首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Small amounts (7-250 pmol) of myoglobin, beta-lactoglobulin, and other proteins and peptides can be spotted or electroblotted onto polyvinylidene difluoride (PVDF) membranes, stained with Coomassie Blue, and sequenced directly. The membranes are not chemically activated or pretreated with Polybrene before usage. The average repetitive yields and initial coupling of proteins spotted or blotted into PVDF membranes ranged between 84-98% and 30-108% respectively, and were comparable with the yields measured for proteins spotted onto Polybrene-coated glass fiber discs. The results suggest that PVDF membranes are superior supports for sequence analysis of picomole quantities of proteins purified by gel electrophoresis.  相似文献   

2.
Electroblotted proteins noncovalently bound to polyvinylidene difluoride (PVDF) membranes are typically sequenced using adsorptive sequencer protocols (gas-phase or pulsed-liquid) that do not require a covalent linkage between protein and surface. We have developed simple chemical protocols where proteins are first electroblotted onto unmodified PVDF membranes, visualized with common protein stains, and then immobilized for solid-phase sequence analysis. Adsorbed, stained proteins are first treated with phenylisothiocyanate (PITC) to modify alpha and epsilon amines. The protein is then overlayed with a solution of 1,4-phenylene di-isothiocyanate (DITC), followed by a few microliters of a basic solution containing a poly(alkylamine). As the polymer dries onto the surface both polymer and remaining protein amino groups are crosslinked by DITC. The protein is thus immobilized to the membrane surface by entrapment in a thin polymer coating. The coating is transparent to the degradation chemistry, and extensive enough to remain immobilized even in the absence of any covalent link between polymer and surface. Partial modification with PITC allows for identification of N-terminal and internal lysine residues during sequencing. The process was tested with a variety of poly(alkylamines), linear and branched, with molecular weights ranging from 600 to over 100,000. Proteins bound in this manner were successfully sequenced using covalent (solid-phase) sequencer protocols with cycle times as short as 26 min.  相似文献   

3.
A rapid solid-phase protein microsequencer.   总被引:1,自引:0,他引:1       下载免费PDF全文
A solid-phase protein microsequencer is described that has been designed to determine protein sequences with subnanomolar quantities of protein. Its utility has been demonstrated by the determination of many sequences in subunits of mitochondrial F1-ATPase, in a protein isolated from mouse gap junctions and in the mitochondrial phosphate-transporter protein. It has a number of advantages over liquid- and gas-phase sequencers. Firstly, the degradation cycle takes 24 min, more than twice as fast as any other sequencer. This helps to reduce exposure of proteins to inimical reagents and increases throughput of samples. Secondly, polar amino acids such as phosphoserine, and polar derivatives formed by active-site photoaffinity labelling with 8-azido-ATP, are recovered quantitatively from the reaction column and can be positively identified. In other types of sequencer these polar derivatives, being somewhat insoluble in butyl chloride, tend to remain in the reaction chamber of the instrument and so are more difficult to identify. The solid-phase protein sequencer is also more suited than the liquid-phase instrument for analysis of proteolipids from membranes. These hydrophobic proteins tend to dissolve in organic solvents during washing steps in the liquid-phase instrument and are lost. Covalent attachment as used in the solid-phase instrument solves this problem.  相似文献   

4.
Direct protein microsequencing from Immobilon-P Transfer Membrane   总被引:30,自引:0,他引:30  
Proteins separated by electrophoresis and electroblotted onto Immobilon-P Transfer Membrane can be sequenced directly in the gas-phase sequencer. Protein bands visualized by Coomassie Blue are placed in the sequencer cartridge without the addition of polybrene. Preconditioning sequencer cycles are eliminated, reducing reagent use and instrument operating time. The average initial yield for protein spotted or blotted onto the polyvinylidene-based membrane was determined to be 70 to 80% using 125I-labeled beta-lactoglobulin. Preliminary data indicate that proteins hydrolyzed in situ on Immobilon-P can further be characterized by amino acid compositional analysis.  相似文献   

5.
We have quantitatively examined the various parameters affecting the electrotransfer and sequence analysis of proteins from sodium dodecyl sulfate (SDS) gels to derivatized glass fiber paper or to polyvinyldifluoride (PVDF) membranes. Transfer yields in the range of 90-95% can be obtained for proteins in the molecular weight range of 10-90 kDa for transfer from 12% SDS gels to glass fiber paper derivatized with either QAPS (N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride) or APS (aminopropyltriethoxysilane). In order to achieve these yields, it was necessary to modify the conditions described by R. Aebersold et al. (J. Biol. Chem. 261, 4229-4238, 1986). We activated the glass fiber paper with dilute ammonia water and derivatized the activated glass fiber paper with QAPS and APS in anhydrous solvents which were allowed to slowly absorb moisture during the derivatization process. The transfer yield varied with transfer time versus molecular weight of the protein for a given percentage gel. Shorter transfer times and higher yields were obtained for higher molecular weight proteins on 8% gels. Lower molecular weight protein gave higher yields from 12% gels under similar transfer conditions. Sequencing yields of the transferred proteins were in the range of 40-80%, but a number of background peaks were observed on HPLC analysis of the phenylthiohydantoin amino acid derivatives. Transfer yields in the range of 85-95% were observed for similar experiments with PVDF membranes. In order to achieve these yields, it was necessary to modify the conditions described by P. Matsudaira (J. Biol. Chem. 262, 10035-10038, 1987). A lower voltage and longer transfer times gave higher transfer yields. In order to achieve consistently high transfer yields, it was also necessary to precoat the PVDF membranes with Polybrene. The PVDF membranes were cut into approximately 1-mm-wide strips and inserted into a continuous flow reactor (J. E. Shively, P. Miller, and M. Ronk, Anal. Biochem. 163, 517-525, 1987) for sequence analysis. Overall yields of samples loaded onto gels, electrotransferred to Polybrene-coated PVDF membranes, and sequenced ranged from 50-60% for beta-lactoglobin (10-50 pmol loaded onto SDS gels) to 20-30% for bovine serum albumin and soybean trypsin inhibitor (50 pmol loaded onto SDS gels). A comparison of the two methods shows clear advantages for the PVDF membranes over the derivatized glass fiber paper, including the ability to directly sequence the Coomassie blue-stained PVDF membranes, and the lower backgrounds observed on subsequent sequence analysis.  相似文献   

6.
A method is described for determination of carbohydrate and protein contents of glycoproteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and then electroblotted onto polyvinylidene difluoride (PVDF) membranes. Blots were stained, and appropriate pieces of PVDF membranes were excised, destained, and subjected to sequential hydrolysis with 0.2 M trifluoroacetic acid (TFA) for 1 h at 80 degrees C, then with 2 M TFA for 4 h at 100 degrees C, and finally with 6 M HCl at 100 degrees C for 24 h to release sialic acids, neutral sugars with hexosamines, and amino acids, respectively. In some instances preliminary methanolysis was used. Carbohydrates including sialic acids were quantitated by high pH anion exchange chromatography with pulsed amperometric detection. Protein content of the bands was determined as amino acids by the fluorescamine or ninhydrin method. In the calculation of results proper adjustments were made for small amounts of fucose released by hydrolysis with 0.2 M TFA at 80 degrees C, and for partial degradation of protein during hydrolysis with 2 M TFA at 100 degrees C. Recoveries of amino acids from hydrolysates of glycoproteins that had been electroblotted onto PVDF membranes equaled those of carbohydrates. This was possible because of preliminary hydrolysis of glycoproteins with TFA, as well as washing of wet, instead of dried, PVDF membranes after hydrolysis with 6 M HCl. The two modifications increased yields of amino acids by about 30%. The method was successfully applied to the determination of molar and weight percentage composition of human transferrin, band 3 protein, glycophorin A, and alpha(1)-acid glycoprotein. In each case the results obtained for directly hydrolyzed and electrophoresed/electroblotted glycoproteins were practically identical. We also determined the glucosamine content of band 4.1 protein of erythrocytes.  相似文献   

7.
Purification of rabbit and human serum paraoxonase.   总被引:8,自引:0,他引:8  
Rabbit serum paraoxonase/arylesterase has been purified to homogeneity by Cibacron Blue-agarose chromatography, gel filtration, DEAE-Trisacryl M chromatography, and preparative SDS gel electrophoresis. Renaturation (Copeland et al., 1982) and activity staining of the enzyme resolved by SDS gel electrophoresis allowed for identification and purification of paraoxonase. Two bands of active enzyme were purified by this procedure (35,000 and 38,000). Enzyme electroeluted from the preparative gels was reanalyzed by analytical SDS gel electrophoresis, and two higher molecular weight bands (43,000 and 48,000) were observed in addition to the original bands. This suggested that repeat electrophoresis resulted in an unfolding or other modification and slower migration of some of the purified protein. The lower mobility bands stained weakly for paraoxonase activity in preparative gels. Bands of each molecular weight species were electroblotted onto PVDF membranes and sequenced. The gas-phase sequence analysis showed that both the active bands and apparent molecular weight bands had identical amino-terminal sequences. Amino acid analysis of the four electrophoretic components from PVDF membranes also indicated compositional similarity. The amino-terminal sequences are typical of the leader sequences of secreted proteins. Human serum paraoxonase was purified by a similar procedure, and ten residues of the amino terminus were sequenced by gas-phase procedures. One amino acid difference between the first ten residues of human and rabbit was observed.  相似文献   

8.
The influence of different types of polyvinylidene difluoride (PVDF) membranes on gas phase sequence performance has been evaluated. These PVDF membranes have been classified as either high retention (Trans-Blot and ProBlott) or low retention membranes (Immobilon-P) based on their ability to bind proteins during electroblotting from gels. Initial yields, repetitive yields, and extraction efficiency of the anilinothiazolinone amino acid derivatives have been compared for several standard proteins that have been either electroblotted or loaded onto PVDF membranes by direct adsorption. These results show that the major differences in initial sequence yields between membranes arise from differences in the amount of protein actually transferred to the membrane rather than sequencer-related factors. In contrast to several previous observations from other laboratories, more tightly bound proteins do not sequence with lower initial yields and initial yields are not affected by the ratio of surface area to protein. The stronger binding on high retention PVDF membranes does not adversely affect recoveries of difficult to extract, or very hydrophobic, amino acid derivatives. Several amino acids, especially tryptophan, are actually recovered in dramatically higher yield on high retention membranes compared with either Immobilon or glass filters. At the same time, the protein and peptide binding properties of high retention membranes will frequently improve the repetitive yield by minimizing sample extraction during the sequencer cycle. Stronger protein binding together with improved electroblotting yields offer substantially improved sequence performance when high retention PVDF membranes are used.  相似文献   

9.
The aminolysis of products of sequential degradation of proteins and peptides by methylamine is an alternative method of conversion of the unstable 5-alkyl-2-anilino-4-thiazolinones into the stable methyl amides of N alpha-phenylthiocarbamoyl amino acids. The volatility of methylamine permits use in the gas phase during both manual and automatic sequential degradation. Two procedures were studied: (mode A) aminolysis by methylamine in the sequencer reaction chamber after liberation of the thiazolinones by trifluoroacetic acid and (mode B) aminolysis by methylamine vapors passed through a 1-chlorobutane solution of thiazolinones in the conversion flask of the sequencer. The sequencing program was modified for both procedures by making use of the standard sequencer functions. The yields of aminolysis in the conversion flask (mode B) are comparable to those obtained by standard conversion in 25% trifluoracetic acid and the procedure does not affect the repetitive yield. Aminolysis on the glass filter (mode A) requires a major modification of the degradation process, yet gives higher yields of the degraded amino acid derivatives. A disadvantage of both procedures, especially of mode A, is the presence of N-methyl-N'-phenylthiourea in the methyl amide samples. We have not been able to achieve the expected improvement of the yields of degraded hydroxy amino acids. Therefore the replacement of acid conversion of anilinothiazolinones to phenylthiohydantiones by aminolysis for routine degradation cannot be recommended. High yields of methyl amides make aminolysis a promising candidate for the incorporation of fluorescent or other labels in the products of sequencing degradation.  相似文献   

10.
The topography of membrane-surface-exposed amino acids in the light-driven proton pump bacteriorhodopsin (BR) was studied. By limited proteolysis of purple membrane with papain or proteinase K, domains were cleaved, separated by SDS-PAGE, and electroblotted onto polyvinylidene difluoride (PVDF) membranes. Fragments transferred were sequenced in a gas-phase sequencer. Papain cleavage sites at Gly-65, Gly-72, and Gly-231, previously only deduced from the apparent molecular weight of the digestion fragments, could be confirmed by N-terminal micro-sequencing. By proteinase K, cleavage occurred at Gln-3, Phe-71, Gly-72, Tyr-131, Tyr-133, and Ser-226, i.e., in regions previously suggested to be surface-exposed. Additionally, proteinase-K cleavage sites at Thr-121 and Leu-127 were identified, which are sites predicted to be in the alpha-helical membrane-spanning segment D. Our results, especially that the amino acids Gly-122 to Tyr-133 are protruding into the aqueous environment, place new constraints on the amino-acid folding of BR across the purple membrane. The validity of theoretical prediction methods of the secondary structure and polypeptide folding for membrane proteins is challenged. The results on BR show that micro-sequencing of peptides separated by SDS-PAGE and blotted to PVDF can be successfully applied to the study of membrane proteins.  相似文献   

11.
Sequencing of phosphoserine-containing peptides yields normally no identifiable PTH-derivatives at those positions where phosphoserine is located. Here a new method is described which allows identification of the position of phosphoserine by chemical modification just before sequence analysis. In a one-step microbatch reaction, phosphoserine present in the intact peptide can be transformed quantitatively into stable derivatives such as beta-methylaminoalanine (MAA), S-ethanolcysteine or S-ethylcysteine. These derivatives are detectable during microsequencing with less than 100 pmol peptide using an Applied Biosystems gas-phase sequencer equipped with an on-line PTH amino acid analyzer.  相似文献   

12.
Amino acid analysis on polyvinylidene difluoride membranes   总被引:1,自引:0,他引:1  
A procedure for the amino acid analysis of proteins electrotransferred to polyvinylidene difluoride (PVDF) membranes is described. The proteins are first separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then electroblotted onto a PVDF membrane. After staining with Coomassie brilliant blue, the visualized protein bands are excised from the membrane. Each band is placed in a vial and subjected to gas-phase hydrolysis in 6 N HCl in a vacuum desiccator at 110 degrees C. The amino acids are extracted from the membrane into 0.1 N HCl/30% CH3OH and analyzed by reverse-phase HPLC using postcolumn o-phthalaldehyde-derivatizing reagent. The method was shown to give reproducible and reasonably accurate compositions for several proteins, as well as to provide an estimate of protein content. As little as 10 pmol of a 67-kDa protein can be determined.  相似文献   

13.
A rapid and simple method for the quantitation of stained proteins bound to polyvinylidene difluoride (PVDF) membranes via the elution of Coomassie brilliant blue R-250 is described. A mixture of standard proteins was resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotted onto PVDF membranes. Spectrophotometric analysis of dye eluted from protein bands in the range of 0.5-10 micrograms gave a linear change in the absorbance at 595 nm. Maximal absorbance readings were attained following 5 min of dye elution, and the readings remained unchanged for elution times up to 60 min. The method requires no unusual reagents or equipment, is suitable for the analysis of multiple samples, and does not consume the protein in the process of quantitation. This technique provides a useful means for the quantitation of proteins bound to PVDF membranes prior to amino acid sequence determination, immunological analysis, or other biochemical characterizations.  相似文献   

14.
A method was developed for direct microsequencing of N alpha-acetylated proteins electroblotted onto polyvinylidene difluoride membranes from polyacrylamide gels. N alpha-Acetylated proteins (greater than 32 pmol), including horse heart cytochrome c, five mutants of yeast cytochrome c, and bovine erythrocyte superoxide dismutase, were separated by SDS-PAGE and electroblotted onto polyvinylidene difluoride membranes. The portions of the membrane carrying the bands were cut out and treated with 0.5% polyvinylpyrrolidone in acetic acid solution at 37 degrees C for 30 min. The protein was digested on the membrane with 5-10 micrograms of trypsin at 37 degrees C for 24 h. During tryptic digestion, the resultant peptides were released from the membrane and the N-terminal peptide was efficiently deblocked with 50 mU of acylamino acid-releasing enzyme at 37 degrees C for 12 h. Picomole levels of the deblocked proteins could be sequenced directly by use of a gas-phase protein sequencer.  相似文献   

15.
The utility of the commercially available gas-phase sequencer for complete analysis of peptide samples was investigated. Using the program supplied with the instrument, significant extractive loss of samples in Polybrene was observed, even at input levels up to 500 pmol. In order to reduce this loss, the sequencer program was modified by increasing the phenylisothiocyanate (PITC)-coupling steps from two to three and lengthening the duration of ethyl acetate (S2) delivery while reducing the delivery rate. These changes gave improved results with peptides, e.g., all eight residues of angiotensin II were identified at the 25-pmol level. In addition, background contamination was decreased and repetitive yields were increased. The instrument was also found to function well with samples coupled to solid supports; however, some of the methodologies that work adequately for covalent attachment of peptides to solid supports at the level 1-10 nmol were found to give unacceptable coupling/sequenceable yields at or below the 100-pmol level. The coupling methods tried were (1) reaction of homoserine lactone with aminopropyl (AP)-glass, (2) reaction of alpha- and epsilon-NH2 groups with p-phenylenediisothiocyanate (DITC)-glass, and (3) reaction of alpha-COOH groups with aminoaryl (AA)-glass via EDAC (1-ethyl-3,3'-dimethylaminopropyl-carbodiimide). Of these, the first method gave combined yields of 42-94% while the latter two were only 9-35% efficient. The covalently bound samples provided sequence information even at the resulting low levels, e.g., 9/13 residues of dynorphin including Lys-13 at 11 pmol. In general, sequencer runs on solid-phase samples gave "cleaner" analyses and slightly higher repetitive yields (1-2%). Sequence information has also been obtained on peptides made by solid-phase synthesis prior to cleavage from the polystyrene support. With improved coupling efficiencies, solid-phase techniques would provide an alternative to immobilization of peptides in Polybrene films for low picomole level gas-phase sequencing.  相似文献   

16.
The oxidative modification of proteins has been shown to play a major role in a number of human diseases. However, the ability to identify specific proteins that are most susceptible to oxidative modifications is difficult. Separation of proteins using polyacrylamide gel electrophoresis (PAGE) offers the analytical potential for the recovery, amino acid sequencing, and identification of thousands of individual proteins from cells and tissues. We have developed a method to allow underivatized proteins to be electroblotted onto PVDF membranes before derivatization and staining. Since both the protein and oxidation proteins are quantifiable, the specific oxidation index of each protein can be determined. The optimal sequence and conditions for the staining process are (a) electrophoresis, (b) electroblotting onto PVDF membranes, (c) derivatization of carbonyls with 2,4-DNP, (d) immunostaining with anti DNP antibody, and (e) protein staining with colloidal gold.  相似文献   

17.
Sample centrifugation onto membranes for sequencing   总被引:2,自引:0,他引:2  
This paper presents a new method for adsorption of proteins in solution onto a polyvinylidene diflouride (PVDF) membrane using centrifugation. The technique uses a low molecular weight cut-off membrane (LMW) placed underneath a PVDF membrane. The paired membranes are placed in a receptacle which in turn fits into a microcentrifuge tube. During sample centrifugation, the LMW acts to increase the amount of protein that is concentrated and adsorbed onto the hydrophobic surface of the PVDF membrane. By alternating between two receptacle sizes, this method can accommodate large (greater than 10 micrograms) and small (less than 10 micrograms) amounts of sample. This paper demonstrates sample recovery for a variety of proteins as quantitated by radioactivity and amino acid analysis after centrifugation onto PVDF. Amino acid and sequence analysis results demonstrate the efficiency with which interfering buffers and sodium dodecyl sulfate are removed as a result of sample centrifugation and washing. Finally, we demonstrate the utility of this technique with samples in the low picomole range to obtain useful sequence information following electrophoretic isolation of cyanogen bromide fragments purified by high performance electrophoresis chromatography.  相似文献   

18.
A scheme for electroblotting of individual unstained protein bands from SDS/polyacrylamide gels and subsequent amino acid sequence analysis is described. Principal features are: detection of the polypeptide bands by visualization with KCl; electroblotting of excised gel pieces that correspond to the protein bands only; blotting onto polybrene-pretreated glass-fiber filter discs (12 mm diameter) placed in an electrophoretic concentrator. A high yield over all steps from gel application through electrophoresis, blotting, gas-phase sequencer degradation, and phenylthiohydantoin analysis is obtained with several different types of polypeptide (combined average yield over all steps 20%, spread 10-50%). Background is low and samples can be stored under vacuum for long periods after blotting.  相似文献   

19.
Proteins and large peptides were degraded with phenylisothiocyanate (PITC) in the horizontal flow-through-reactor of the Modular Knauer Sequencer (Fischer, S., Reimann, F. & Wittmann-Liebold, B. (1989) in Methods in Protein Sequence Analysis (Wittmann-Liebold, B., ed.) Springer-Verlag, Berlin, pp. 98-107) by the wet-phase filter technique (Wittmann-Liebold, B. (1988) J. Prot. Chem. 7, 224-225) employing polyvinylidene difluoride (PVDF) membranes without polybrene. In order to prevent losses of small peptides during solvent washes at the degradation, 1.4-phenylene diisothiocyanate (DITC) derivatized PVDF support (MilliGen, Burlington, MA) was used to covalently attach the peptide via its lysine groups in situ within the cross-flow reaction chamber onto this membrane (Herfurth, E., Pilling, U. & Wittmann-Liebold, B. (1990) J. Prot. Chem. 9, 267). We found these membranes very suitable for peptide degradations in the Knauer sequencer. In almost all cases we were able to identify the amino-acid residues of the peptide up to its last covalent fixation point to the membrane.  相似文献   

20.
We report a new and facile extraction method of proteins and polypeptides in the range of 100 to 1 kDa previously separated by high-resolution SDS/polyacrylamide-gel electrophoresis. Proteins and polypeptides obtained by chemical or proteolytic cleavage of proteins can directly be applied to high-sensitivity N-terminal amino-acid sequence analysis by gas-phase sequencing. The Coomassie Blue-stained protein bands are eluted from the gel slices with 0.1 M sodium acetate buffer, pH 8.5, 0.1% SDS in high yield and directly applied to the filter disc of the gas-phase sequencer. The superior efficiency for the isolation of proteins and polypeptides from polyacrylamide gels for microsequencing has been documented by a quantitative comparison of the procedure described here and the favoured electroblot-transfer method using 14C-labeled marker proteins. This highly efficient isolation has been successfully reproduced and applied to the analysis of a variety of proteins and peptides with rather divergent physical properties, particularly to hydrophobic peptides isolated from SDS/polyacrylamide gels. The electrophoretic transfer onto activated glass filters. Immobilon membranes (polyvinylidene-difluoride membranes), siliconized or chemically activated glass fiber supports can be omitted. The method considerably simplifies and speeds up the isolation, and improves the sensitivity as compared to the electroblotting procedures due to the reproducibly high recoveries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号