首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study three somatic hybrid lines originating from protoplast fusion between Solanum tuberosum cv. BF15 and Solanum berthaultii were subjected to a detailed molecular analysis using the I-SSR-PCR technique based on 5′-anchored microsatellite primers. The data obtained revealed a polymorphism between the different lines, suggesting that they correspond to symmetric hybrids. The analysis of chloroplast genome of these hybrids showed that they are resulting from a recombination between parental plastomes. When transferred to a greenhouse, these hybrid lines displayed an improved vigour compared to the cultivated potato BF15 parent. Indeed, an important growth rate and high tuber yield and weight were obtained for these hybrids compared to the parent. Some of these hybrids showed also an improved ion homeostasis control and they seem to display a better tolerance to salt stress compared to the potato BF15 parent.  相似文献   

3.
Interspecific somatic hybrids between a dihaploid potato clone H-8105 susceptible to Phytophthora infestans (Mont.) de Bary and a resistant diploid tuberizing species Solanum bulbocastanum were generated and analysed. Only ten regenerants displaying the intermediate morphology with dominating characteristics of the wild parent (simple leaves, anthocyanin pigmentation) were produced in 15 weeks after a single PEG-mediated fusion event. The RAPD patterns confirmed the hybridity of all of them. The hybrids rooted poorly and grew slowly in vitro. The cytological analysis revealed a high degree of aneuploidy in the hybrids with morphological and growth anomalies in vitro, while the morphologically normal hybrids were tetraploids. All the S. bulbocastanum (+) H-8105 hybrids were unstable in culture and three of them were consequently lost during three years of propagation in vitro. The possible reasons for instability of somatic hybrids between the distantly related species are discussed.  相似文献   

4.
The present study investigated the effect of different levels of Ca[ext] (0.3, 3.0, 5.0, 7.0, 9.0 and 11.0 mM) on potato over minimal growth in vitro in relation to varying water stress levels and moisture vapour transmission regimes using 45Ca as an isotopic tracer. Ca nutrition was substantially limited when the microplants were grown at enhanced water stress level (MS + 40 g l-1 sucrose + 20 g l-1 mannitol) under minimal growth. Ca[ext] in excess of standard level (3.0 mM), however, resulted in a significant increase in Ca content in microplants. The differential Ca uptake in microplants in relation to water stress and moisture vapour transmission has been discussed in terms of transpiration stream and root pressure water flow under minimal growth. The study showed that poor microplant quality at standard Ca[ext] over prolonged storage under minimal growth was due to limiting Ca nutrition, and this could be improved by using Ca[ext]-enriched (5.0-7.0 mM) minimal growth medium for conservation of potato microplants. The role of high Ca[ext] in reducing the phenotypic abnormalities such as vitrification, flaccidity, hyperhydricity, etc. in potato microplants over extended storage under minimal growth has also been discussed.  相似文献   

5.
The aim of this work was to evaluate the influence of elevating the cytosolic activity of phosphoglucomutase (PGM; EC 5.4.2.2) on photosynthesis, growth and heterotrophic metabolism. Here we describe the generation of novel transgenic plants expressing an Escherichia coli phosphoglucomutase (EcPGM) under the control of the 35S promoter. These lines were characterised by an accumulation of leaf sucrose, despite displaying no alterations in photosynthetic carbon partitioning, and a reduced tuber starch content. Determinations of the levels of a wide range of other metabolites revealed dramatic reductions in maltose and other sugars in leaves of the transformants, as well as a modification of the pattern of organic and amino acid content in tubers of these lines. Intriguingly, the transgenics also displayed a dramatically delayed rate of sprouting and significantly enhanced rate of respiration, however, it is important to note that the severity of these traits did not always correlate with the level of transgene expression. These results are discussed in the context of current understanding of the control of respiration and the breaking of tuber dormancy.  相似文献   

6.
Leaves of Solanum virginianum plants were used for protoplast isolation. To support cell wall formation and cell division, protoplasts were cultured in thin alginate layers floated in liquid medium. When protoplasts were plated at a density of 1.0 × 106/ml in Kao and Michyaluk (KMp8) medium supplemented with 0.5 mg/l zeatin, 1.0 mg/l 2,4-dichlorophenoxyacetic acid, and 1.0 mg/l α-naphthaleneacetic acid, 42.3% of the dividing cells developed microcalli in 3–4 weeks. Shoot formation via organogenesis of protoplast-derived calli was achieved for 28% of calli transferred to solidified KMp8 medium supplemented with 2.0 g/l zeatin and 0.1 mg/l 3-indol acetic acid in about 2 weeks. Further shoot development was observed in Murashige and Skoog (MS) medium without growth regulators and roots were induced after transfer to MS medium containing 1.0 mg/l 3-indol butyric acid. Regenerated plants have normal morphology.  相似文献   

7.
Sharma SK  Bryan GJ  Winfield MO  Millam S 《Planta》2007,226(6):1449-1458
The stability, both genetic and phenotypic, of potato (Solanum tuberosum L.) cultivar Desiree plants derived from alternative propagation methodologies has been compared. Plants obtained through three clonal propagation routes—axillary-bud-proliferation, microtuberisation and a novel somatic embryogenesis system, and through true potato seeds (TPS) produced by selfing were evaluated at three levels: gross phenotype and minituber yield, changes in ploidy (measured by flow cytometry) and by molecular marker analysis [measured using AFLP (amplified fragment length polymorphism)]. The clonally propagated plants exhibited no phenotypic variation while the TPS-derived plants showed obvious phenotypic segregation. Significant differences were observed with respect to minituber yield while average plant height, at the time of harvesting, was not significantly different among plants propagated through four different routes. None of the plant types varied with respect to gross genome constitution as assessed by flow cytometry. However, a very low level of AFLP marker profile variation was seen amongst the somatic embryo (3 out of 451 bands) and microtuber (2 out of 451 bands) derived plants. Intriguingly, only AFLP markers generated using methylation sensitive restriction enzymes were found to show polymorphism. No polymorphism was observed in plants regenerated through axillary-bud-proliferation. The low level of molecular variation observed could be significant on a genome-wide scale, and is discussed in the context of possible methylation changes occurring during the process of somatic embryogenesis.  相似文献   

8.
9.
Summary Multiple shoots were induced from cotyledonary nodes of grasspea (Lathyrus sativus L.) derived from 7-d-old in vitro seedlings on Murashige and Skoog (MS) medium containing N6-benzyladenine (BA), kinetin, or thidiazuron, BA being the most effective. Among the five genotypes tested, shoot proliferation frequency was the highest (93.3%) for IC-120487, giving the maximum number of shoots (11.3 shoots per explant) on MS medium augmented with 2.0 mgl−1 (8.87 μM) BA. Shoot cultures were established by repeatedly subculturing the original cotyledonary nodes on fresh medium after each harvest of the newly formed shoots. Thus 30–40 shoots were obtained in 2 mo. from a single cotyledonary node. Up to 81.8% of the shoots developed roots following transfer to half-strength MS medium containing 0.5 mgl−1 (2.85 μM) indole-3-acetic acid. Plantlets were successfully acclimatized and established in soil.  相似文献   

10.
A very efficient and rapid regeneration system via multiple shoot formation was developed for Cichorium intybus L. when leaf explants excised from sterile seedlings were cultured on medium supplemented with different concentrations and combinations of various plant growth regulators. In a comparison of leaf lamina and petiole explants, lamina explants produced over three times more shoots than petiole explants, with a mean of 7.5 shoots compared to 2.4. Of the combinations of KIN/IAA, KIN/NAA, BAP/IAA, or BAP/NAA, 0.5 mg l−1 KIN combined with 0.3 mg l−1 IAA was the most effective, producing a mean of 19.7 shoots per lamina explant while the control treatment involving no plant growth regulators produced no shoots at all. When either cytokinin was used alone, BAP was found nearly twice more successful than KIN. However, the most effective treatment of all was the combination of 0.01 mg l−1 TDZ and 1.0 mg l−1 IAA, producing as many as 35.8 shoots per lamina explant. This rate of shoot regeneration is remarkably higher than those previously reported for C. intybus, most likely due to the highly inductive effect of TDZ, which was tested for the first time in this species. Rooting of the shoots was readily achieved on medium containing different concentrations of IAA or IBA. IAA was more effective than IBA and resulted in the highest frequency of shoots that rooted (100%) and mean number of roots per shoot (4.2) when used at 0.5 mg l−1. Hardening off process resulted in a production of more than 80% healthy plantlets.  相似文献   

11.
This paper discusses a number of experiments performed, involving the fusion by an electric field of mesophyll protoplasts from Solanum tuberosum cv. Bintje, S. tuberosum dihaploid clones 243, 299 and the wild tuberous disease-resistant species S. bulbocastanum and S. pinnatisectum. Three fusion experiments (S. bulbocastanum + S. tuberosum dihaploid 243, S. pinnatisectum + S. tuberosum cv. Bintje and S. pinnatisectum + S. tuberosum dihaploid 299) yielded 542 calli, the 52 ones of which produced shoots. Obtained regenerants were estimated by the flow-cytometry (FC) and RAPD analysis to determine hybrid plants.The utilisation of the FC as a useful method for detecting somatic hybrids is also discussed in this paper. The combination S. bulbocastanum + S. tuberosum dihaploid 243 led to the creation of eight somatic hybrids, the combination S. pinnatisectum + S. tuberosum cv. Bintje yielded four somatic hybrids and the combination S. pinnatisectum + S. tuberosum dihaploid 299 resulted in no hybrid regenerants. Morphology in vitro, growth vigour and production of tuber-like structures were evaluated in hybrid plants. Plants were transferred in vivo for further estimation (acclimatization, habitus evaluation and tuberization ability).  相似文献   

12.
Lang Z  Zhou P  Yu J  Ao G  Zhao Q 《Planta》2008,227(2):387-396
SBgLR (Solanum tuberosum genomic lysine-rich) gene was isolated from a potato genomic library using SB401 (S. berthaultii 401) cDNA as probe. RT-PCR analysis of SBgLR gene expression profile and microscopic analysis of green fluorescent protein (GFP) expression in tobacco plants transformed with SBgLR promoter-GFP reporters indicate that SBgLR is a pollen-specific gene. A series of 5′deletions of SBgLR promoter were fused to the β-glucuronidase (GUS) gene and stably introduced into tobacco plants. Histochemical and quantitative assays of GUS expression in transgenic plants allowed us to localize an enhancer of SBgLR promoter to the region −345 to −269 relative to the translation start site. This 76 bp (−345 to −269) fragment enhanced GUS expression in leaves, stems and roots when fused to −90/+6 CaMV 35S minimal promoter. Deletion analysis showed that a cis-element, which can repress gene expression in root hairs, was located in the region −345 to −311. Further study indicated that the −269 to −9 region was sufficient to confer pollen-specific expression of GFP when fused to CaMV 35S enhancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Zhihong Lang and Peng Zhou contributed equally to this work.  相似文献   

13.
The influence of saprotrophic soil fungi: Aspergillus versicolor, Penicillium frequentans, Penicillium verrucosum var. cyclopium, and Trichocladium asperum on development, wholesomeness, gas exchange and yield of potato cv. Mila was studied in pot experiments during 1998–2000. The presence of each of the mentioned fungi species in soil accelerated potato germination and stimulated growth of overground plant parts in comparison with control plants. Additionally, the presence of the tested saprotrophes in soil prologed the potato growing period by inhibiting chloroses of necroses. The tested saprotrophic fungi also modified plant physiological processes, such as transpiration and assimilation. The contact of plant root system with soil saprotrophes diminished significantly assimilation and transpiration intensity of overground parts in comparison with the control plants, in all the years of the experiment. However, this response did not reduce the yield of tubers.  相似文献   

14.
Filipendula ulmaria (L.) Maxim (meadowsweet) is a medicinal plant that is claimed to have several biological activities, including anti-tumor, anti-carcinogenic, anti-oxidant, anti-coagulant, anti-ulcerogenic, anti-microbial, anti-arthritic, and immunomodulatory properties. This report describes, for the first time, an efficient plant regeneration system for F. ulmaria via adventitious shoot development from leaf, petiole, and root explants cultured on Murashige and Skoog’s minimal organics medium containing different concentrations of thidiazuron (TDZ), benzyladenine, and kinetin either alone or in combination with different auxins. Relatively extensive/prolific shoot regeneration was observed in all three explant types with TDZ in combination with indole-3-acetic acid (IAA). Gibberellic acid (GA3), TDZ, and IAA combinations were also tested. The best shoot proliferation was observed among root explants cultured on media supplemented with 0.45 μM TDZ + 2.85 μM IAA + 1.44 μM GA3. Regenerated shoots were transferred to rooting media containing different concentrations of either IAA, indole-3-butyric acid (IBA), naphthalene acetic acid, or 2,4-dichlorophenoxyacetic acid. Most shoots developed roots on medium with 2.46 μM IBA. Rooted explants were transferred to vermiculite in Magenta containers for a 2-wk acclimatization period and then finally to plastic pots containing potting soil. The plantlets in soil were kept in growth chambers for 2 wk before transferring to greenhouse conditions.  相似文献   

15.
An in vitro regeneration system with a 100% efficiency rate was developed in peppermint [Mentha x piperita] using 5- to 7-mm-long second internode stem segments of 3-wk-old stock plants. Shoots developed at sites of excision on stem fragments either directly from the cells or via primary calluses. The optimal medium for maximum shoot initiation and regeneration contained Murashige and Skoog (MS) salts, B5 vitamins, thidiazuron (TDZ, 11.35 μM), ZT (4.54 μM), 10% coconut water (CW), 20 g l−1 sucrose, 0.75% agar, adjusted to pH 5.8. A frequency of 100% shoot initiation was achieved, with an average of 39 shoots per explant. This regeneration system is highly reproducible. The regenerated plants developed normally and were phenotypically similar to Black Mitcham parents.  相似文献   

16.
An efficient procedure for direct organogenesis and regeneration of hop (Humulus lupulus L.) was established. For the first time Agrobacterium-mediated genetic transformation of hop (cv. "Tettnanger") was achieved. Shoot internodes from in vitro cultures were identified as the most suitable type of explant for regeneration. Using this type of explant, a shoot-inducing medium was developed that supported direct organogenesis of approximately 50% of the explants. Plantlets were successfully rooted and transferred to the greenhouse. Overall, in less than 6 months hop cultures propagated in vitro were regenerated to plants in the greenhouse. Agrobacterium-mediated genetic transformation was performed with the reporter gene GUS (-glucuronidase). The presence and function of transgenes in plants growing in the greenhouse was verified by PCR (polymerase chain reaction) and enzyme assay for GUS activity, respectively. We have obtained 21 transgenic plants from 1,440 explants initially transformed, yielding an overall transformation efficiency of 1.5%.Abbreviations BAP 6-Benzylaminopurine - GA3 Gibberellic acid - GUS -Glucuronidase - IAA Indole-3-acetic acid - IBA Indole-3-butyric acid - NAA -Naphthaleneacetic acid - nptII Neomycin phosphotransferase II - PCR Polymerase chain reaction - TDZ 1-Phenyl-3-(1,2,3-thiadiazol-5-yl) urea (thidiazuron)Communicated by H. Lörz  相似文献   

17.
Summary A protocol has been developed for in vitro plant regeneration from cotyledonary nodes of Pterocarpus marsupium Roxb. Multiple shoots were induced from cotyledonary nodes derived from 20-d-old axenic seedlings grown on Murashige and Skoog (MS) medium containing 2.22–13.32 μM benzyladenine (BA) or 2.32–13.93 μM kinetin alone or in combination with 0.26 μM α-naphthaleneacetic acid (NAA). The highest frequency for shoot regeneration (85%) and maximum number of shoots per explant (9.5) were obtained on the medium supplemented with 4.44 μM BA and 0.26 μM NAA after 15 wk of culture. A proliferating shoot culture was established by repeatedly subculturing the original cotyledonary nodal explant on fresh medium after each harvest of the newly formed shoots. Nearly 30% of the shoots formed roots after being transferred to half-strength MS medium containing 9.84 μM indole-3-butyric acid (IBA) after 25 d of culture. Fifty percent of shoots were also directly rooted as microtuttings on a peat moss, soil, and compost mixture (1∶1∶1). About 52% of plantlets were successfully acclimatized and established in pots.  相似文献   

18.
A potential novel method of producing high-quality potato (Solanum tuberosum L.) nuclear seeds is through the process of somatic embryogenesis (SE). Somatic embryo formation has been successfully reported in many plant species, but in potato, reliable SE systems are still at the experimental stage. A key factor in the success of any SE system is the ability to discriminate SE-specific cellular structures from those emerging through an organogenic route. In the investigation reported here we attempted to discriminate the progression of specific stages of potato SE by histological means. Internodal segment (INS) explants from 4- to 6-week-old cv. Desiree in vitro cultures were successively cultured on SE induction (for 2 weeks) and expression/regeneration media (for 3 weeks) with and without 2,4-dichlorophenoxyacetic acid (5 M). Microscopic examination of histological slides prepared using INS explants at different stages revealed the presence of characteristic globular, heart and torpedo stages in the potato SE system along with other associated unique features such as protoderm development and discrete vascular connections. These results confirm the occurrence of potato SE as per the accepted definition of the term.Abbreviations 2,4-D 2,4-Dichlorophenoxyacetic acid - ELS Embryo-like structure(s) - INS Internodal segment(s) - PEM Proembryo mass - SE Somatic embryogenesis  相似文献   

19.
Summary A protocol has been developed for in vitro plant regeneration from cotyledonary nodes of Pterocarpus marsupium Roxb. Multiple shoots were induced from cotyledonary nodes derived from 20-d-old axenic seedlings grown on Murashige and Skoog (MS) medium containing 2.22–13.32 μM benzyladenine (BA) or 2.32–13.93 μM kinetin alone or in combination with 0.26 μM α-naphthaleneacetic acid (NAA). The highest frequency of responding explants (85%) and maximum number of shoots per explant (9.5) were obtained on MS medium supplemented with 4.44 μM BA and 0.26 μM NAA after 15 wk of culture. A proliferating shoot culture was established by repeatedly subculturing the orginal cotyledonary nodal explant on fresh medium after each harvest of the newly formed shoots. Nearly 30% of the shoots formed roots after being transferred to half-strength MS medium containing 9.84 μM indole-3-butyric acid after 25 d of culture. Fifty percent of shoots were also directly rooted as microcuttings on peat moss, soil, and compost mixture (1∶1∶1). About 52% plantlets rooted under ex vitro conditions were successfully acclimatized and established in pots.  相似文献   

20.
Summary This is the first communication of direct shoot regeneration from fully developed leaves of potted mature Echinacea purpurea plants. Shoot buds were induced directly on the adaxial surface of mature leaf tissues of E. purpurea 30 d after culture initiation on Woody Plant Medium (WPM) supplemented with various levels of 6-benzyladenine (BA). Maximum shoot organogenesis, with 12–20 shoots per leaf segment, was obtained with 5% coconut milk and 2.5 mg l−1 (6μM) BA in 30 d. Callus was induced using 0.5 mgl−1 (1μM) α-naphthaleneacetic acid and 2.5 mgl−1 (6μM) BA. The regenerated shoots were rooted on WPM supplemented with 1.5 mgl−1 (3μM) of indole-3-butyric acid, 3% sucrose, and 0.85% agarose. Rooted plants were successfully transferred to soil in pots and appeared morphologically normal and flowered in a growth chamber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号