首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmic degradation products of human fibrin, fragments DD, D, and E, bind to fibrin. It has been inferred from this observation that the binding occurs by attraction of complementary sites located in the NH2- and COOH-terminal domains of the fibrin molecule. The interaction between fragments D1 and E1 has been investigated in this work since it represents the first step in the process of fibrin clot formation. Fragment D1, that was initially as active as fragment DD, lost most of its anticoagulant activity after purification by cation-exchange chromatography. The lability of fragment D1 function explained the previous unsuccessful attempts to form a complex between fragments D1 and E1. The loss of fragment D1 anticoagulant activity was not associated with the cleavage of the gamma 63-85 chain segment, since fragments D1A and D1 identically inhibited the fibrin monomer polymerization rate. In order to demonstrate the formation of a complex between fragments D1 and E1, three lines of experiments were advanced. First, the anticoagulant activity of fragment D1 was neutralized by fragment E1 in a dose-dependent manner, demonstrating that the association between these fragments involved polymerization sites. Second, two products, D1.E1 and D1.E1.D1, were stabilized in a reaction with bifunctional cross-linking reagents, proving the formation of D.E complexes in aqueous solution. Third, immobilized fragment D1 bound fragments E1 and E2, but not fragment E3, showing that fragments E1 and E2 attached via a polymerization site to the complementary one in fragment D1, since this association was disrupted by fibrin polymerization inhibitory peptide GPRP. These results provided direct evidence for specific binding between the structural D and E domains of fibrin mediated through complementary polymerization sites. Thus, the initial formation of fibrin clot fibers appears to be driven by specific association of these sites.  相似文献   

2.
Polymerization of fibrin is inhibited in the presence of excess fibrinogen fragment D. This study was performed in order to test the proposal that these inhibited solutions contain short linear polymers of fibrin (protofibrils) whose further polymerization is prevented as a result of attachment of a molecule of fragment D at each end. Negative-stain electron micrographs, intrinsic viscosities, angular dependence of light scattering intensity, and kinetics of the increase of the scattered intensity with polymerization all were found to support the above model of the inhibited polymer and to reflect the presence of a broad distribution of the lengths of the inhibited fibrin polymers. Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of polymers stabilized with gamma-dimer cross-links introduced by factor XIIIa demonstrates cross-linking of fragment D to fibrin oligomers. Cross-linked polymers have been separated from excess fragment D by gel exclusion chromatography in 1 M urea. (In the absence of urea, the purified polymers very slowly associate to fibers.) The observation of the relative stability of short isolated inhibited protofibrils and the decrease or absence of inhibition of fibrin gelation when fragment D was added to solutions in which fibrin had been given time to polymerize to long protofibrils demonstrate that the inhibitory effect of fragment D occurs as a result of inhibition of the first fibrin polymerization step.  相似文献   

3.
Prolonged thrombin time was completely corrected by the addition of millimolar concentrations of calcium in a new abnormal fibrinogen, Osaka V. Analysis of lysyl endopeptidase digests of A alpha-, B beta-, or gamma-chains by high performance liquid chromatography, and the following amino acid sequence analysis of relevant peptides revealed that about 50% of the gamma-chain has a replacement of gamma-arginine 375 by glycine. When fibrinogen was digested with plasmin in the presence of millimolar concentration of calcium, the amount of fragment D1 was about 50% of the normal control, and the rest was further cleaved to fragment D2, D3, or D62 with an apparent Mr of 62,000. Plasmic digestion of cross-linked fibrin in the presence of calcium resulted in the appearance of an abnormal fragment with an apparent Mr of 123,000 as well as fragments D2, D3, and D62, concomitant with the decrease of D dimer. The gamma-remnant of the abnormal fragment proved to be a cross-linked complex of the normal D1 gamma-remnant and residues 374-406/411 of the abnormal gamma-chain. The number of high affinity Ca(2+)-binding sites for the normal fibrinogen and fibrinogen Osaka V obtained by equilibrium dialysis was 2.88 (about 3) and 1.85, respectively, and that for the abnormal molecules was calculated as 0.9 (about 1) from their relative amounts in the samples, suggesting the lack of two Ca(2+)-binding sites in the D-domains. These data suggest that the normal structure of the COOH-terminal portion of the gamma-chain including residue 375 is required for the full expression of high affinity calcium binding to D-domains, the ability to be protected by calcium against plasmic digestion, and fibrin polymerization. During these studies, we found that the NH2-terminal amino acid of the gamma-remnant in fragments D or D dimer which were obtained after prolonged digestion with plasmin is gamma-Met89.  相似文献   

4.
We have isolated an intermediate plasmic degradation product, D2, of fibrinogen that does not inhibit the polymerization of fibrin monomer but does bind Ca2+. Fibrinogen was digested to a limited extent with plasmin in the presence of Ca2+, and a "large" fragment D (fragment D1A) was isolated with a gamma-chain remnant consisting of residues 63-411. Fragment D1A was digested further in the presence of Ca2+, yielding fragment D1 (with its gamma-chain containing residues 86-411). The digestion of fragment D1 [in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to complex Ca2+] led to a gradual shortening of the carboxyl-terminal portion of the gamma-chain. Fragment D2 (with its gamma-chain containing residues 86-335/356) was isolated from an intermediate digest in the presence of EGTA. The Lys-338-Cys-339 peptide bond of the gamma-chain is intact in this preparation of D2, even though it is split in the isolated peptide gamma303-355 (with an intact disulfide bond at Cys-326-Cys-339). Fragment D2 does not interfere with the polymerization of fibrin monomer, whereas fragment D1 is a potent inhibitor of this polymerization. We conclude that the gamma-chain segment 356/357-411, present in fragment D1 but absent from fragment D2, is essential for maintenance of a polymerization site located in the outer (D) nodule of fibrinogen. This segment (356/357-411) is longer than two shorter ones reported earlier [Olexa, S.A., & Budzynski, A. Z. (1981) J. Biol. Chem. 256, 3544-3549; Horwitz, B.H., Váradi, A., & Scheraga, H.A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5980-5984]; the data for the earlier reports are reinterpreted here. Finally, fragment D2 possesses a single Ca2+ binding site, as revealed by equilibrium dialysis binding studies. Since fragment D3 (with its gamma-chain containing residues 86-302) fails to bind Ca2+, we conclude that segment gamma 303-355/356 plays a crucial role in Ca2+ binding.  相似文献   

5.
The molecular basis of platelet-fibrin binding has been elucidated by studying interactions between platelets and protofibrils, soluble two-stranded polymers of fibrin which are intermediates on the fibrin assembly pathway. The fibrinogen degradation product, fragment D, has been used to block fibrin assembly, thus enabling the preparation of stable solutions of short protofibrils, composed of fewer than twenty fibrin monomer molecules per polymer. Fibrin protofibrils bound to ADP-activated platelets in a time- and concentration-dependent process which was effectively blocked by excess unlabelled fibrinogen, i.e., the binding was specific and appeared to involve a common receptor. ADP-stimulated cells bound approx. 3 micrograms of fibrin protofibrils/10(8) platelets, compared to 4 micrograms of fibrinogen/10(8) cells, following a 30-min incubation period at room temperature. Binding of both ligands was inhibited by high concentrations of fragment D, further indicating a similar mechanism. The kinetic data obtained were well described by an apparent first-order mechanism in which the rate constant for fibrin protofibril binding was found to be 5-fold slower than that measured for fibrinogen. Two monoclonal antibodies, each directed against the platelet glycoprotein IIb-IIIa complex, inhibited the binding of fibrin protofibrils and fibrinogen in a similar, concentration-dependent manner, providing strong evidence for a common receptor. Binding of GPRP-fibrin (soluble fibrin oligomers formed in the presence of 1 mM Gly-Pro-Arg-Pro) to ADP-stimulated platelets was also inhibited by a monoclonal antibody directed against the GPIIb-IIIa complex. Neither fibrin protofibrils nor fibrinogen bound to Glanzmann's thrombasthenic platelets, which lack normal quantities of functional glycoprotein IIb-IIIa complex, further supporting the hypothesis that fibrinogen and fibrin bind to a common platelet receptor present on the glycoprotein IIb-IIIa complex.  相似文献   

6.
The methods of viscosimetry, the Rayleigh light-scattering and analytical ultracentrifugation were applied to study the physicochemical mechanism of the effect of fragment D on the structure of fibrin equilibrium oligomers. Using the values of intrinsic viscosity, weight average molecular masses and mass/length ratio it was shown that when producing an antipolymerization effect the fragment D retains the three-dimensional organization of fibrin polymers, i.e. rigid rod-like single- and double-stranded protofibrillas. The paper has proved that along with the traditional mechanism of inhibiting self-assembly of of the double-stranded structure due to the competition of fragment D with fibrin monomer for central domain E there is an alternative attributed to its attachment to a peripheral region of the fibrin monomer. The second mechanism is the only one which occurs in the region of single-stranded pseudoprotofibrillas existence. The role of alpha C-domains in protein-protein interactions is also discussed.  相似文献   

7.
Fragments D1 and DD, plasmic degradation products of human fibrinogen and cross-linked fibrin, respectively, originate from the COOH-terminal domain of the parent molecule. Since a specific binding site for fibrin resides in the COOH-terminal region of the gamma chain, the primary structure of the two fragments was compared and their affinity for fibrin monomer measured. Fragments D1 and DD contained the same segments of the three fibrinogen chains, corresponding to the sequences alpha 105-206, beta 134-461, and gamma 63-411. Fragment DD had a double set of the same chain remnants. Fragments D1 and DD inhibited polymerization of fibrin monomer in a dose-dependent manner; 50% inhibition occurred at a molar ratio of fragment to monomer of 1:1 and 0.5:1, respectively. To prevent fibrin monomer polymerization and render it suitable for binding studies in the liquid phase, fibrinogen was decorated with Fab fragments isolated from rabbit antibodies to human fragment D1. Fibrinogen molecules decorated with 6 molecules of this Fab fragment did not clot after incubation with thrombin, and the decorated fibrin monomer could be used to measure binding of fragments D1 and DD in a homogeneous liquid phase. The data analyzed according to the Scatchard equation and a double-reciprocal plot gave a dissociation constant of 12 nM for fragment D1 and 38 nM for fragment DD. There were two binding sites/fibrin monomer molecule for each fragment. After denaturation in 5 M guanidine HCl, the inhibitory function on fibrin polymerization was irreversibly destroyed. Denatured fragments also lost binding affinity for immobilized fibrin monomer. The preservation of the native tertiary structure in both fragments was essential for the expression of polymerization sites in the structural D domain.  相似文献   

8.
Transformation of fibrinogen into fibrin with consequent formation of the fibrin clot trimeric structure is one of the final steps in the blood coagulation system. The plasminogen activation by the tissue plasminogen activator (t-PA) is one of the fibrinolysis system key reactions. The effect of different factors on transformation of plasminogen into plasmin is capable to change essentially the equilibrium between coagulation and fibrinolytic sections of haemostasis system. We have studied the plasminogen activation by tissue plasminogen activator on fibrin clots surface formed on the interface between two phases and in presence of one phase. The t-PA plasminogen activation rate on fibrin clots both with film and without it the latter has been analyzed. These data allow to assume that the changes of fibrin clot structure depend on its formations, as well as are capable to influence essentially on plasminogen activation process by means of its tissue activating agent.  相似文献   

9.
A specific determination of fibrin degradation product (FbDP) is essential for the monitoring of thrombolytic therapy. In patients under thrombolytic therapy, even with tpA (tissue type plasminogen activator) fibrinogen is degraded, and fragment D derived from fibrinogen degradation, is evidenced in the plasma of treated patients. In order to determine specifically the FbDP, even in the presence of fragment D, we take into account the fact that FbDP are complexes such as DDE complex. Therefore a new Elisa technique is proposed. FbDP and fragment D are captured from plasma by immobilized anti D neo monoclonal antibody which recognizes an epitope accessible on fragment D but does not react with undegraded fibrinogen. DDE complexes are then detected specifically using a peroxidase-labelled anti E antibody. The advantage of this technique is discussed in this paper.  相似文献   

10.
Conversion of fibrinogen into fibrin results in the exposure of cryptic interaction sites and modulation of various activities. To elucidate the mechanism of this exposure, we tested the accessibility of the Aalpha148-160 and gamma312-324 fibrin-specific epitopes that are involved in binding of plasminogen and its activator tPA, in several fragments derived from fibrinogen (fragment D and its subfragments) and fibrin (cross-linked D-D fragment and its noncovalent complex with the E(1) fragment, D-D. E(1)). Neither D nor D-D bound tPA, plasminogen, or anti-Aalpha148-160 and anti-gamma312-324 monoclonal antibodies, indicating that their fibrin-specific epitopes were inaccessible. The Aalpha148-160 epitope became exposed only upon proteolytic removal of the beta- and gamma-modules from D. At the same time, both epitopes were accessible in the D-D.E(1) complex, indicating that the DD.E interaction resulted in their exposure. This exposure was reversible since the dissociation of the D-D.E(1) complex made the sites unavailable, while reconstitution of the complex made them exposed. The results indicate that upon fibrin assembly, driven primarily by the interaction between complementary sites of the D and E regions, the D regions undergo conformational changes that cause the exposure of their plasminogen- and tPA-binding sites. These changes may be involved in the regulation of fibrin assembly and fibrinolysis.  相似文献   

11.
An improved procedure for the purification of fragment D dimer derived from crosslinked plasma fibrin is described which entails chromatofocusing chromatography using PBE 94 and polybuffer 74, and gel chromatography on Sephacryl S-300. The procedure provides a preparation of D dimer which behaves as a single macromolecular entity with molecular weight 190,000 in sedimentation equilibrium studies. Only a single protein band is observed in polyacrylamide gel electrophoresis conducted in the presence or absence of sodium dodecyl sulfate, while patterns characteristic of gamma'-gamma' chains are observed under denaturing conditions after reduction of the preparation with beta-mercaptoethanol. The D dimer contains no demonstrable E antigen by a range of electrophoretic and immunologic techniques. Advantages of this method for obtaining D dimer in high yield include the use of plasma as starting material, the use of a simple lysis regimen in the presence of Ca2+, and the use of simple chromatographic techniques performed under nondenaturing conditions.  相似文献   

12.
Conformational and structural modulations of the NH2-terminal region of fibrinogen and fibrin associated with plasmin cleavage have been examined utilizing specific antibody probes. The E region derived from the NH2-terminal aspects of fibrinogen undergoes complex structural and conformational changes throughout the cleavage process as indicated by differences in the quantitative and qualitative expression of antigenic determinants by the E region of each isolated cleavage fragment. When the range of antigenic determinants recognized by the antibody probe is limited to a specific molecular marker on the gamma chain within the E region, fg-E-neo, evidence for a systematic and progressive modulation of this site during plasmin cleavage is observed. Fg-E-neo undergoes progressive exposure as the cleavage of fibrinogen proceeds from X to Y to D:E complex. Separation of the D:E complex into its constituent, D and E fragments, is associated with further exposure of fg-E-neo determinants. The sequential cleavage of fibrin by plasmin also leads to progressive exposure of the fg-E-neo site; however, comparison of corresponding fragments derived from fibrinogen and fibrin reveals significant differences in the character of fg-E-neo expression. Immunochemical differences between fibrin and fibrinogen E fragments are not abolished by further exposure of the fragments to plasmin, are apparently not due to the presence or absence of fibrinopeptides, and are maintained following denaturation and renaturation of the fragments. These results suggest that the differential expression of fg-E-neo by the E fragments may be primarily dependent upon differences in amino acid compositions of the fragments.  相似文献   

13.
Congenitally abnormal fibrinogen Kyoto I with impaired fibrin monomer polymerization contains a normal gamma-chain and a gamma-chain variant (gamma Kyoto I) that has an apparently lower Mr on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the Laemmli system (Laemmli, U. K. (1970) Nature 227, 680-685) but migrates with apparently normal Mr in the Weber and Osborn system (Weber, K., and Osborn, M. (1969) J. Biol. Chem. 244, 4406-4412). Reverse-phase high performance liquid chromatographic analyses of the cyanogen bromide or lysyl endopeptidase cleavage fragments of the purified gamma-chains of fibrinogen Kyoto I showed the presence of peptides not seen from normal fibrinogen. Amino acid sequence analysis of these peptides indicated that gamma Asn308 of the gamma-chain variant is replaced by lysine. Purified fragment D1 of fibrinogen Kyoto I also contains two types of D1 gamma-remnants: normal and apparently lower Mr types. Abnormal fragment D1 is cleaved faster to fragments D2 and D3 by plasmin in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA) than normal fragment D1, as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by immunoblotting using anti-gamma-chain monoclonal antibody. Analysis of peptides released from fragment D1 by plasmin in the presence of EGTA demonstrated the cleavage of the gamma Lys308-Gly309 bond. Fragment D1 of fibrinogen Kyoto I has normal calcium binding properties. The data suggest that a region or conformation containing gamma Asn308 affects the polymerization of fibrin monomers and that the gamma Asn308----Lys replacement causes a conformational change in the gamma-chain which results in the accelerated cleavage of gamma Lys356-Ala357 and gamma Lys302-Phe303 bonds by plasmin and also results in the generation of a new plasmin cleavage site between Lys308 and Gly309 in the presence of EGTA. During these studies, we found that part of the gamma Lys212-Glu213 bond in fragment D1 is cleaved by plasmin in the presence of EGTA.  相似文献   

14.
Interaction of fibrinogen and its derivatives with fibrin   总被引:1,自引:0,他引:1  
The binding between complementary polymerization sites of fibrin monomers plays an essential role in the formation of the fibrin clot. One set of polymerization sites involved in the interaction of fibrin monomers is believed to pre-exist in fibrinogen, while the complementary set of binding sites is exposed after the cleavage of fibrinopeptides from fibrinogen. The polymerization sites present in fibrinogen and its derivatives mediate their binding to fibrin. Although the binding of fibrinogen and its derivatives to fibrin have been qualitatively studied, there has been no systematic, quantitative investigation of their interaction with forming or preformed clots. In the present study, the binding of fibrinogen and fragments DD, D1, and E1 was measured using a sonicated suspension of plasminogen- and thrombin-free human cross-linked fibrin as a model of a preformed clot. Dissociation constants of 0.056, 0.19, and 2.44 microM, and the number of binding sites corresponding to 0.10, 0.21, and 0.13/fibrin monomer unit of fibrin polymer were found for fibrinogen, fragment DD, and fragment D1, respectively. Fragment E1 did not bind to sonicated noncross-linked or cross-linked fibrin suspensions. However, it was bound to forming fibrin clots as well as to fibrin-Celite, suggesting that the binding sites on fibrin involved in the interaction with fragment E1 may have been altered upon sonication. Affinity chromatography of various fibrinogen derivatives on a fibrin-Celite column showed that only part of the bound fragment DD was displaced by arginine, whereas fragments D1 and E1 were completely eluted under the same conditions. The results indicate that interaction of fibrinogen with the preformed fibrin clots is characterized by affinity in the nanomolar range and that binding between fibrin monomers, in the process of clot formation, could be characterized by even a higher affinity.  相似文献   

15.
We have examined in detail the kinetics of binding of the serpin alpha 2-antiplasmin to the serine proteases alpha-chymotrypsin and plasmin. These represent model systems for serpin binding. We find, in contrast to earlier published results with alpha 2-antiplasmin and plasmin, that binding is reversible, and slow binding kinetics can be observed, under appropriate conditions. Binding follows a two-step process with both enzymes, with the formation of an initial loose complex which then proceeds to a tightly bound complex. In the absence of lysine and analogues, equilibrium between alpha 2-antiplasmin and plasmin is achieved rapidly, with an overall inhibition constant (Ki') of 0.3 pM. In the presence of tranexamic acid or 6-aminohexanoic acid, lysine analogues that mimic the effects of fibrin, plasmin binding kinetics are changed such that equilibrium is reached slowly following a lag phase after mixing of enzyme and inhibitor. The Ki' is also affected, rising to 2 pM in the presence of 6-aminohexanoic acid concentrations above 15 mM. Thus extrapolation to the in vivo situation indicates that complex formation in the presence of fibrin will be delayed, allowing a burst of enzyme activity following plasmin generation, but a tight, pseudoirreversible complex will result eventually. Chymotrypsin is more weakly inhibited by alpha 2-antiplasmin, exhibiting an overall Ki' of 0.1 nM, after two-stage complex formation. The inhibition constant for the initial loose complex (Ki) is very similar for both enzymes. The difference in binding strength between the two enzymes is accounted for by the dissociation rate constant of the second step of complex formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The study is devoted to research of the blood coagulation key proenzyme complexation process. It is prothrombin, and the E-fragment of fibrin can be a component in blood circulation. It is shown, that non-enzyme activation of prothrombin by the E-fragment proceeds as a result of formation of stable non-covalent prothrombin-E fragment complex. The cringle structures of prothrombin and the N-terminal site of beta-chain of E-fragment of fibrin are important for formation of the given complex. It has been defined, that other fragments of fibrin (D and DD) are not capable to induce amydolytic activity of prothrombin.  相似文献   

17.
The effect of fragment D, the end product of fibrinogen degradation, on the course of fibrinolytic reactions and fibrinogenolysis induced by plasmin was studied. It was shown that fragment D beside a high antipolymerizing activity also exerts antifibrinolytic and antifibrinogenolytic action. It was demonstrated electrophoretically that exogenous fragment D can inhibit plasmin degradation of fibrin and fibrinogen at all stages of proteolysis without having direct influence on plasmin. It is assumed that the nature of the antipolymerizing and antifibrinolytic activities of fragment D is determined by dissociating fibrin monomer-fragment D complexes.  相似文献   

18.
Fragment D (Mr 100 000) prepared from a terminal plasmin digest of fibrinogen was isolated and used to study its effect on fibrin formation. Increasing amounts of fragment D added to a solution of fibrinogen and thrombin decrease the rigidity of the resultant gel (10% of control at 2 mol of fragment D/mol of fibrinogen). Half-maximal inhibition is achieved at 1 mol of fragment D/mol of fibrinogen for non-cross-linked clots and at 1/2 mol of fragment D/mol of fibrinogen for cross-linked clots. "Clottability' decreases concomitantly with the rigidity. Only small amounts of fragment D (less than 10% for non-cross-linked gels) are incorporated into the gel. Light-scattering shows an increase in the final fibre thickness at fragment D concentrations up to 2 mol of fragment D/mol of fibrinogen, from 60 molecules/cross-section for the control to 120 molecules/cross-section. Higher fragment D concentrations lead to a decrease in the final fibre thickness. The limit fibre thickness is 8 nm, with a length of 80 nm, which is equivalent to a fibrin trimer. On the basis of results of synthetic-substrate and fibrinopeptide-release assays, it is clear that thrombin inactivation is not responsible for this effect. These data suggest that fragment D may inhibit fibrin formation by blocking the bimolecular polymerization of activated fibrin monomer molecules to form protofibrils, although additional effects on subsequent assembly steps may also be involved.  相似文献   

19.
Fibrin derived from fibrinogen after thrombin cleavage plays an essential role in forming blood clots. Fibrin as well as fibrinogen is also involved in the induction of platelet aggregation, leukocyte cell adhesion and phagocytosis. An additional biological role of fibrin and fibrinogen is presented in this study. One of the proteolytic peptides of fibrin/fibrinogen, fragment E, and not fragment D, was able to stimulate rat peritoneal macrophages to express interleukin-6 (IL-6). The stimulation of fibrin/fibrinogen fragment E on macrophages appeared to work in a dose- and time-dependent manner. Adherent fibrin fragment E was able to stimulate IL-6 expression as well as IL-6 protein production. The effect of fibrin fragment E was inhibited by the addition of an excess amount of GPRP tetrapeptide, but not by GHRP, which are the amino acids derived from the amino terminus of fibrin alpha and beta chains, respectively. These results suggest that fibrin as well as fibrinogen function as a stimulator to macrophages, and leukocyte integrin p150,95 (CD11c/ CD18), not Mac-I (CD11b/CD18), is involved in mediating fibrin stimulatory activity in macrophages.  相似文献   

20.
Glycoprotein IIb (GPIIb) and glycoprotein IIIa (GPIIIa) form a macromolecular complex on the activated platelet surface which contains the fibrinogen-binding site necessary for normal platelet aggregation. To identify the specific region of the fibrinogen molecule responsible for its interaction with the GPIIb-GPIIIa complex, purified fragment D1 (Mr = 100,000) and fragment E (Mr = 50,000) were prepared from plasmin digests of purified human fibrinogen. In addition, the polypeptide chain subunits A alpha, B beta, and gamma of fibrinogen were prepared. Using an enzyme-linked immunosorbent assay we have demonstrated that isolated fragment D1 in a solid phase system forms a complex with a mixture of GPIIb and GPIIIa. The binding of the GPIIb-GPIIIa mixture to fragment D1-coated plates reached saturation at 8 nM and to fibrinogen-coated plates at 24 nM. Isolated A alpha, B beta, and gamma chains were not reactive with added glycoproteins. Fragment E coated directly on plastic plates or immobilized on antibody-coated plastic plates did not form a complex with GPIIb-GPIIIa. Only fluid phase fibrinogen and fragment D1 but not fragment E were inhibitory toward formation of a complex between solid phase fibrinogen and GPIIb-GPIIIa. Isolated A alpha, B beta, and gamma chains at concentrations equivalent to fluid phase fibrinogen were inactive. Binding of fragment D1 but not fragment E to the GPIIb-GPIIIa complex was also demonstrated by rocket immunoelectrophoresis of the membrane glycoprotein mixture through a gel containing the individual fragments and subsequent autoradiography of the complex following exposure to 125I-anti-fibrinogen. These observations with isolated platelet membrane glycoproteins provide strong evidence that each of the D domains of the fibrinogen molecule interacts directly with the GPIIb-GPIIIa complex on the activated platelet surface, thus allowing formation of a tertiary molecular "bridge" across the surface of two adjacent activated platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号