共查询到20条相似文献,搜索用时 15 毫秒
1.
Linkage disequilibrium between incompatibility locus region genes in the plant Arabidopsis lyrata 下载免费PDF全文
We have studied diversity in Arabidopsis lyrata of sequences orthologous to the ARK3 gene of A. thaliana. Our main goal was to test for recombination in the S-locus region. In A. thaliana, the single-copy ARK3 gene is closely linked to the non-functional copies of the self-incompatibility loci, and the ortholog in A. lyrata (a self-incompatible species) is in the homologous genome region and is known as Aly8. It is thus of interest to test whether Aly8 sequence diversity is elevated due to close linkage to the highly polymorphic incompatibility locus, as is theoretically predicted. However, Aly8 is not a single-copy gene, and the presence of paralogs could also lead to the appearance of elevated diversity. We established a typing approach based on different lengths of Aly8 PCR products and show that most A. lyrata haplotypes have a single copy, but some have two gene copies, both closely linked to the incompatibility locus, one being a pseudogene. We determined the phase of multiple haplotypes in families of plants from Icelandic and other populations. Different Aly8 sequence types are associated with different SRK alleles, while haplotypes with the same SRK sequences tend to have the same Aly8 sequence. There is evidence of some exchange of sequences between different Aly8 sequences, making it difficult to determine which ones are allelic or to estimate the diversity. However, the homogeneity of the Aly8 sequences of each S-haplotype suggests that recombination between the loci has been very infrequent over the evolutionary history of these populations. Overall, the results suggest that recombination rarely occurs in the interval between the S-loci and Aly8 and that linkage to the S-loci can probably account for the observed high Aly8 diversity. 相似文献
2.
C. R. Leach O. Mayo M. M. Morris 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1986,73(1):102-112
Summary The approach to linkage equilibrium of a locus linked to the locus determining gametophytic self-incompatibility (S) is considered. For the simplest case of three alleles at the S locus and two at the linked locus it is necessary to consider 3 measures of linkage disequilibrium. These are found to approach their equilibrium value of zero in one of three ways: 1) steadily declining to zero; 2) oscillating as decline proceeds; 3) a combination: 2) followed by 1). Linkage equilibrium may be established before genotype frequencies reach their expectation under random crossing. Earlier studies (Li 1951; Moran 1962) of the approach to S allele equilibrium have been based on the assumption that all types of pollen take part in fertilizations equally frequently. Such an assumption leads to simpler expressions for changes in S gene frequencies but is extremely unrealistic and, in particular, leads to a different rate of approach to equilibrium from the more comprehensive model. It is shown that even in the absence of selection it is not possible to predict the equilibrium gene frequency of a linked locus until S allele equilibrium is reached. This frequency may be either higher or lower than that calculated from a gene count in the starting genotype pool. However, these two gene frequencies may stabilize long before linkage equilibrium is achieved. An examination of selection against one genotype at the linked locus is undertaken. If linkage is complete, lethality can be less effective at reducing the gene frequency than is less intense selection (in only a few generations of selection). Here too linkage equilibrium may be established with selection still effective in bringing about a decline in gene frequency. An examination of the analysis and conclusions of Rasmuson (1980) shows that because these were based on the inadequate formulae previously discussed and exclude phenomena discussed above, they are misleading. The possibility of a gametophytic self-incompatibility system providing a sufficient condition for the sheltering of lethals in the absence of the condition of complete linkage to the S locus (r=0) is shown to be unlikely. 相似文献
3.
The self-incompatibility (S-) locus region of plants in the Brassica family is a small genome region. In Arabidopsis lyrata, the S-genes, SRK and SCR, encode the functional female and pollen recognition proteins, which must be coadapted to maintain correct associations between the two component genes, and thus self-incompatibility (SI). Recombinants would be self-compatible and thus probably disadvantageous in self-incompatible species. Therefore, tight linkage between the two genes in incompatibility systems is predicted to evolve to avoid producing such recombinant haplotypes. The evolution of low recombination in S-locus regions has not been rigorously tested. To test whether these regions' per-nucleotide recombination rates differ from those elsewhere in the genome, and to investigate whether the A. lyrata S-loci have the predicted effect on diversity in their immediate genome region, we studied diversity in genes that are linked to the S-loci but are not involved in incompatibility and are not under balancing selection. Compared with other A. lyrata loci, genes linked to the S-loci have extraordinarily high polymorphism. Our estimated recombination in this region, from fitting a model of the effects of S-allele polymorphism on linked neutral sites, supports the hypothesis of locally suppressed recombination around the S-locus. 相似文献
4.
Self-incompatibility in Arabidopsis lyrata is sporophytically controlled by the multi-allelic S-locus. Self-incompatibility alleles (S-alleles) are under strong negative frequency dependent selection because pollen carrying common S-alleles have fewer mating opportunities. Population genetics theory predicts that deleterious alleles can accumulate if linked to the S-locus. This was tested by studying segregation of S-alleles in 11 large full sib families in A. lyrata. Significant segregation distortion leading to an up to fourfold difference in transmission rates was found in six families. Differences in transmission rates were not significantly different in reciprocal crosses and the distortions observed were compatible with selection acting at the gametic stage alone. The S-allele with the largest segregation advantage is also the most recessive, and is very common in natural populations concordant with its apparent segregation advantage. These results imply that frequencies of S-alleles in populations of A. lyrata cannot be predicted based on simple models of frequency-dependent selection alone. 相似文献
5.
Natural populations of diploid Arabidopsis lyrata exhibit the sporophytic type of self-incompatibility system characteristic of Brassicaceae, in which complicated dominance interactions among alleles in the diploid parent determine self-recognition phenotypes of both pollen and stigma. The purpose of this study was to investigate how polyploidy affects this already complex system. One tetraploid population (Arabidopsis lyrata ssp kawasakiana from Japan) showed complete self-compatibility and produced viable selfed progeny for at least three generations subsequent to field collection. In contrast, individuals from a second tetraploid population (A. lyrata ssp petraea from Austria) were strongly self-incompatible (SI). Segregation of SI genotypes in this population followed Mendelian patterns based on a tetrasomic model of inheritance, with two to four alleles per individual, independent segregation of alleles, and little evidence of dosage effects of alleles found in multiple copies. Similar to results from diploids, anomalous compatibility patterns involving particular combinations of individuals occurred at a low frequency in the tetraploids, suggesting altered dominance in certain genetic backgrounds that could be due to the influence of a modifier locus. Overall, dominance relationships among S-alleles in self-incompatible tetraploid families were remarkably similar to those in related diploids, suggesting that this very important and complicated locus has not undergone extensive modification subsequent to polyploidization. 相似文献
6.
Arabidopsis lyrata, a close relative of the model plant Arabidopsis thaliana, is 1 of a few plant species for which the genome is to be entirely sequenced, which promises to yield important insights into genome evolution. Only 2 sparse linkage maps have been published, and these were based solely on markers derived from the A. thaliana genome. Because the genome of A. lyrata is practically twice as large as that of A. thaliana, the extent of map coverage of the A. lyrata genome remains uncertain. In this study, a 2-way pseudo-testcross strategy was used to construct genetic linkage maps of A. lyrata subsp. petraea and A. lyrata subsp. lyrata, using simple sequence repeat (SSR) and cleaved amplified polymorphic sequence (CAPS) markers from the A. thaliana genome, and anonymous amplified fragment length polymorphism (AFLP) markers that could potentially uncover regions unique to the A. lyrata genome. The SSR and CAPS markers largely confirmed the relationships between linkage groups in A. lyrata and A. thaliana. AFLP markers slightly increased the coverage of the A. lyrata maps, but mostly increased marker density on the linkage groups. We noted a much lower level of polymorphism and a greater segregation distortion in A. lyrata subsp. lyrata markers. The implications of these findings for the sequencing of the A. lyrata genome are discussed. 相似文献
7.
We report studies of seven members of the S-domain gene family in Arabidopsis lyrata, a member of the Brassicaceae that has a sporophytic self-incompatibility (SI) system. Orthologs for five loci are identifiable in the self-compatible relative A. thaliana. Like the Brassica stigmatic incompatibility protein locus (SRK), some of these genes have kinase domains. We show that several of these genes are unlinked to the putative A. lyrata SRK, Aly13. These genes have much lower nonsynonymous and synonymous polymorphism than Aly13 in the S-domains within natural populations, and differentiation between populations is higher, consistent with balancing selection at the Aly13 locus. One gene (Aly8) is linked to Aly13 and has high diversity. No departures from neutrality were detected for any of the loci. Comparing different loci within A. lyrata, sites corresponding to hypervariable regions in the Brassica S-loci (SLG and SRK) and in comparable regions of Aly13 have greater replacement site divergence than the rest of the S-domain. This suggests that the high polymorphism in these regions of incompatibility loci is due to balancing selection acting on sites within or near these regions, combined with low selective constraints. 相似文献
8.
Testing for effects of recombination rate on nucleotide diversity in natural populations of Arabidopsis lyrata 总被引:3,自引:0,他引:3
Wright SI Foxe JP DeRose-Wilson L Kawabe A Looseley M Gaut BS Charlesworth D 《Genetics》2006,174(3):1421-1430
We investigated DNA sequence diversity for loci on chromosomes 1 and 2 in six natural populations of Arabidopsis lyrata and tested for the role of natural selection in structuring genomewide patterns of variability, specifically examining the effects of recombination rate on levels of silent polymorphism. In contrast with theoretical predictions from models of genetic hitchhiking, maximum-likelihood-based analyses of diversity and divergence do not suggest reduction of diversity in the region of suppressed recombination near the centromere of chromosome 1, except in a single population from Russia, in which the pericentromeric region may have undergone a local selective sweep or demographic process that reduced variability. We discuss various possibilities that might explain why nucleotide diversity in most A. lyrata populations is not related to recombination rate, including genic recombination hotspots, and low gene density in the low recombination rate region. 相似文献
9.
Charlesworth D Bartolomé C Schierup MH Mable BK 《Molecular biology and evolution》2003,20(11):1741-1753
We describe analyses of almost full-length sequences (including both the kinase domain and the S-domain) of the putative SRK incompatibility gene of the self-incompatible plant Arabidopsis lyrata. In A. lyrata, the SRK S-domain controls the pistil recognition specificity, as in self-incompatible Brassica species. In alleles from plants derived from natural A. lyrata populations, nonsynonymous and synonymous site diversity values are very high in both domains; even in exons 3 to 7 of the kinase domain, which probably have no recognition functions, 39% of the amino acids are polymorphic. Within populations, diversity between alleles is high, as expected for an incompatibility locus, which should be under frequency-dependent selection within populations, whereas within the different putative allelic classes polymorphism is very low, as predicted from theoretical models when recombination is rare. Nonsynonymous site variability declines in the kinase domain with increasing distance from the S-domain border, although synonymous diversity remains high, and the introns are unalignable. A decline in nonsynonymous diversity is expected due to selective constraints in the kinase domain, in combination with recombination (allowing diversity to decrease at sites distant from those under balancing selection). However, it is unclear whether recombination occurs in the SRK locus, and interpretation of the observed diversity pattern is complicated by apparent gene conversion with a paralogous gene (or genes). Patterns of linkage disequilibrium in our SRK sequences do not support the conclusion that recombination occurs, which was suggested from previous analyses based on Brassica SLG sequences. 相似文献
10.
Mable BK Robertson AV Dart S Di Berardo C Witham L 《Evolution; international journal of organic evolution》2005,59(7):1437-1448
Mating systems in plants are known to be highly labile traits, with frequent transitions from outcrossing to selfing. The genetic basis for breakdown in self-incompatibility (SI) systems has been studied, but data on variation in selfing rates in species for which the molecular basis of SI is known are rare. This study surveyed such variation in Arabidopsis lyrata (Brassicaceae), which is often considered an obligately outcrossing species, to examine the causes and genetic consequences of changes in its breeding system. Based on controlled self-pollinations in the greenhouse, three populations from the Great Lakes region of North America included a minority of self-compatible (SC) individuals, while two showed larger proportions of SC individuals and all populations contained some individuals capable of setting selfed seeds. Loss of SI was not associated with particular haplotypes at the S-locus (as estimated by alleles amplified at the SRK locus, the gene controlling female specificity) and all populations contained similar numbers of SRK alleles, suggesting that some other genetic factor is responsible for modifying the SI reaction. The loss of SI has resulted in an effective shift in the mating system, as the two populations with a high frequency of SC individuals showed significantly lower microsatellite-based multilocus outcrossing rates and higher inbreeding coefficients than the other populations. Based on microsatellites, observed heterozygosities and genetic diversity were also significantly depressed in these populations. These findings provide the unique opportunity to examine in detail the consequences of mating system changes within a species with a well-characterized SI system. 相似文献
11.
A breakdown of self‐incompatibility (SI) followed by a shift to selfing is commonly observed in the evolution of flowering plants. Both are expected to reduce the levels of heterozygosity and genetic diversity. However, breakdown of SI should most strongly affect the region of the SI locus (S‐locus) because of the relaxation of balancing selection that operates on a functional S‐locus, and a potential selective sweep. In contrast, a transition to selfing should affect the whole genome. We set out to disentangle the effects of breakdown of SI and transition to selfing on the level and distribution of genetic diversity in North American populations of Arabidopsis lyrata. Specifically, we compared sequence diversity of loci linked and unlinked to the S‐locus for populations ranging from complete selfing to fully outcrossing. Regardless of linkage to the S‐locus, heterozygosity and genetic diversity increased with population outcrossing rate. High heterozygosity of self‐compatible individuals in outcrossing populations suggests that SI is not the only factor preventing the evolution of self‐fertilization in those populations. There was a strong loss of diversity in selfing populations, which was more pronounced at the S‐locus. In addition, selfing populations showed an accumulation of derived mutations at the S‐locus. Our results provide evidence that beyond the genome‐wide consequences of the population bottleneck associated with the shift to selfing, the S‐locus of A. lyrata shows a specific signal either reflecting the relaxation of balancing selection or positive selection. 相似文献
12.
Hastings A 《Genetics》1984,106(1):153-164
Limits to the relationship among linkage disequilibrium, selection and recombination at equilibrium in three-locus, two-allele, deterministic, discrete generation models are determined using linear programming techniques. These results show that the commonly used measures of linkage disequilibrium are not appropriate for a multilocus setting. Additionally, interactions among three loci are important in reducing the strength of selection necessary to maintain a given level of disequilibrium, relative to a two-locus model. 相似文献
13.
14.
Identification and characterization of a polymorphic receptor kinase gene linked to the self-incompatibility locus of Arabidopsis lyrata 总被引:5,自引:0,他引:5
We study the segregation of variants of a putative self-incompatibility gene in Arabidopsis lyrata. This gene encodes a sequence that is homologous to the protein encoded by the SRK gene involved in self-incompatibility in Brassica species. We show by diallel pollinations of plants in several full-sib families that seven different sequences of the gene in A. lyrata are linked to different S-alleles, and segregation analysis in further sibships shows that four other sequences behave as allelic to these. The family data on incompatibility provide evidence for dominance classes among the S-alleles, as expected for a sporophytic SI system. We observe no division into pollen-dominant and pollen-recessive classes of alleles as has been found in Brassica, but our alleles fall into at least three dominance classes in both pollen and stigma expression. The diversity among sequences of the A. lyrata putative S-alleles is greater than among the published Brassica SRK sequences, and, unlike Brassica, the alleles do not cluster into groups with similar dominance. 相似文献
15.
Previous multilocus surveys of nucleotide polymorphism have documented a genome-wide excess of intralocus linkage disequilibrium (LD) in Drosophila melanogaster and D. simulans relative to expectations based on estimated mutation and recombination rates and observed levels of diversity. These studies examined patterns of variation from predominantly non-African populations that are thought to have recently expanded their ranges from central Africa. Here, we analyze polymorphism data from a Zimbabwean population of D. melanogaster, which is likely to be closer to the standard population model assumptions of a large population with constant size. Unlike previous studies, we find that levels of LD are roughly compatible with expectations based on estimated rates of crossing over. Further, a detailed examination of genes in different recombination environments suggests that markers near the telomere of the X chromosome show considerably less linkage disequilibrium than predicted by rates of crossing over, suggesting appreciable levels of exchange due to gene conversion. Assuming that these populations are near mutation-drift equilibrium, our results are most consistent with a model that posits heterogeneity in levels of exchange due to gene conversion across the X chromosome, with gene conversion being a minor determinant of LD levels in regions of high crossing over. Alternatively, if levels of exchange due to gene conversion are not negligible in regions of high crossing over, our results suggest a marked departure from mutation-drift equilibrium (i.e., toward an excess of LD) in this Zimbabwean population. Our results also have implications for the dynamics of weakly selected mutations in regions of reduced crossing over. 相似文献
16.
Olsen KM Halldorsdottir SS Stinchcombe JR Weinig C Schmitt J Purugganan MD 《Genetics》2004,167(3):1361-1369
The selfing plant Arabidopsis thaliana has been proposed to be well suited for linkage disequilibrium (LD) mapping as a means of identifying genes underlying natural trait variation. Here we apply LD mapping to examine haplotype variation in the genomic region of the photoperiod receptor CRYPTOCHROME2 and associated flowering time variation. CRY2 DNA sequences reveal strong LD and the existence of two highly differentiated haplogroups (A and B) across the gene; in addition, a haplotype possessing a radical glutamine-to-serine replacement (AS) occurs within the more common haplogroup. Growth chamber and field experiments using an unstratified population of 95 ecotypes indicate that under short-day photoperiod, the AS and B haplogroups are both highly significantly associated with early flowering. Data from six genes flanking CRY2 indicate that these haplogroups are limited to an approximately 65-kb genomic region around CRY2. Whereas the B haplogroup cannot be delimited to <16 kb around CRY2, the AS haplogroup is characterized almost exclusively by the nucleotide polymorphisms directly associated with the serine replacement in CRY2; this finding strongly suggests that the serine substitution is directly responsible for the AS early flowering phenotype. This study demonstrates the utility of LD mapping for elucidating the genetic basis of natural, ecologically relevant variation in Arabidopsis. 相似文献
17.
18.
Linkage disequilibrium predicts physical distance in the adenomatous polyposis coli region. 总被引:11,自引:15,他引:11 下载免费PDF全文
L. B. Jorde W. S. Watkins M. Carlson J. Groden H. Albertsen A. Thliveris M. Leppert 《American journal of human genetics》1994,54(5):884-898
To test the reliability of linkage-disequilibrium analysis for gene mapping, we compared physical distance and linkage disequilibrium among seven polymorphisms in the adenomatous polyposis coli (APC) region on chromosome 5. Three of them lie within the APC gene, and two lie within the nearby MCC (mutated in colon cancer) gene. One polymorphism lies between the two genes, and one is likely to be 5' of MCC. Five of these polymorphisms are newly reported. All polymorphisms were typed in the CEPH kindreds, yielding 179-205 unrelated two-locus haplotypes. Linkage disequilibrium between each pair of polymorphisms is highly correlated with physical distance in this 550-kb region (correlation coefficient -.80, P < .006). This result is replicated in both the Utah and non-Utah CEPH kindreds. There is a tendency for greater disequilibrium among pairs of polymorphisms located within the same gene than among other pairs of polymorphisms. Trigenic, quadrigenic, three-locus, and four-locus disequilibrium measures were also estimated, but these measures revealed much less disequilibrium than did the two-locus disequilibrium measures. A review of 19 published disequilibrium studies, including this one, shows that linkage disequilibrium nearly always correlates significantly with physical distance in genomic regions > 50-60 kb but that it does not do so in smaller genomic regions. We show that this agrees with theoretical predictions. This finding helps to resolve controversies regarding the use of disequilibrium for inferring gene order. Disequilibrium mapping is unlikely to predict gene order correctly in regions < 50-60 kb in size but can often be applied successfully in regions of 50-500 kb or so in size. It is convenient that this is the range in which other mapping techniques, including chromosome walking and linkage mapping, become difficult. 相似文献
19.
Linkage disequilibrium and inference of ancestral recombination in 538 single-nucleotide polymorphism clusters across the human genome 总被引:13,自引:0,他引:13 下载免费PDF全文
Clark AG Nielsen R Signorovitch J Matise TC Glanowski S Heil J Winn-Deen ES Holden AL Lai E 《American journal of human genetics》2003,73(2):285-300
The prospect of using linkage disequilibrium (LD) for fine-scale mapping in humans has attracted considerable attention, and, during the validation of a set of single-nucleotide polymorphisms (SNPs) for linkage analysis, a set of data for 4,833 SNPs in 538 clusters was produced that provides a rich picture of local attributes of LD across the genome. LD estimates may be biased depending on the means by which SNPs are first identified, and a particular problem of ascertainment bias arises when SNPs identified in small heterogeneous panels are subsequently typed in larger population samples. Understanding and correcting ascertainment bias is essential for a useful quantitative assessment of the landscape of LD across the human genome. Heterogeneity in the population recombination rate, rho=4Nr, along the genome reflects how variable the density of markers will have to be for optimal coverage. We find that ascertainment-corrected rho varies along the genome by more than two orders of magnitude, implying great differences in the recombinational history of different portions of our genome. The distribution of rho is unimodal, and we show that this is compatible with a wide range of mixtures of hotspots in a background of variable recombination rate. Although rho is significantly correlated across the three population samples, some regions of the genome exhibit population-specific spikes or troughs in rho that are too large to be explained by sampling. This result is consistent with differences in the genealogical depth of local genomic regions, a finding that has direct bearing on the design and utility of LD mapping and on the National Institutes of Health HapMap project. 相似文献
20.