首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physiological function of glutamate dehydrogenase (GDH) was investigated by treating germinating peanut (Arachis hypogaea L.) seeds with nucleoside triphosphate (NTP) solutions in order to alter the isoenzyme distribution patterns. The free nucleosides and nucleotides of the GTP-treated peanut were the highest [8.7 μmol g−1(f.m.)], and they decreased through the ATP-treated peanut [5.8 μmol g−1(f.m.)], and CTP-treated peanut [5.5 μmol g−1(f.m.)], to the UTP-treated peanut [4.1 μmol g−1(f.m.)]. The combination of 4 NTPs induced 20 % higher content of Pi [173 nmol g−1(f.m.)] than in the control, but the combined ATP+UTP treatment induced the lowest (93.0 nmol g−1(f.m.)] Pi. The 4 NTP treatment also induced the highest number of GDH isoenzymes (28) followed by the purine NTP treatments (15 to 20), but the pyrimidine NTP treatments and the combined purine + pyrimidine NTP treatments induced the lowest numbers (<15) of isoenzymes. The deamination/amination ratios were generally higher in the UTP (0.11), and CTP (0.06) treated peanuts than in the GTP (0.04), and ATP (0.07) treated peanuts. There were mutual relationships between higher numbers of GDH isoenzymes present in the GTP-, and ATP-treated peanuts and higher RNA (236.5 and 239.4 μg g−1, respectively) contents on one hand, and between the lower numbers of isoenzymes in the CTP-, and UTP-treated peanuts and lower RNA (162.0 and 152.5 μg g−1, respectively) contents. The recurrent relationships of the effects of the NTP treatments of peanut were UTP > ATP > CTP > GTP. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Studies on the effects of substrates on RNA polymerase I [EC 2.7.7.6] in vitro showed that nucleolar RNA synthesis was inhibited by an excess of substrate nucleoside triphosphates in the presence of Mg2+. GTP and UTP were more inhibitory than CTP and ATP. These compounds specfically inhibited nucleolar RNA synthesis and a concentration of GTP that strongly inhibited nucleolar RNA synthesis did not inhibit RNA synthesis by partially purified RNA polymerase I. The inhibition of nucleolar RNA synthesis disappeared at pH 9.0 without any change in the apparent Km for GTP or the Vmax of RNA synthesis.  相似文献   

3.
Early studies showed that in addition to GTP, the pyrimidine nucleotides UTP and CTP support activation of the adenylyl cyclase (AC)-stimulating G(s) protein. The aim of this study was to elucidate the mechanism by which UTP and CTP support G(s) activation. As models, we used S49 wild-type lymphoma cells, representing a physiologically relevant system in which the beta(2)-adrenoreceptor (beta(2)AR) couples to G(s), and Sf9 insect cell membranes expressing beta(2)AR-Galpha(s) fusion proteins. Fusion proteins provide a higher sensitivity for the analysis of beta(2)AR-G(s) coupling than native systems. Nucleoside 5'-triphosphates (NTPs) supported agonist-stimulated AC activity in the two systems and basal AC activity in membranes from cholera toxin-treated S49 cells in the order of efficacy GTP > or = UTP > CTP > ATP (ineffective). NTPs disrupted high affinity agonist binding in beta(2)AR-Galpha(s) in the order of efficacy GTP > UTP > CTP > ATP (ineffective). In contrast, the order of efficacy of NTPs as substrates for nucleoside diphosphokinase, catalyzing the formation of GTP from GDP and NTP was ATP > or = UTP > or = CTP > or = GTP. NTPs inhibited beta(2)AR-Galpha(s)-catalyzed [gamma-(32)P]GTP hydrolysis in the order of potency GTP > UTP > CTP. Molecular dynamics simulations revealed that UTP is accommodated more easily within the binding pocket of Galpha(s) than CTP. Collectively, our data indicate that GTP, UTP, and CTP interact differentially with G(s) proteins and that transphosphorylation of GDP to GTP is not involved in this G protein activation. In certain cell systems, intracellular UTP and CTP concentrations reach approximately 10 nmol/mg of protein and are higher than intracellular GTP concentrations, indicating that G protein activation by UTP and CTP can occur physiologically. G protein activation by UTP and CTP could be of particular importance in pathological conditions such as cholera and Lesch-Nyhan syndrome.  相似文献   

4.
The nucleoside 5'-triphosphate (NTP) substrate specificities for Ca-stimulated ATPase and ATP-dependent Ca2+ uptake activities have been examined in cardiac sarcolemma (SL) and sarcoplasmic (SR) membrane vesicles. The results indicate that SL membrane vesicles exhibit a much narrower range of NTP substrate specificities than SR membranes. In SR membrane vesicles, the Ca-stimulated Mg-dependent hydrolysis of ATP and dATP occurred at nearly equivalent rates, whereas the rates of hydrolysis of GTP, ITP, CTP, and UTP ranged from 16-33% of that for ATP. All of the above nucleotides also supported Ca2+ transport into SR vesicles; dATP was somewhat more effective than ATP while GTP, ITP, CTP, and UTP ranged from 28-30% of the activity for ATP. In the presence of oxalate, the initial rate of Ca accumulation with dATP was 4-fold higher than for ATP, whereas the activity for GTP, ITP, CTP, and UTP ranged from 35-45% of that for ATP. For the SL membranes, Ca-activated dATP hydrolysis occurred at 60% of the rate for ATP; GTP, ITP, CTP, and UTP were hydrolyzed by the SL preparations at only 7-9% of the rate for ATP. NTP-dependent Ca2+ uptake in SL membranes was supported only by ATP and dATP, with dATP 60% as effective as ATP. GTP, ITP, CTP, and UTP did not support the transport of Ca2+ by SL vesicles. The results indicate that the SL and SR membranes contain distinctly different ATP-dependent Ca2+ transport systems.  相似文献   

5.
Pappas A  Park TS  Carman GM 《Biochemistry》1999,38(50):16671-16677
CTP synthetase [EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)] from the yeast Saccharomyces cerevisiae catalyzes the ATP-dependent transfer of the amide nitrogen from glutamine to the C-4 position of UTP to form CTP. In this work, we demonstrated that CTP synthetase utilized dUTP as a substrate to synthesize dCTP. The dUTP-dependent activity was linear with time and with enzyme concentration. Maximum dUTP-dependent activity was dependent on MgCl(2) (4 mM) and GTP (K(a) = 14 microM) at a pH optimum of 8.0. The apparent K(m) values for dUTP, ATP, and glutamine were 0.18, 0.25, and 0.41 mM, respectively. dUTP promoted the tetramerization of CTP synthetase, and the extent of enzyme tetramerization correlated with dUTP-dependent activity. dCTP was a poor inhibitor of dUTP-dependent activity, whereas CTP was a potent inhibitor of this activity. The enzyme catalyzed the synthesis of dCTP and CTP when dUTP and UTP were used as substrates together. CTP was the major product synthesized when dUTP and UTP were present at saturating concentrations. When dUTP and UTP were present at concentrations near their K(m) values, the synthesis of dCTP increased relative to that of CTP. The synthesis of dCTP was favored over the synthesis of CTP when UTP was present at a concentration near its K(m) value and dUTP was varied from subsaturating to saturating concentrations. These data suggested that the dUTP-dependent synthesis of dCTP by CTP synthetase activity may be physiologically relevant.  相似文献   

6.
The regulatory role of the allosteric site of CTP synthetase on flux through the enzyme in situ and on pyrimidine nucleotide triphosphate (NTP) pool balance was investigated using a mutant mouse T lymphoblast (S49) cell line which contains a CTP synthetase refractory to complete inhibition by CTP. Measurements of [3H]uridine incorporation into cellular pyrimidine NTP pools as a function of time indicated that CTP synthesis in intact wild type cells was markedly inhibited in a cooperative fashion by small increases in CTP pools, whereas flux across the enzyme in mutant cells was much less affected by changes in CTP levels. The cooperativity of the allosteric inhibition of the enzyme was greater in situ than in vitro. Exogenous manipulation of levels of GTP, an activator of the enzyme, indicated that GTP had a moderate effect on enzyme activity in situ, and changes in pools of ATP, a substrate of the enzyme, had small effects on CTP synthetase activity. The consequences of incubation with actinomycin D, cycloheximide, dibutyryl cyclic AMP, and 6-azauridine on the flux across CTP synthetase and on NTP pools differed considerably between wild type and mutant cells. Under conditions of growth arrest, an intact binding site for CTP on CTP synthetase was required to maintain a balance between the CTP and UTP pools in wild type cells. Moreover, wild type cells failed to incorporate H14CO3- into pyrimidine pools following growth arrest. In contrast, mutant cells incorporated the radiolabel at a high rate indicating loss of a regulatory function. These results indicated that uridine nucleotides are important regulators of pyrimidine nucleotide synthesis in mouse S49 cells, and CTP regulates the balance between UTP and CTP pools.  相似文献   

7.
CTP synthase catalyzes the reaction glutamine + UTP + ATP --> glutamate + CTP + ADP + Pi. The rate of the reaction is greatly enhanced by the allosteric activator GTP. We have studied the glutaminase half-reaction of CTP synthase from Lactococcus lactis and its response to the allosteric activator GTP and nucleotides that bind to the active site. In contrast to what has been found for the Escherichia coli enzyme, GTP activation of the L. lactis enzyme did not result in similar kcat values for the glutaminase activity and glutamine hydrolysis coupled to CTP synthesis. GTP activation of the glutaminase reaction never reached the levels of GTP-activated CTP synthesis, not even when the active site was saturated with UTP and the nonhydrolyzeable ATP-binding analog adenosine 5'-[gamma-thio]triphosphate. Furthermore, under conditions where the rate of glutamine hydrolysis exceeded that of CTP synthesis, GTP would stimulate CTP synthesis. These results indicate that the L. lactis enzyme differs significantly from the E. coli enzyme. For the E. coli enzyme, activation by GTP was found to stimulate glutamine hydrolysis and CTP synthesis to the same extent, suggesting that the major function of GTP binding is to activate the chemical steps of glutamine hydrolysis. An alternative mechanism for the action of GTP on L. lactis CTP synthase is suggested. Here the binding of GTP to the allosteric site promotes coordination of the phosphorylation of UTP and hydrolysis of glutamine for optimal efficiency in CTP synthesis rather than just acting to increase the rate of glutamine hydrolysis itself.  相似文献   

8.
The replicase activity of rotavirus open cores has been used to study the synthesis of (-) strand RNA from viral (+) strand RNA in a cell-free replication system. The last 7 nt of the (+) strand RNA, 5'-UGUGACC-3', are highly conserved and are necessary for efficient (-) strand synthesis in vitro. Characterization of the cell-free replication system revealed that the addition of NaCl inhibited (-) strand synthesis. By preincubating open cores with (+) strand RNA and ATP, CTP, and GTP prior to the addition of NaCl and UTP, the salt-sensitive step was overcome. Thus, (-) strand initiation, but not elongation, was a salt-sensitive process in the cell-free system. Further analysis of the requirements for initiation showed that preincubating open cores and the (+) strand RNA with GTP or UTP, but not with ATP or CTP, allowed (-) strand synthesis to occur in the presence of NaCl. Mutagenesis suggested that in the presence of GTP, (-) strand synthesis initiated at the 3'-terminal C residue of the (+) strand template, whereas in the absence of GTP, an aberrant initiation event occurred at the third residue upstream from the 3' end of the (+) strand RNA. During preincubation with GTP, formation of the dinucleotides pGpG and ppGpG was detected; however, no such products were made during preincubation with ATP, CTP, or UTP. Replication assays showed that pGpG, but not GpG, pApG, or ApG, served as a specific primer for (-) strand synthesis and that the synthesis of pGpG may occur by a template-independent process. From these data, we conclude that initiation of rotavirus (-) strand synthesis involves the formation of a ternary complex consisting of the viral RNA-dependent RNA polymerase, viral (+) strand RNA, and possibly a 5'-phosphorylated dinucleotide, that is, pGpG or ppGpG.  相似文献   

9.
10.
1. The 105000g supernatant fraction of rat liver catalyses the incorporation of ribonucleotides from ribonucleoside triphosphates into polyribonucleotide material. The reaction requires Mg2+ ions and is enhanced by the addition of an ATP-generating system and RNA, ATP, UTP and CTP but not GTP are utilized in this reaction. In the case of UTP, the product is predominantly a homopolymer containing 2–3 uridine residues, and there is evidence that these may be added to the 3′-hydroxyl ends of RNA or oligoribonucleotide primers. 2. The microsome fraction of rat liver incorporates ribonucleotides from ATP, GTP, CTP and UTP into polyribonucleotide material. This reaction requires Mg2+ ions and is enhanced slightly by the addition of an ATP-generating system, and by RNA but not DNA. Supplementation of the reaction mixture with the three complementary ribonucleoside 5′-triphosphates greatly increases the utilization of a single labelled ribonucleoside 5′-triphosphate. The optimum pH is in the range 7·0–8·5, and the reaction is strongly inhibited by inorganic pyrophosphate and to a much smaller degree by inorganic orthophosphate. It is not inhibited by actinomycin D or by deoxyribonuclease. In experiments with [32P]UTP in the absence of ATP, GTP and CTP, 80–90% of 32P was recovered in UMP-2′ or -3′ after alkaline hydrolysis of the reaction product. When the reaction mixture was supplemented with ATP, GTP and CTP, however, about 40% of the 32P was recovered in nucleotides other than UMP-2′ or -3′. Although the reactions seem to lead predominantly to the synthesis of homopolymers, the possibility of some formation of some heteropolymer is not completely excluded.  相似文献   

11.
Glutamate dehydrogenase (L-glutamate: NAD+ oxidoreductase, EC 1.4.1.2) was purified from Brassica napus leaves. Isoenzyme 1 (GDH1), with the lowest, and isoenzyme 7 (GDH7) with the highest electrophoretic mobility were characterized. The native GDH was estimated to have a molecular mass of about 239 kDa and consisted of six identical 41.4-kDa subunits for GDH1 and 42.4-kDa subunits for GDH7. The pH optima of both isoenzymes in amination and deamination reactions were 9.0 and 9.5, respectively. At optimum pH, the Km values for ammonium, 2-oxoglutarate, NADH, NAD and glutamate did not differ between the two isoenzymes. Addition of 10 mM EGTA inhibited the amination activity of GDH1, but that of GDH7 remained at about 30 %. Cellular fractionation experiments showed that both GDH1 and GDH7 localized in mitochondria with a loose association with the mitochondrial membrane.  相似文献   

12.
13.
The synthesis of polyribonucleotides by cytoplasmic enzymes   总被引:8,自引:4,他引:4       下载免费PDF全文
1. The possibility that the cell cytoplasm contains enzymes catalysing the biosynthesis of RNA was investigated in fractions obtained by differential centrifugation of homogenates of Landschutz ascites-tumour cells. 2. The microsomal fraction was shown to be most active in incorporating UMP residues from [alpha-(32)P]UTP into polyribonucleotide material. 3. The same fraction also incorporated [(3)H]CTP, [(3)H]ATP and [(3)H]GTP separately and independently of the presence of complementary ribonucleoside 5'-triphosphates. 4. The reaction was promoted by the addition of RNA and showed an absolute requirement for Mg(2+) ions. 5. Analysis of alkaline hydrolysates of the reaction products after the incorporation of [alpha-(32)P]UTP showed that most of the radioactivity was recovered in (2',3')-UMP residues irrespective of whether CTP, ATP and GTP were present in the reaction mixture. 6. Extraction of RNA from the reaction mixtures after the incorporation of [(3)H]ATP, [(3)H]GTP or [(3)H]CTP and analysis by sucrosedensity-gradient centrifugation showed no labelling of the ribosomal RNA. Radioactive material appeared between the 4s region and the meniscus of the sucrose gradient. In agreement with this observation, determinations of the chain length of the product showed that only short sequences of polynucleotides were synthesized. It is concluded that only homopolyribonucleotide synthesis is catalysed by the microsomal fractions and that there is little or no synthesis of RNA-like heteropolymers.  相似文献   

14.
To gain a more detailed insight into the metabolism of 2', 2'-difluoro-2'-deoxycytidine (dFdC, gemcitabine, Gemzar) and its effect on normal ribonucleotide (NTP) metabolism in relation to sensitivity, we studied the accumulation of dFdCTP and the changes in NTP pools after dFdC exposure in a panel of 21 solid tumour and leukaemia cell lines. Both sensitivity to dFdC and accumulation of dFdCTP were clearly cell line-dependent: in this panel of cell lines, the head and neck cancer (HNSCC) cell line 22B appeared to be the most sensitive, whereas the small cell lung cancer (SCLC) cell lines were the least sensitive to dFdC. The human leukaemia cell line CCRF-CEM accumulated the highest concentration of dFdCTP, whereas the non-SCLC cell lines accumulated the least. Not only the amount of dFdCTP accumulation was clearly related to the sensitivity for dFdC (R=-0.61), but also the intrinsic CTP/UTP ratio (R=0.97). NTP pools were affected considerably by dFdC treatment: in seven cell lines dFdC resulted in a 1.7-fold depletion of CTP pools, in two cell lines CTP pools were unaffected, but in 12 cell lines CTP pools increased about 2-fold. Furthermore, a 1.6-1.9-fold rise in ATP, UTP and GTP pools was shown in 20, 19 and 20 out of 21 cell lines, respectively. Only the UTP levels after treatment with dFdC were clearly related to the amount of dFdCTP accumulating in the cell (R=0.64 (P<0.01)), but not to the sensitivity to dFdC treatment. In conclusion, we demonstrate that besides the accumulation of dFdCTP, the CTP/UTP ratio was clearly related to the sensitivity to dFdC. Furthermore, the UTP levels and the CTP/UTP ratio after treatment were related to dFdCTP accumulation. Therefore, both the CTP and UTP pools appear to play an important role in the sensitivity to dFdC.  相似文献   

15.
RNA editing in flowering plant mitochondria is investigated by in vitro assays. These cauliflower mitochondrial lysates require added NTP or dNTP. We have now resolved the reason for this requirement to be the inhibition of the RNA binding activity of the glutamate dehydrogenases (GDH). Both GDH1 and GDH2 were identified in RNA-protein cross-links. The inhibition of in vitro RNA editing by GDH is confirmed by the ability of the GDH-specific herbicide phosphinothricin to substitute for NTP. NADH and NADPH, but not NAD or NADP, can also replace NTP, suggesting that the NAD(P)H-binding-pocket configuration of the GDH contacts the RNA. RNA editing in plant mitochondria is thus intrinsically independent of added energy in the form of NTP.  相似文献   

16.
Cytidine 5'-triphosphate (CTP) synthase catalyzes the ATP-dependent formation of CTP from UTP using either ammonia or l-glutamine as the source of nitrogen. When glutamine is the substrate, GTP is required as a positive allosteric effector to promote catalysis of glutamine hydrolysis. We show that at concentrations exceeding approximately 0.15 mM, GTP actually behaves as a negative allosteric effector of E. coli CTP synthase, inhibiting glutamine-dependent CTP formation. In addition, GTP inhibits NH(3)-dependent CTP formation in a concentration-dependent manner. However, GTP does not inhibit the enzyme's intrinsic glutaminase activity. Although the activation of CTP synthase by GTP does not display cooperative behavior, inhibition of both CTP synthase-catalyzed ammonia- and glutamine-dependent CTP synthesis by GTP do exhibit positive cooperativity. These results suggest that GTP binding affects CTP synthase catalysis in two ways: it activates enzyme-catalyzed glutamine hydrolysis and it inhibits the utilization of NH(3) as a substrate by the synthase domain.  相似文献   

17.
DNA ligase from the hyperthermophilic marine archaeon Pyrococcus furiosus (Pfu DNA ligase) synthesizes adenosine 5'-tetraphosphate (p4A) and dinucleoside polyphosphates by displacement of the adenosine 5'-monophosphate (AMP) from the Pfu DNA ligase-AMP (E-AMP) complex with tripolyphosphate (P3), nucleoside triphosphates (NTP), or nucleoside diphosphates (NDP). The experiments were performed in the presence of 1-2 microM [alpha-32P]ATP and millimolar concentrations of NTP or NDP. Relative rates of synthesis (%) of the following adenosine(5')tetraphospho(5')nucleosides (Ap4N) were observed: Ap4guanosine (Ap4G) (from GTP, 100); Ap4deoxythymidine (Ap4dT) (from dTTP, 95); Ap4xanthosine (Ap4X) (from XTP, 94); Ap4deoxycytidine (Ap4dC) (from dCTP, 64); Ap4cytidine (Ap4C) (from CTP, 60); Ap4deoxyguanosine (Ap4dG) (from dGTP, 58); Ap4uridine (Ap4U) (from UTP, <3). The relative rate of synthesis (%) of adenosine(5')triphospho(5')nucleosides (Ap3N) were: Ap3guanosine (Ap3G) (from GDP, 100); Ap3xanthosine (Ap3X) (from XDP, 110); Ap3cytidine (Ap3C) (from CDP, 42); Ap3adenosine (Ap3A) (from ADP, <1). In general, the rate of synthesis of Ap4N was double that of the corresponding Ap3N. The enzyme presented optimum activity at a pH value of 7.2-7.5, in the presence of 4 mM Mg2+, and at 70 degrees C. The apparent Km values for ATP and GTP in the synthesis of Ap4G were about 0.001 and 0.4mM, respectively, lower values than those described for other DNA or RNA ligases. Pfu DNA ligase is used in the ligase chain reaction (LCR) and some of the reactions here reported [in particular the synthesis of Ap4adenosine (Ap4A)] could take place during the course of that reaction.  相似文献   

18.
The concentration-dependent association-dissociation tendency of purified bovine liver and rat liver glutamic dehydrogenase (GDH) has been demonstrated by high-performance liquid chromatographic gel filtration. In the concentration range of 100 to 1.0 micrograms bovine GDH/ml molecular species ranged from dimer and unimer to subunimeric forms. The dissociation process of the unimeric hexapeptide, consisting of six polypeptide chains, to the subunimeric tripeptide, consisting of three polypeptide chains, was irreversible without added ionic support, but reversible with added ionic support. In dilute Tris-HCl bovine liver GDH was dispersed to subunimeric sizes. Increasing the ionic strength in 20 mM phosphate as the mobile phase increased dissociation to a subunimeric tripeptide while sustaining as much as 80% of its activity. Activity of a eluting subunimer was verified by the inclusion of reaction substrates (NAD and glutamute) in the mobile phase and quantification of reaction products (NADH) in chromatograms. Gel filtration of GDH in the presence of GTP with NADH rendered a subunimeric tripeptide, largely independent of ionic strength or GDH concentration. Rat liver GDH, differing from bovine liver GDH, was dissociated by gel filtration to an active tripeptide independent of ionic or buffer conditions.  相似文献   

19.
Some properties of unprimed poly(A)-poly(U) synthesis by DNA-dependent RNA polymerase from Caulobacter crescentus were examined. The reaction required ATP and UTP as substrates and manganese as a divalent cation. Rifampicin completely inhibited the reaction at a concentration of 1 micron/ml, and the enzyme catalyzed the polymer synthesis well regardless of the presence of GTP, CTP or both. The chain length of the poly(A)-poly(U) synthesized was about one hundred base pairs, as estimated from a sedimentation velocity and the molar ratio of [3H]AMP to [gamma-32P]ATP incorporated into the poly(A)-poly(U). The reaction was dependent on the square of the enzyme concentration and the enzyme dimers formed complexes with poly(A)-poly(U) during the reaction.  相似文献   

20.
Simultaneous peptide and oligonucleotide formation was observed in reaction mixtures of amino acid, nucleoside triphosphate, imidazole, and MgCl2. At 70 degrees C in solutions that were evaporated to dryness the formation of peptide for phe and pro was greatest with CTP relative to ATP, GTP, and UTP. Lysine exhibited a preference for GTP and glycine for UTP. At ambient temperature insolution at pH 7.8, CTP was preferred by glycine, but at pH 8.7 UTP was preferred. The glycine nucleotide phosphoramidates were also detected and characterized in reactions at 40 degrees C. The glycine-reaction preference for CTP at pH 7.8 and UTP at 8.7 suggested that the basicity of the nucleoside triphosphate was involved in increasing the peptide yield. CTP near neutrality is the most basic nucleoside triphosphate and the basic anionic form UTP could facilitate peptide formation at pH 8.7. These data, together with information on the complexing of poly(C) by GTP, led to the experimentally approchable hypothesis that GTP, by forming a basic triplex between the cytosine residues adjacent to the peptidyl adenosine and aminoacyl adenosine at the termini of two proto-tRNAs, would promote peptide bond synthesis between the aminoacyl residue and peptidyl residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号