous endothelial cells (HUVECs).

Main methods

AGE-induced ER stress was assessed by the increased expression and activation of the ER stress marker proteins GRP78, IRE1α and JNK, which were detected using Western blot. NF-κB translocation was revealed using Western blot and immunofluorescent staining in IRE1α-knockdown HUVECs. The mechanism of AGE-induced ER stress was also explored by inhibiting the effect of reactive oxygen species (ROS) using NADPH oxidase 4 (Nox4) siRNA and the antioxidant reduced glutathione (GSH). The cellular ROS level was measured using flow cytometry.

Key findings

AGEs time- and dose-dependently enhanced the expression of GRP78 and increased the phosphorylation of IRE1α and its downstream signal JNK in HUVECs. siRNA-induced IRE1α down-regulation suppressed AGE-induced NF-κB p65 nuclear translocation. Inhibiting the ROS production using Nox4 siRNA or antagonizing ROS using GSH reduced cellular ROS level and attenuated AGE-induced GRP78 expression and IRE1α and JNK activation.

Significance

This study confirms that AGE-induced ER stress in HUVECs focuses on the ER stress-enhanced inflammatory response through JNK and NF-κB activation. It further reveals the involvement of ROS in the AGE-induced ER stress mechanism.  相似文献   

16.
Endoplasmic reticulum stress triggers autophagy   总被引:1,自引:0,他引:1  
Eukaryotic cells have evolved strategies to respond to stress conditions. For example, autophagy in yeast is primarily a response to the stress of nutrient limitation. Autophagy is a catabolic process for the degradation and recycling of cytosolic, long lived, or aggregated proteins and excess or defective organelles. In this study, we demonstrate a new pathway for the induction of autophagy. In the endoplasmic reticulum (ER), accumulation of misfolded proteins causes stress and activates the unfolded protein response to induce the expression of chaperones and proteins involved in the recovery process. ER stress stimulated the assembly of the pre-autophagosomal structure. In addition, autophagosome formation and transport to the vacuole were stimulated in an Atg protein-dependent manner. Finally, Atg1 kinase activity reflects both the nutritional status and autophagic state of the cell; starvation-induced autophagy results in increased Atg1 kinase activity. We found that Atg1 had high kinase activity during ER stress-induced autophagy. Together, these results indicate that ER stress can induce an autophagic response.  相似文献   

17.
Telomerase contributes to cell proliferation and survival through both telomere‐dependent and telomere‐independent mechanisms. In this report, we discovered that endoplasmic reticulum (ER) stress transiently activates the catalytic components of telomerase (TERT) expression in human cancer cell lines and murine primary neural cells. Importantly, we show that depletion of hTERT sensitizes cells to undergo apoptosis under ER stress, whereas increased hTERT expression reduces ER stress‐induced cell death independent of catalytically active enzyme or DNA damage signaling. Our findings establish a functional link between ER stress and telomerase, both of which have important implications in the pathologies associated with aging and cancer.  相似文献   

18.
Endoplasmic reticulum (ER) stress has been implicated in various neurodegenerative diseases, including Alzheimer’s disease. We have previously observed amyloid production in the retina of the Tg2576 transgenic mouse model of Alzheimer’s disease. In this study, we used tunicamycin-induced ER stress in RGC-5 cells, a cell line identical to the photoreceptor cell line 661W, to investigate the effect of ER stress on production of amyloid-beta (Abeta) peptides. We found that the mRNA level of amyloid-beta precursor protein (APP) remained stable, while the protein level of amyloid-beta precursor protein (APP) was decreased, the amyloid-beta precursor protein cleaving enzymes beta-site APP-cleaving enzyme 1 and presenilin 1 were upregulated, Abeta1–40 and Abeta1–42 production were increased, and reactive oxygen species production and apoptosis markers were elevated following induction of ER stress. The protein level of Abeta degradation enzymes, neprilysin, endothelin-converting enzyme 1, and endothelin-converting enzyme 2 remained unchanged during the prolonged ER stress, showing that the generation of Abeta did not result from reduction of proteolysis by these enzymes. Inclusion of group II caspase inhibitor, Z-DEVD-FMK, increased the ER stress mediated Abeta production, suggesting that they are generated by a caspase-independent mechanism. Our findings provided evidence of a role of ER stress in Abeta peptide overproduction and apoptotic pathway activation in RGC-5 cells.  相似文献   

19.
Metabolic disorders such as type 2 diabetes cause hepatic endoplasmic reticulum (ER) stress, which affects neutral lipid metabolism. However, the role of ER stress in cholesterol metabolism is incompletely understood. Here, we show that induction of acute ER stress in human hepatic HepG2 cells reduced ABCA1 expression and caused ABCA1 redistribution to tubular perinuclear compartments. Consequently, cholesterol efflux to apoA-I, a key step in nascent HDL formation, was diminished by 80%. Besides ABCA1, endogenous apoA-I expression was reduced upon ER stress induction, which contributed to reduced cholesterol efflux. Liver X receptor, a key regulator of ABCA1 in peripheral cells, was not involved in this process. Despite reduced cholesterol efflux, cellular cholesterol levels remained unchanged during ER stress. This was due to impaired de novo cholesterol synthesis by reduction of HMG-CoA reductase activity by 70%, although sterol response element-binding protein-2 activity was induced. In mice, ER stress induction led to a marked reduction of hepatic ABCA1 expression. However, HDL cholesterol levels were unaltered, presumably because of scavenger receptor class B, type I downregulation under ER stress. Taken together, our data suggest that ER stress in metabolic disorders reduces HDL biogenesis due to impaired hepatic ABCA1 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号