首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field experiment was conducted using15N methodology to study the effect of cultivation of faba bean (Vicia faba L.), pea (Pisum sativum L.) and barley (Hordeum vulgare L.) on the N status of soil and their residual N effect on two succeeding cereals (sorghum (Sorghum vulgare) followed by barley). Faba bean, pea and barley took up 29.6, 34.5 and 53.0 kg N ha–1 from the soil, but returned to soil through roots only 11.3, 10.8 and 5.7 kg N ha–1, respectively. Hence, removal of faba bean, pea and barley straw resulted in a N-balance of about –18, –24, and –47 kg ha–1 respectively. A soil nitrogen conserving effect was observed following the cultivation of faba bean and pea compared to barley which was of the order of 23 and 18 kg N ha–1, respectively. Cultivation of legumes resulted in a significantly higher AN value of the soil compared to barley. However, the AN of the soil following fallow was significantly higher than following legumes, implying that the cultivation of the legumes had depleted the soil less than barley but had not added to the soil N compared to the fallow. The beneficial effect of legume cropping also was reflected in the N yield and dry matter production of the succeeding crops. Cultivation of legumes led to a greater exploitation of soil N by the succeeding crops. Hence, appreciable yield increases observed in the succeeding crops following legumes compared to cereal were due to a N-conserving effect, carry-over of N from the legume residue and to greater uptake of soil N by the succeeding crops when previously cropped to legumes.  相似文献   

2.
An increasing amount of evidence indicates that N can be transferred between plants. Nonetheless, a number of fundamental questions remain. A series of experiments was initiated in the field to examine N transfer between N2-fixing soybean (Glycine max [L.] Merr.) varieties and a non-nodulating soybean, and between N2-fixing peanut (Arachis hypogaea L.) or soybean and neighboring weed species. The experiments were conducted in soils with low N fertilities and used differences in N accumulation and/or 15N natural abundance to estimate N transfer. Mixtures of N2-fixing and non-nod soybean indicated that substantial inter-plant N transfer occurred. Amounts were variable, ranging from negligible levels to 48% of the N found in the non-nod at maturity. Transfer did not appear to strongly penalize the N2-fixing donor plants. But, in cases where high amounts of N were transferred, N content of donors was noticeably lowered. Differences were evident in the amount of N transferred from different N2-fixing donor genotypes. Results of experiments with N2-fixing crops and the weed species prickly sida (Sida spinosa L.) and sicklepod (Senna obtusifolia [L.] Irwin & Barneby) also indicated substantial N transfer occurred over a 60-day period, with amounts accounting for 30–80% of the N present in the weeds. Transfer of N, however, was generally very low in weed species that are known to be non-hosts for arbuscular mycorrhizae (yellow nutsedge, Cyperus esculentus L. and Palmer amaranth, Amaranthus palmeri [S.] Watson). The results are consistent with the view that N transfer occurs primarily through mycorrhizal hyphal networks, and they reveal that N transfer may be a contributing factor to weed problems in N2-fixing crops in low N fertility conditions.  相似文献   

3.
Summary Accurate estimates of N2 fixation by legumes are requisite to determine their net contribution of fixed N2 to the soil N pool. However, estimates of N2 fixation derived with the traditional15N methods of isotope dilution and AN value are costly.Field experiments utilizing15N-enriched (NH4)2SO4 were conducted to evaluate a modified difference method for determining N2 fixation by fababean, lentil, Alaska pea, Austrian winter pea, blue lupin and chickpea, and to quantify their net contribution of fixed N2 to the soil N pool. Spring wheat and non-nodulated chickpea, each fertilized with two N rates, were utilized as non-fixing controls.Estimates of N2 fixation based on the two control crops were similar. Increasing the N rate to the controls reduced AN values 32, 18 and 43% respectively in 1981, 1982 and 1983 resulting in greater N2 fixation estimates. Mean seasonal N2 fixation by fababean, lentil and Austrian winter pea was near 80 kg N ha–1, pea and blue lupin near 60 kg N ha–1, and chickpea less than 10 kg N ha–1. The net effects of the legume crops on the soil N pool ranged from a 70 kg N ha–1 input by lentil in 1982, to a removal of 48 kg N ha–1 by chickpea in 1983.Estimates of N2 fixation obtained by the proposed modified difference method approximate those derived by the isotope dilution technique, are determined with less cost, and are more reliable than the total plant N procedure.Scientific paper No. 6605. College of Agriculture and Home Economics Research Center, Washington State University, Pullman, WA 99164, U.S.A.  相似文献   

4.
Yields of above ground biomass and total N were determined in summer-grown maize and cowpea as sole crops or intercrops, with or without supplementary N fertilizer (25 kg N ha−1, urea) at an irrigated site in Waroona, Western Australia over the period 1982–1985. Good agreement was obtained between estimates of N2 fixation of sole or intercrop cowpea (1984/85 season) based on the15N natural abundance and15N fertilizer dilution techniques, both in the field and in a glasshouse pot study. Field-grown cowpea was estimated to have received 53–69% of its N supply from N2-fixation, with N2-fixation onlyslightly affected by intercropping or N fertilizer application. Proportional reliance on N2-fixation of cowpea in glasshouse culture was lower (36–66%) than in the field study and more affected by applied N. Budgets for N were drawn up for the field intercrops, based on above-ground seed yields, return of crop residues, inputs of fixed N and fertilizer N. No account was taken of possible losses of N through volatilization, denitrification and leaching or gains of N in the soil from root biomass. N2-fixation was estimated tobe 59 kg N ha−1 in the plots receiving no fertilizer N, and 73 kg N ha−1 in plots receiving 25 kg N ha−1 as urea. Comparable fixation by sole cowpea was higher (87 and 82 kg N ha−1 respectively) but this advantage was outweighed by greater land use efficiency by the intercrop than sole crops.  相似文献   

5.
Cereal-legume mixtures are frequently the best management decision for forage production instead of growing crops in pure stands. Nitrogen fertilization of cereal-legume mixtures is questionable since combined nitrogen could depress N2 fixation by legumes. The objectives of this study were (1) to examine the effect of N fertilization on N2 fixation by vetch and field peas in pure and in mixed stands with oats, and (2) to examine if there is any transfer of N from legumes to associated cereals. The field experiment was conducted for two growing seasons. The treatments were pure stands of vetch, pea and oats, and the mixtures of the two legumes with oats at the seeding ratios 90:10 and 75:25, fertilized with labelled15N at the rates of 15 and 90 kg N ha−1. Nitrogen fertilization of 90 kg N ha−1 suppressed N2 fixation in both legumes grown in pure and in mixed stands. Crops grown in mixtures in many instances had lower atom %15N excess. Whether this was due to high N2 fixation in the case of legume and transfer in the case of oat or the differences were due to practical problems of the15N technique is not clearly shown by the results, so based on the literature the aspect is discussed as well as the precautions which should be considered in using the15N technique in such studies.  相似文献   

6.
Sanginga  N.  Okogun  J.  Vanlauwe  B.  Dashiell  K. 《Plant and Soil》2002,247(2):223-231
Agronomic results indicate that maize grain yields generally are higher when the crop is planted following soybean than in continuous maize cultivation in the moist savanna agroecological zones of West Africa. Many factors have been hypothesized to explain this phenomenon, including enhanced N availability and the so-called `rotational effect'. There is, however, hardly any quantitative information on the residual N benefits of promiscuous soybeans to subsequent cereal crops grown in rotation with soybean. Three IITA promiscuous soybean breeding lines and two Brazilian soybean lines were grown in 1994 and 1995 at Mokwa in the southern Guinea savanna, Nigeria, to quantify the nitrogen contribution by soybeans to a succeeding crop of maize grown in rotation with soybean for two consecutive years, 1996 and 1997 using two methods of introducing 15N into soil (fresh 15N labelling and its residual 15N) and three maize cultivars (including one cultivar with high N use efficiency) used as reference plants. The nodulating soybeans fixed between 44 and 103 kg N ha–1 of their total N and had an estimated net N balance input from fixation following grain harvest ranging from –8 to 43 kg N ha–1. Results in 1996 and in 1997 showed that maize growing after soybean had significantly higher grain yield (1.2 – 2.3-fold increase compared to maize control) except for maize cultivar Oba super 2 (8644-27) (a N-efficient hybrid). The 15N isotope dilution method was able to estimate N contribution by promiscuous soybeans to maize only in the first succeeding maize crop grown in 1996 but not in the second maize crop in 1997. The first crop of maize grown after soybean accumulated an average between 10 and 22 kg N ha–1 from soybean residue, representing 17–33% of the soybean total N ha–1. The percentage 15N derived from residue recovery in maize grown after maize was influenced by the maize cultivars. Maize crop grown after the N-efficient hybrid cultivar Oba Super 2 (844-27) had similar 15N values similar to maize grown after soybeans, confirming the ability of this cultivar to use N efficiently in low N soil due to an efficient N translocation ability. The maize crop in 1997 grown after maize had lower 15N enrichment than that grown in soybean plots, suggesting that soybean residues contributed a little to soil available N and to crop N uptake by the second maize crop. The differential mineralization and immobilization turnover of maize and soybean residues in these soils may be important and N contribution estimates in longer term rotation involving legumes and cereals may be difficult to quantify using the 15N labelling approaches. Therefore alternative methods are required to measure N release from organic residues in these cropping systems.  相似文献   

7.
Nitrogen (N) is often the most limiting nutrient in organic cropping systems. N2 fixing crops present an important option to improve N supply and to maintain soil fertility. In a field experiment, we investigated whether the lower N fertilization level and higher soil microbial activity in organic than conventional systems affected symbiotic N2 fixation by soybean (Glycine max, var. Maple Arrow) growing in 2004 in plots that were since 1978 under the following systems: bio-dynamic (DYN); bio-organic (ORG); conventional with organic and mineral fertilizers (CON); CON with exclusively mineral fertilizers (MIN); non-fertilized control (NON). We estimated the percentage of legume N derived from the atmosphere (%Ndfa) by the natural abundance (NA) method. For ORG and MIN we additionally applied the enriched 15N isotope dilution method (ID) based on residual mineral and organic 15N labeled fertilizers that were applied in 2003 in microplots installed in ORG and MIN plots. These different enrichment treatments resulted in equal %Ndfa values. The %Ndfa obtained by NA for ORG and MIN was confirmed by the ID method, with similar variation. However, as plant growth was restricted by the microplot frames the NA technique provided more accurate estimates of the quantities of symbiotically fixed N2 (Nfix). At maturity of soybean the %Ndfa ranged from 24 to 54%. It decreased in the order ORG > CON > DYN > NON > MIN, with significantly lowest value for MIN. Corresponding Nfix in above ground plant material ranged from 15 to 26 g N m-2, with a decreasing trend in the order DYN = ORG > CON > MIN > NON. For all treatments, the N withdrawal by harvested grains was greater than Nfix. This shows that at the low to medium %Ndfa, soybeans did not improve the N supply to any system but removed significant amounts of soil N. High-soil N mineralization and/or low-soil P availability may have limited symbiotic N2 fixation.  相似文献   

8.
Methods for partitioning the nitrogen assimilated by nodulated legumes, between nitrogen derived from soil sources and from N2 fixation, are described as applied in peninsular Malaysia. The analysis of nitrogenous components translocated from the roots to the shoots of nodulated plants in the xylem sap is outlined, with some precautions to be observed for applications in the tropics. Some examples of the use of the technique in surverying apparent N2 fixation by tropical legumes, in studying interrow cropping in plantation systems and in assessing effects of experimental treatments on N2 fixation by food legumes, are described. Techniques for assesing N2 fixation by means of15N abundance have been used to show that applications of nitrogenous fertilizers commonly used in Malaysia for soybeans depress N2 fixation, that similar results are obtained with natural abundance and15N-enrichment methods and that, in at least two locations in Malaysia, differences between the natural abundance of15N in plant-available soil nitrogen and in atmospheric N2 are great enough to permit application to measurement of N2 fixation by leguminous crops.  相似文献   

9.
We report a study in northern Thailand to examine the effects of fertilizer N, applied both to paddy rice and to a subsequent soybean crop on symbiotic and yield characteristics of soybean and on the differences between inputs of fixed N2 and the removal of N as harvested product. Treatments were a factorial arrangement of 0, 100 and 300 kg N ha-1 applied to the rice (designated R0, R100 and R300, respectively), and 0,25 and 50 kg N ha-1, applied as starter fertilizer to the soybean (S0, S25 and S50, respectively).Nitrogen applied to the rice increased rice yields by up to 74% but proportions recovered by the rice were low (45% [R100] and 14% [R300]). The rice N treatments had only marginal effects on soybean nodulation (up to 17% reduction in early growth) and above-ground dry matter (up to 9% increase). Effects on soybean seed yield and total N2 fixed were insignificant. Starter N, applied to the soybean at sowing, also marginally reduced nodulation and enhanced above-ground dry matter. Total N2 fixed was unaffected but seed yield was increased by up to 6%. For all treatments, total above-ground N ranged from 145 to 179 kg ha-1 with 72 to 85% (122 and 140 kg ha-1) derived from N2 fixation. When harvested product consisted of seed only, differences between inputs of fixed N2 and removals of seed N were close to zero (-10 to+9 kg N ha-1) with little effect of fertilizer N. The N balances were reduced by an average of 18 kg N ha-1 when straw was included as harvested product. We concluded that N applied to the rice and to the following soybean was inefficiently used by those crops and had only marginal effects of symbiotic activity of the soybean. Furthermore, the benefit of the N2 fixing soybean in this system was to slow the decline of, rather than enhance, the N fertility of the soil  相似文献   

10.
The15N abundance of plants usually closely reflects the15N abundance of their major immediate N source(s); plant-available soil N in the case of non-N2-fixing plants and atmospheric N2 in the case of N2 fixing plants. The15N abundance values of these sources are usually sufficiently different from each other that a significant and systematic difference in the15N abundance between the two kinds of plants can be detected. This difference provides the basis for the natural15N abundance method of estimating the relative contribution of atmospheric N2 to N2-fixing plants growing in natural and agricultural settings. The natural15N abundance method has certain advantages over more conventional methods, particularly in natural ecosystems, since disturbance of the system is not required and the measurements may be made on samples dried in the field. This method has been tested mainly with legumes in agricultural settings. The tests have demonstrated the validity of this method of arriving at semi-quantitative estimates of biological N2-fixation in these settings. More limited tests and applications have been made for legumes in natural ecosystems. An understanding of the limits and utility of this method in these systems is beginning to emerge. Examples of systematic measurements of differences in15N abundance between non-legume N2-fixing systems and neighbouring non-fixing systems are more unusual. In principle, application of the method to estimate N2-fixation by nodulated non-legumes, using the natural15N abundance method, is as feasible as estimating N2-fixation by legumes. Most of the studies involving N2-fixing non-legumes are with this type of system (e.g., Ceanothus, Chamabatia, Eleagnus, Alnus, Myrica, and so forth). Resuls of these studies are described. Applicability for associative N2-fixation is an empirical question, the answer to which probably depends upon the degree to which fixed N goes predominantly to the plant rather than to the soil N pool. The natural15N abundance method is probably not well suited to assessing the contribution of N2-fixation by free-living microorganisms in their natural habitat, particularly soil microorganisms.This work was supported in part by subcontracts under grants from the US National Science Foundation (DEB79-21971 and BSR821618)  相似文献   

11.
Although the use of 15N fertilizers to measure nitrogen (N2) fixed in crops has increased substantially in recent years, some methodological uncertainties still remain unresolved. The results obtained from a greenhouse study of soybean [Glycine max. (L.) Merrill] inoculated by six different methods have been examined for potential errors arising from incorporating 15N labelled fertilizer into soil to estimate N2 fixed in pods or shoots or the whole plant at three growth stages (50% flowering, pod-initiation and physiological maturity) using as reference crops, an uninoculated soybean cultivar and a non-nodulating soybean isoline. At the first harvest when N2 fixed was very low, the estimates of N2 fixed by the two reference crops did not match. At this stage the uninoculated soybean estimated about four times as much N2 fixed in the symbiotic soybean as that measured using the non-nodulating soybean. For the second and third harvests, there were substantial increases in N2 fixed, and both the non-nodulating and uninoculated soybean were equally suitable as reference crops for assessing N2 fixed in the symbiotic soybean. These results indicate how critical and difficult the choice of the reference crop could be at early harvests, or when N2 fixed is low. Even though there were significant differences in 15N enrichments in different organs (generally nodules < pods < roots < shoots), the estimates of N2 fixed in soybean plants obtained by excluding roots and nodules did not differ much from those based on the whole plant. Of the above-ground organs, % N2 fixed in pods (containing seeds) was closest to that of the whole plant (similar at P<0.05 at physiological maturity). However, the total N2 fixed in pods or shoots was substantially lower than that fixed by the whole plant (P<0.05), although that for the pods and enclosed seeds once again was closer to N2 fixed in the whole plant than that in the shoots.  相似文献   

12.
In the tropics, cowpea is often intercropped with maize. Little is known about the effect of the intercropped maize on N2-fixation by cowpea or how intercropping affects nitrogen fertilizer use effiency or soil N-uptake of both crops. Cowpea and maize were grown as a monocrop at row spacings of 40, 50, 60, 80, and 120 cm and intercropped at row spacing of 40, 50, and 60 cm. Plots were fertilized with 50 kg N as (NH4)2SO4; microplots within each plot received the same amount of15N-depleted (NH4)2SO4. Using the15N-dilution method, the percentage of N derived from N2-fixation by cowpea and the recovery of N-fertilizer and soil N-uptake was measured for both crops at 50 and 80 days after planting.Significant differences in yield and total N for cowpea and maize at both harvest periods were dependent on row spacing and cropping systems. Maize grown at the closer row spacing accumulated most of its N during the first 50 days after planting, whereas maize grown at the widest row spacing accumulated a significant portion of its N during the last 30 days before the final harvest, 80 days after planting.Overall, no significant differences in the percentage of N derived from N2-fixation for monocropped or intercropped cowpea was observed and between 30 and 50% of its N was derived from N2.At 50 DAP, fertilizer and soil N uptake was dependent on row spacing with maize grown at the narrowest row spacing having a higher fertilizer and soil N recovery than maize grown at wider spacings. At 50 and 80 DAP, intercropped maize/cowpea did not have a higher fertilizer and soil N uptake than monocropped cowpea or maize at the same row spacing. Monocropped maize and cowpea at the same row spacing took up about the same amount of fertilizer or soil N. When intercropped, maize took up twice as much soil and fertilizer N as cowpea. Apparently intercropped cowpea was not able to maintain its yield potential.Whereas significant differences in total N for maize was observed at 50 and 80 DAP, no significant differences in the atom %14N excess were observed. Therefore, in this study, the atom %14N excess of the reference crop was yield independent. Furthermore, the similarity in the atom %14N excess for intercropped and monocropped maize indicated that transfer of N from the legume to the non-legume was small or not detectable.  相似文献   

13.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   

14.
The measurement of N2 fixation by legumes is necessary for gaining an understanding of their contributions to the N economies of agricultural and forestry systems and for their management in those systems. We report research to determine whether N2 fixation of four of the commonly-grown ureide-producing legumes, soybean (Glycine max), cowpea (Vigna unguiculata), mungbean (V. radiata) and black gram (V. mungo), could be quantified from a single sampling and N-solute analysis of xylem sap. Data were derived from a previously-published experiment involving six genotypes of soybean at five field sites and from a second, irrigated experiment in which two genotypes of soybean, and one each of cowpea, mungbean and black gram were assessed in low- and high-nitrate soils for nodulation, yields of shoot and grain dry matter and N, and N2 fixation using xylem solute (ureide) and 15N methods. Regression analysis of the published soybean data set indicated that the early pod-fill (R3.5 and R4) samplings for xylem sap gave estimates of percentage of plant N derived from N2 fixation (%Ndfa) which agreed well with %Ndfa for the entire growing season obtained from 15N analysis of the shoots at R6-7. There was a marginal benefit in combining the R3.5 and R4 samplings and using the average of the two, with regression coefficients (r 2) increasing from 0.86 (R3.5 or R4 alone) to 0.92 (average of R3.5+R4). There was no additional benefit in combining R3, R3.5 and R4. In the second experiment, agreement between 15N-determined %Ndfa and either measured (R4 sampling) or calculated ureide-determined %Ndfa (R3.5 sampling) was also good (r 2 of 0.73 (R4) and 0.79 (R3.5)). We conclude that seasonal %Ndfa can be accurately estimated using the xylem solute (ureide) method from a single sampling of xylem sap during early pod-fill (R3.5) and that this simplification of the protocol of the technique may encourage expanded use.  相似文献   

15.
Rennie  R. J.  Rennie  D. A.  Siripaibool  C.  Chaiwanakupt  P.  Boonkerd  N.  Snitwongse  P. 《Plant and Soil》1988,112(2):183-193
The practice of seeding soybeans following paddy rice in Thailand has encountered difficulties in seedling germination, nodulation and crop establishment. This research project evaluated the choice of a non-fixing control to quantify N2 fixation by15N isotope dilution, and the effect of tillage regime, soybean cultivar, strain ofBradyrhizobium japonicum and P fertilization on yield and N2 fixation after paddy rice in northern and central Thailand.Japanese non-nodulating lines Tol-0 and A62-2 were the most appropriatecontrol plants for15N isotope dilution for Thai soybeans in these soils which contained indigenous rhizobia. Cereals such as maize, sorghum and barley were also appropriate controls at some sites. The choice of the appropriate non-fixing control plant for the15N isotope dilution technique remains a dilemma and no alternative exists other than to use several possible controls with each experiment. Acetylene reduction assay (ARA) proved of little value for screening varieties on their N2 fixing capacity.The recommended Thai soybean cultivars (SJ1, 2, 4, 5) and an advanced line 16–4 differed little in their ability to support N2 fixation or yield, possibly due to similar breeding ancestry. The ten AVRDC (ASET) lines showed considerable genotypic control in their ability to utilize their three available N sources (soil, fertilizer, atmosphere) and to translate them into yields. None of these lines were consistently superior to Thai cultivars SJ4 or SJ5 although ASET lines 129, 209 and 217 showed considerable promise.Neither recommended Thai or ASET cultivars were affected by tillage regime. Zero tillage resulted in superior N2 fixation and yield at two sites but conventional tillage was superior at another site. Soybean cultivars grown in Thailand were well adapted to zero tillage. Levels of N2 fixation were similar to world figures, averaging more than 100 kg N ha–1 and supplying over 50% of the plant's N yield. However, seed yields seldom exceeded 2 t ha–1, well below yields for temperately-grown soybeans. It is not clear why Thai soybeans support N2 fixation, but do not translate this into higher seed yields.  相似文献   

16.
Hardarson  Gudni  Atkins  Craig 《Plant and Soil》2003,252(1):41-54
Whether grown as pulses for grain, as green manure, as pastures or as the tree components of agro-forestry systems, the value of leguminous crops lies in their ability to fix atmospheric N2, so reducing the use of expensive fertiliser-N and enhancing soil fertility. N2 fixing legumes provide the basis for developing sustainable farming systems that incorporate integrated nutrient management. By exploiting the stable nitrogen isotope 15N, it has been possible to reliably measure rates of N2 fixation in a wide range of agro-ecological field situations involving many leguminous species. The accumulated data demonstrate that there is a wealth of genetic diversity among legumes and their Rhizobium symbionts which can be used to enhance N2 fixation. Practical agronomic and microbiological means to maximise N inputs by legumes have also been identified.  相似文献   

17.
We compared symbiotic N2 fixation by winter forage legumes (clovers, medics and vetches) using the 15N natural abundance technique in three experiments. Vetches (Vicia spp.) were the most productive legumes, and woollypod vetch fixed (shoot+root) up to 265 kg N ha–1 (mean 227 kg N ha–1) during a 4–5 months period over winter and early spring. Balansa and Berseem clovers, and Gama medic were highly productive in the first experiment, but fixed significantly less N than woollypod vetch in the second experiment. A 6-year study (1997–2003) compared cotton (Gossypium hirsutum L.) systems with and without vetch, or with faba beans (Vicia faba L.) to assess the effects of these crops on cotton production. Woollypod vetch was grown either between annual cotton crops, or between wheat (Triticum aestivumL.) and cotton crops. Vetch added 230 kg N ha–1 (174 kg fixed N ha–1) to the soil when incorporated as a green manure. Faba bean shoot residues and nodulated roots contributed 108 kg fixed N ha–1 to the soil, following the removal of 80 kg N ha–1 in the harvested seed (meaned over three crops). Lablab (Lablab purpureus L. – summer-growing and irrigated) added 277 kg N ha–1 (244 kg fixed N ha–1) before incorporation as a green manure in the first year of the experiment. The economic optimum N fertiliser rate for each cropping system was determined every second year when all systems were sown to cotton. Cotton following cotton required 105 kg fertiliser N ha–1, but only 40 kg N ha–1 when vetch was grown between each cotton crop. Cotton following wheat required 83 kg fertiliser N ha–1 but no N fertiliser was needed when vetch was grown after wheat (the highest yielding system). Cotton following faba beans also required no N fertiliser. The vetch-based systems became more N fertile over the course of the experiment and produced greater lint yields than the comparative non-legume systems, and required less N fertiliser. While no cash flow was derived from growing vetch, economic benefits accrued from enhanced cotton yields, reduced N fertiliser requirements and improved soil fertility. These findings help explain the rotational benefits of vetches observed in other regions of the world.  相似文献   

18.
Summary Isotopic as well as non-isotopic methods were used to assess symbiotic nitrogen fixation within eight soybean [Glycine max (L.) Merr.] cultivars grown at 20 and 100 kg N/ha levels of nitrogen fertilizer under field conditions.The15N methodology revealed large differences between soybean cultivars in their abilities to support nitrogen fixation. In almost all cases, the application of 100 kg N/ha resulted in lower N2 fixed in soybean than at 20 kg N/ha in the first year of the study. However, N2 fixed in one cultivar, Dunadja, was not significantly affected by the higher rate of N fertilizer application. These results were confirmed by measurements of acetylene reduction activity, nodule dry weight and N2 fixed as measured by the difference method. Further proof of differences in N2 fixed within soybean cultivars and the ability of Dunadja to fix similar amounts of N2 at 20 and 100 kg N/ha was obtained during a second year experiment. Dunadja yield was affected by N fertilizer and produced larger yield at 100 kg N/ha than at 20 kg N/ha. This type of cultivar could be particularly useful in situations where soil N levels are high or where there is need to apply high amounts of N fertilizer.The present study reveals the great variability between legume germplasms in the ability to fix N2 at different inorganic N levels, and also the potential that exists in breeding for nitrogen fixation associative traits. The15N methodology offers a unique tool to evaluate germplasms directly in the field for their N2 fixation abilities at different N fertilizer levels.  相似文献   

19.
Alley cropping is being widely tested in the tropics for its potential to sustain adequate food production with low agricultural inputs, while conserving the resource base. Fast growth and N yield of most trees used as hedgerows in alley cropping is due greatly to their ability to fix N2 symbiotically with Rhizobium. Measurements of biological N2 fixation (BNF) in alley cropping systems show that some tree species such as Leucaena leucocephala, Gliricidia sepium and Acacia mangium can derive between 100 and 300 kg N ha-1 yr–1 from atmospheric N2, while species such as Faidherbia albida and Acacia senegal might fix less than 20 kg N ha-1 yr-1. Other tree species such as Senna siamea and S. spectabilis are also used in alley cropping, although they do not nodulate and therefore do not fix N2. The long-term evaluation of the potential or actual amounts of N2 fixed in trees however, poses problems that are associated with their perennial nature and massive size, the great difficulty in obtaining representative samples and applying reliable methodologies for measuring N2 fixed. Strategies for obtaining representative samples (as against the whole tree or destructive plant sampling), the application of 15N procedures and the selection criteria for appropriate reference plants have been discussed.Little is known about the effect of environmental factors and management practices such as tree cutting or pruning and residue management on BNF and eventually their N contribution in alley cropping. Data using the 15N labelling techniques have indicated that up to 50% or more of the tree's N may be below ground after pruning. In this case, quantification of N2 fixed that disregards roots, nodules and crowns would result in serious errors and the amount of N2 fixed may be largely underestimated. Large quantities of N are harvested with hedgerow prunings (>300 kg N ha-1 yr-1) but N contribution to crops is commonly in the range of 40–70 kg N ha-1 season. This represents about 30% of N applied as prunings; however, N recoveries as low as 5–10% have been reported. The low N recovery in maize (Zea mays) is partly caused by lack of synchronization between the hedgerow trees N release and the associated food crop N demand. The N not taken up by the associated crop can be immobilized in soil organic matter or assimilated by the hedgerow trees and thus remain in the system. This N can also be lost from the system through denitrification, volatilization or is leached beyond the rooting zone. Below ground contribution (from root turnover and nodule decay) to an associated food crop in alley cropping is estimated at about 25–102 kg N ha-1 season-1. Timing and severity of pruning may allow for some management of underground transfer of fixed N2 to associated crops. However many aspects of root dynamics in alley cropping systems are poorly understood. Current research projects based on 15N labelling techniques or 15N natural abundance measurements are outlined. These would lead to estimates of N2 fixation and N saving resulting from the management of N2 fixation in alley cropping systems.  相似文献   

20.
An experiment was conducted at EMBRAPA/CNPAF, Goiânia, Goias, Brazil, on a typic haplustox soil to evaluate growth and N2 fixation-related parameters of Phaseolus vulgaris L. Bean lines, which had been selected for N2 fixation at CNPAF, including production cultivars, germplasm bank entries, and parents and progenies of a cross made to improve this characteristic. Wheat (Triticum aestivum L.) and dwarf sorghum (Sorghum bicolor (L.) Moench) were evaluated as non-N2-fixing reference crops for difference method (DM) and 15N isotope dilution technique (IDT) estimates of N2 fixation. IDT estimates ranges from 4 to 18 kg N2 fixed ha-1. High variability associated with low levels of N2 fixation precluded definitive identification of the best N2 fixing bean lines. Due to differences in growth cycle and in patterns and amounts of soil N uptake during the season, neither of the reference crops tested appears to be an adequate control for either DM or IDT estimates of N2 fixation. However, ranking of lines for effectiveness in N2 fixation could be performed without the use of any reference crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号