首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S M Miller  J P Klinman 《Biochemistry》1985,24(9):2114-2127
The chemical mechanism of hydroxylation, catalyzed by dopamine beta-monooxygenase, has been explored with a combination of secondary kinetic isotope effects and structure-reactivity correlations. Measurement of primary and secondary isotope effects on Vmax/Km under conditions where the intrinsic primary hydrogen isotope effect is known allows calculation of the corresponding intrinsic secondary isotope effect. By this method we have obtained an alpha-deuterium isotope effect, Dk alpha = 1.19 +/- 0.06, with dopamine as substrate. The beta-deuterium isotope effect is indistinguishable from one. The large magnitude of Dk alpha, together with our previous determination of a near maximal primary deuterium isotope effect of 9.4-11, clearly indicates the occurrence of a stepwise process for C-H bond cleavage and C-O bond formation and hence the presence of a substrate-derived intermediate. To probe the nature of this intermediate, a structure-reactivity study was performed by using a series of para-substituted phenylethylamines. Deuterium isotope effects on Vmax and Vmax/Km parameters were determined for all of the substrates, allowing calculation of the rate constants for C-H bond cleavage and product dissociation and dissociation constants for amine and O2 loss from the enzyme-substrate ternary complex. Multiple regression analysis yielded an electronic effect of p = -1.5 for the C-H bond cleavage step, eliminating the possibility of a carbanion intermediate. A negative p value is consistent with formation of either a radical or a carbocation; however, a significantly better correlation is obtained with sigma p rather than sigma p+, implying formation of a radical intermediate via a polarized transition state. Additional effects determined from the regression analyses include steric effects on rate constants for substrate hydroxylation and product release and on KDamine, consistent with a sterically restricted binding site, and a positive electronic effect of p = 1.4 on product dissociation, ascribed to a loss of product from an enzyme-bound Cu(II)-alkoxide complex. These results lead us to propose a mechanism in which O-O homolysis [from a putative Cu(II)-OOH species] and C-H homolysis (from substrate) occur in a concerted fashion, circumventing the formation of a discrete, high energy oxygen species such as hydroxyl radical. The substrate and peroxide-derived radical intermediates thus formed undergo a recombination, kinetically limited by displacement of an intervening water molecule, to give the postulated Cu(II)-alkoxide product complex.  相似文献   

2.
A mechanism for beta-chlorophenethylamine inhibition of dopamine beta-monooxygenase has been postulated in which bound alpha-aminoacetophenone is generated followed by an intramolecular redox reaction to yield a ketone-derived radical cation as the inhibitory species (Mangold, J.B., and Klinman, J.P. (1984) J. Biol. Chem. 259, 7772-7779). Based on the assumption that the ketone radical is the inhibitory intermediate, an analogous system was predicted and verified (Bossard, M.J., and Klinman, J.P. (1986) J. Biol. Chem. 261, 16421-16427). In the present study, the role of alpha-aminoacetophenone as the proposed intermediate in the inactivation by beta-chlorophenethylamine was examined in greater detail. From the interdependence of tyramine and alpha-aminoacetophenone concentrations, ketone inactivation is concluded to occur at the substrate site as opposed to potential binding at the reductant-binding site. Using beta-[2-1H]- and beta-[2-2H]chlorophenethylamine, the magnitude of the deuterium isotope effect on inactivation under second-order conditions has been found to be identical to that observed under catalytic turnover, D(kappa inact/Ki) = D(kappa cat/Km) = 6-7. By contrast, the isotope effect on inactivation under conditions of substrate and oxygen saturation, D kappa inact = 2, is 3-fold smaller than that seen on catalytic turnover, D kappa cat = 6. This reduced isotope effect for inactivation is attributed to a normal isotope effect on substrate hydroxylation followed by an inverse isotope effect on the partitioning of the enol of alpha-aminoacetophenone between oxidation to a radical cation versus protonation to regenerate ketone. These findings are unusual in that two isotopically sensitive steps are present in the inactivation pathway whereas only one is observable in turnover.  相似文献   

3.
L C Stewart  J P Klinman 《Biochemistry》1987,26(17):5302-5309
The steady-state limiting kinetic parameters Vmax, V/KDA, and V/KO2, together with deuterium isotope effects on these parameters, have been determined for the dopamine beta-monooxygenase (D beta M) reaction in the presence of structurally distinct reductants. The results show the one-electron reductant ferrocyanide to be nearly as kinetically competent as the presumed in vivo reductant ascorbate. Further, a reductant system of ferricyanide plus substrate dopamine yields steady-state kinetic parameters and isotope effects very similar to those measured solely in the presence of ferrocyanide, indicating a role for catecholamine in the rapid recycling of oxidized ferrocyanide. Use of substrate dopamine as the sole reductant is found to lead to a highly unusual kinetic independence of oxygen concentration, as well as significantly reduced values of Vmax and V/KDA, and we conclude that dopamine reduces enzymic copper in a rate-limiting step that is 40-fold slower than with ascorbate. The near-identical kinetic parameters measured in the presence of either ascorbate or ferrocyanide, together with markedly reduced rates with dopamine, are interpreted in terms of a binding site for reductant that is physically distinct from the substrate binding site. This view is supported by molecular modeling, which reveals ascorbate and ferrocyanide to possess an unexpected similarity in potential sites for interaction with enzymic residues. With regard to electron flux, identical values of V/KO2 have been measured with [2,2-2H2]dopamine as substrate both in the presence and in the absence of added ascorbate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The steady-state kinetic behavior of dopamine beta-monooxygenase (D beta M) has been examined over a 1000-fold range of ascorbate concentrations. Kinetic plots exhibit extreme curvature indicative of apparent negative cooperativity in the interaction of D beta M with ascorbate, with a calculated Hill coefficient of 0.15-0.30. The observed cooperativity is found to be independent of enzyme concentration and tyramine and oxygen concentrations, as well as the pH employed for the assay. Similar kinetic data have been obtained with both soluble and purified membrane-derived forms of enzyme. An investigation of the effect of the anion activator fumarate upon the observed kinetic patterns has demonstrated a conversion to a less cooperative kinetic pattern at low pH and high concentrations of fumarate. This phenomenon is attributed to an inhibitory binding of the structurally similar monoanionic species of fumarate to the ascorbate reductant site. A simple model has been used to assess the change in apparent Vmax and Km parameters with increased ascorbate concentrations. At all pH values examined, there is a dramatic decrease in the affinity of D beta M for ascorbate from a Km of approximately 0.05-0.10 mM (ascorbate concentration less than 1 mM) to Km greater than 10 mM at limiting ascorbate; at the same time there is a 3- to 4-fold increase in the limiting Vmax value. Several models have been considered to explain the observed activation of D beta M by high levels of ascorbic acid.  相似文献   

5.
Previous studies have indicated that α-d-1-fluoroglucose is a glycosyl donor for glucosyl transferases (5, 6) including dextransucrases formed by Leuconostoc and Streptococcus mutans. The present report confirms these observations with dextransucrase isolated from S. sanguis and conclusively establishes the details of this reaction as well as proving that mechanism of fluoroglucose transfer is comparable to that glucosyl transfer from sucrose. A new procedure for monitoring the reaction is reported, and is based on the measurement of proton formation using the pH indicator, bromcresol purple. Production of F? was found to be stoichiometric with proton production. Rate studies with the substrate indicate that α-1-fluoroglucose undergoes spontaneous hydrolysis, which is greatly increased in the presence of nucleophilic buffers. When [14C]maltose and α-1-fluoroglucose or [14C]α-1-fluoroglucose and maltose were incubated with dextransucrase, a series of oligosaccharide products was observed. The results indicate that the glucosyl moiety of α-1-fluoroglucose transferred to the acceptor. The nature of formation of the products are consistent with a series of precursor-product reactions. Product analysis of the saccharides by borohydride reduction analysis demonstrated that the glucosyl unit was added to the nonreducing end of maltose. When either [14C]fructose or [14C]-α-1-fluoroglucose were incubated with enzyme, a reaction was observed which was analogous to the isotopic-exchange reaction catalyzed by the enzyme in the presence of [14C]fructose and sucrose.  相似文献   

6.
Expression of dopamine beta-monooxygenase (DBM), the enzyme that converts dopamine into norepinephrine, is limited to adrenal chromaffin cells and a small population of neurons. We studied DBM trafficking to regulated granules by stably expressing rat DBM in AtT-20 corticotrope tumor cells, which contain regulated granules, and in Chinese hamster ovary (CHO) cells, which lack regulated granules. The behavior of exogenous DBM in both cell lines was compared with endogenous DBM in adrenal chromaffin cells. CHO cells secreted active DBM, indicating that production of active enzyme does not require features unique to neuroendocrine cells. Pulse-chase experiments indicated that early steps in DBM maturation followed a similar time course in AtT-20, CHO, and adrenal chromaffin cells. Use of a conformation-sensitive DBM antiserum indicated that acquisition of a folded structure occurred with a similar time course in all three cell types. Cell type-specific differences in DBM trafficking became apparent only when storage in granules was examined. As expected, DBM was stored in secretory granules in chromaffin cells; CHO cells failed to store DBM. Despite the fact that AtT-20 cells have regulated granules, exogenous DBM was not stored in these granules. Thus storage of DBM in secretory granules requires cell type specific factors.  相似文献   

7.
S C Kim  J P Klinman 《Biochemistry》1991,30(33):8138-8144
The mechanism of interaction of quinols and phenols with dopamine beta-monooxygenase (D beta M) has been investigated. The ratio of quinone formation (from catechol) to oxygen consumption rises from a value of 1 in the presence of phenethylamine substrate to 2 in the absence of substrate. These results implicate quinol oxidation at both the reductant- and substrate-binding sites of D beta M. In the presence of saturating ascorbate, catechol and p-hydroquinol behave as mechanism-based inhibitors of D beta M, with partitioning ratios of turnover to inactivation of 21:1 and 41:1, respectively. Phenol is found to inactivate the enzyme in a manner similar to p-cresol, suggesting that the methyl group of p-cresol is not an essential component of enzyme inhibition. Solvent isotope effects on inactivation and turnover have been measured for various inactivators. Although the majority of these inhibitors, including catechol, p-hydroquinol, aniline, phenethylenediamine, and benzylhydrazine, are characterized by relatively small solvent isotope effects (1.5-2.5) on the inactivation rate constant (ki), solvent isotope effects on ki for phenol and p-cresol are 5.7 and 7.4, respectively. By contrast, solvent isotope effects on the turnover of p-cresol are almost unity. Using p-cresol-d7 as substrate, we observe D(kcat) = 5.2 and D(kcat/Km) = 3.1, while isotope effects on inactivation are D(ki) = 0.95 and D(ki/Ki) = 0.59. These results lead us to propose that inhibitors fall into two mechanistic classes, involving either one-electron oxidation to form radical cation intermediates (quinols) or hydrogen atom abstraction (phenols).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
K Wimalasena  K R Alliston 《Biochemistry》1999,38(45):14916-14926
Previous studies have shown that the dopamine beta-monooxygenase (DbetaM; E.C. 1.14.17.1)/1-(2-aminoethyl)-1,4-cyclohexadiene (CHDEA) reaction partitions between side chain and ring H-abstraction to produce the side-chain-hydroxylated product, 2-amino-1-(1, 4-cyclohexadienyl)ethanol, and the aromatized product, phenylethylamine, and that the two pathways do not crossover. [Wimalasena, K., and May, S. W. (1989) J. Am. Chem. Soc. 111, 2729-2731; Wimalasena, K., and Alliston, K. R. (1995) J. Am. Chem. Soc. 117, 1220-1224]. We now report that the ring H-abstraction pathway of the reaction further partitions to produce the ring hydroxylated product, CHDEA-6OH, and the aromatized product, PEA, at the carbon-oxygen bond formation step. The ring hydroxylation is shown to be stereospecific, exclusively producing the (S) product. The absolute stereospecificity of the ring and side-chain hydroxylations of the DbetaM/CHDEA reaction suggests that the side-chain pro-R hydrogen of the enzyme-bound substrate is close to perpendicular to the aromatic ring of the phenylethylamine substrate or cyclohexadiene ring of CHDEA. The relative activation energy parameters suggest that the partitioning of the ring H abstraction pathway between aromatized and ring hydroxylated products is due to the partitioning of the high-energy intermediates, the cyclohexadienyl radical and the Cu(II)-O(*) species, between carbon-oxygen bond formation and direct electron transfer. The relatively high activation enthalpic favorability and entropic unfavorability for the carbon-oxygen bond formation strongly suggest that the critical balancing of these two opposing forces is mandatory for the desired product formation.  相似文献   

9.
10.
Functionalization of the beta-carbon of phenethylamines has been shown to produce a new class of substrate/inhibitor of dopamine beta-monooxygenase. Whereas both beta-hydroxy- and beta- chlorophenethylamine are converted to alpha-aminoacetophenone at comparable rates, only the latter conversion is accompanied by concomitant enzyme inactivation ( Klinman , J. P., and Krueger , M. (1982) Biochemistry 21, 67-75). In the present study, the nature of the reactive intermediates leading to dopamine beta-monooxygenase inactivation by beta- chlorophenethylamine has been investigated employing kinetic deuterium isotope effects and oxygen- 18 labeling as tools. Mechanistically significant findings presented herein include: 1) an analysis of primary deuterium isotope effects on turnover, indicating major differences in rate-determining steps for beta-chloro- and beta- hydroxyphenethylamine hydroxylation, Dkcat = 6.1 and 1.0, respectively; 2) evidence that dehydration of the gem-diol derived from oxygen- 18-labeled beta- hydroxyphenethylamine hydroxylation occurs in a random manner, attributed to dissociation of enzyme-bound gem-diol prior to alpha-aminoacetophenone formation; 3) the observation of a deuterium isotope effect for beta- chlorophenethylamine inactivation, Dkinact = 3.7, implicating C--H bond cleavage in the inactivation process; and 4) the demonstration that alpha-aminoacetophenone can replace ascorbic acid as exogenous reductant in the hydroxylation of tyramine. As discussed, these findings support the intermediacy of enzyme-bound alpha-aminoacetophenone in beta- chlorophenethylamine inactivation, and lead us to propose an intramolecular redox reaction to generate a ketone-derived radical cation as the dopamine beta-monooxygenase-inactivating species.  相似文献   

11.
12.
Alpha-secondary isotope effects in the lipoxygenase reaction   总被引:1,自引:0,他引:1  
J S Wiseman 《Biochemistry》1989,28(5):2106-2111
Isotope effects for the oxidation of [5,6,8,9,11,12,14,15-3H]arachidonic acid catalyzed by soybean lipoxygenase and by 5-lipoxygenase were measured. This labeling pattern represents substitution at each of the vinylic hydrogens of the substrate. The observed isotope effect for soybean lipoxygenase was 1.16 +/- 0.02 and for 5-lipoxygenase was 1.11 +/- 0.05. These isotope effects are inconsistent with any change in hybridization (sp2 to sp3) at the vinylic carbons prior to or during the rate-determining step and are concluded to be most consistent with the formation of a carbanion-like intermediate or transition state. In contrast, the oxidation of arachidonic acid by Ce(IV), which is thought to proceed via a cation radical intermediate, exhibited at most a small isotope effect (1.02 +/- 0.01). The reduction potential for the cation radical formed from arachidonic acid in this reaction is estimated to be 2.7 V vs NHE by comparison of the rates of oxidation of arachidonic acid and cyclohexene by Ce(IV). This is similar to the potential for the cation radical of 2-butene. No isotope effect (1.00 +/- 0.03) was observed in the 5-lipoxygenase reaction for conversion of the initially formed product 5-hydroperoxyeicosatetraenoic acid to the epoxide leukotriene A4. From this it is concluded that there is little carbon-oxygen bond formation prior to or during the rate-determining step for epoxide formation.  相似文献   

13.
Tyramine beta-monooxygenase (TbetaM) catalyzes the synthesis of the neurotransmitter, octopamine, in insects. Kinetic and isotope effect studies have been carried out to determine the kinetic mechanism of TbetaM for comparison with the homologous mammalian enzymes, dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase. A new and distinctive feature of TbetaM is very strong substrate inhibition that is dependent on the level of the co-substrate, O(2), and reductant as well as substrate deuteration. This has led to a model in which tyramine can bind to either the Cu(I) or Cu(II) forms of TbetaM, with substrate inhibition ameliorated at very high ascorbate levels. The rate of ascorbate reduction of the E-Cu(II) form of TbetaM is also reduced at high tyramine, leading us to propose the existence of a binding site for ascorbate to this class of enzymes. These findings may be relevant to the control of octopamine production in insect cells.  相似文献   

14.
The quantitative ratio of membrane-bound and soluble forms of dopamine beta-monooxygenase from chromaffin granules obtained under different experimental conditions was determined. The amount of the membrane-bound form of dopamine beta-monooxygenase made up to no less than 60% of the total enzyme pool, when the granules were obtained and lyzed in the presence of pepstatin, phenylmethylsulfonyl fluoride, N-ethylmaleimide and catalase. In the absence of protectors practically all the enzyme can be obtained in the soluble form without detergent treatment. The effects of some ionic and nonionic detergents on the enzymatic activity of both forms of dopamine beta-monooxygenase were studied. No inhibition of dopamine beta-monooxygenase by 2% octyl glucoside or 1% Triton X-100 was observed. A comparative analysis of specific activities, subunit compositions, antigenic and physico-chemical properties of membrane-bound and soluble forms of dopamine beta-monooxygenase was carried out.  相似文献   

15.
Metallothionein saturated with copper is able to donate copper to apodopamine beta-monooxygenase. The complete recovery of dopamine beta-monooxygenase activity is observed at the molar ratio Cu-thionein/apoenzyme of 25. On the other hand, apothionein accepts copper easily from the holoenzyme.  相似文献   

16.
A mechanism for beta-chlorophenethylamine inhibition of dopamine beta-monooxygenase has been postulated in which enzyme-bound alpha-aminoacetophenone is generated, followed by an intramolecular redox reaction to yield a ketone-derived radical cation as the enzyme inhibitory species (Mangold, J. B., and Klinman, J. P. (1984) J. Biol. Chem. 259, 7772-7779). If correct, additional compounds capable of producing enzyme-bound (formula; see text) reductant should inhibit dopamine beta-monooxygenase. Phenylacetaldehyde was chosen to test this model, since beta-hydroxyphenylacetaldehyde is expected to function as a reductant in a manner analogous to alpha-aminoacetophenone. Phenylacetaldehyde exhibits the properties of a mechanism-based inhibitor. Kinetic parameters are comparable to beta-chlorophenethylamine under both initial velocity and inactivation conditions. Since phenylacetaldehyde bears little resemblance to beta-chlorophenethylamine, its analogous inhibitory action provides support for an intramolecular redox reaction (via beta-hydroxyphenylacetaldehyde oxidation to a radical cation) in dopamine beta-monooxygenase inactivation. beta-Hydroxyphenylacetaldehyde was identified as the enzymatic product of phenylacetaldehyde turnover. As predicted, this product behaves both as a time-dependent inhibitor of dopamine beta-monooxygenase and as an electron donor in enzyme-catalyzed hydroxylation of tyramine to octopamine. Phenylacetamide and p-hydroxyphenylacetamide are also found to be mechanism-based inhibitors of dopamine beta-monooxygenase. In this case the product of hydroxylation (beta-hydroxyphenylacetamide) is redox inactive and, therefore, is unable to function as either a reductant or an inhibitor. Thus, mechanism-based inhibitors are divided into two types: type I, which undergoes hydroxylation prior to inactivation, and type II, which only requires hydrogen atom abstraction. A general mechanism for dopamine beta-monooxygenase inactivation is described, in which a common mechanistic radical intermediate is formed from both pathways.  相似文献   

17.
18.
The equation of Northrop [1975, Biochemistry, 14, 2644] for calculating intrinsic isotope effects from observed deuterium and tritium isotope effects of V/K, in which hydrogen is the reference isotope, has been extended to experimental designs using either deuterium or tritium as a reference. Partial derivatives of the intrinsic equations allow calculation of the relative precision of the three referenced isotope effects and these favor the order deuterium > tritium > hydrogen. In comparisons of observed and calculated isotope effects when hydrogen tunneling is present, both the precision and the magnitude of the difference was greater for intrinsic calculations than for exponentiations based upon a breakdown in the Swain-Schaad relationship.  相似文献   

19.
N Ahn  J P Klinman 《Biochemistry》1983,22(13):3096-3106
Dopamine beta-monooxygenase catalyzes a reaction in which 2 mol of protons are consumed for each turnover of substrate. Studies of the pH dependence of initial rate parameters (Vmax and Vmax/Km) and their primary hydrogen isotope effects show that at least two ionizable residues are involved in catalysis. One residue (B1, pK = 5.6-5.8) must be protonated prior to the carbon-hydrogen bond cleavage step, implying a role for general-acid catalysis in substrate activation. A second protonated residue (B2, pK = 5.2-5.4) facilitates, but is not required for, product release. Recent measurement of the intrinsic isotope effect for dopamine beta-monoxygenase [Miller, S. M., & Klinman, J. P. (1983) Biochemistry (preceding paper in this issue)] allows an analysis of the pH dependence of rate constant ratios and in selected instances individual rate constants. We demonstrate large changes in the rate-determining step as well as an unprecedented inversion in the kinetic order of substrate release from ternary complex over an interval of 2 pH units. Previously, fumarate has been used in dopamine beta-monooxygenase assays because of its property of enzyme activation. Studies of the pH behavior in the presence of saturating concentrations of fumarate have shown two causes of the activation: (i) fumarate perturbs the pK of B1 to pK = 6.6-6.8 such that the residue remains protonated and the enzyme optimally active over a wider pH range; (ii) fumarate decreases the rate of dopamine release from the ternary enzyme-substrate complex, increasing the equilibrium association constant for dopamine binding. Both effects are consistent with a simple electrostatic stabilization of bound cationic charges by the dianionic form of fumarate.  相似文献   

20.
Oxygen isotope effects on the ribulosebisphosphate oxygenase reaction   总被引:1,自引:0,他引:1  
The oxygen isotope effect at the substrate O2 on the oxygenase reaction of ribulose bisphosphate carboxylase/oxygenase from spinach is pH and metal dependent. The pH dependence between pH 7.4 and 8.9 is different with Mg2+ (steady decrease in this isotope effect from 1.036 to 1.030) and Mn2+ (minimum isotope effect of 1.028 at pH 8.0). Deuteration of the substrate ([3-2H]ribulose bisphosphate) has no influence on the isotope effect. The results are interpreted as a direct participation of the metal ion in the oxygen-sensitive step, i.e. carbon-oxygen bond formation and the stabilization of the intermediates. In the overall reaction oxygen addition is a major rate-limiting step, and the observed isotope effect is probably close to the intrinsic oxygen isotope effect of the reaction. The basic mechanisms for carboxylation and oxygenation of ribulose bisphosphate appear to be the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号