首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ad2++ HEY and Ad2++ LEY are two adenovirus 2(Ad2)-simian virus 40 (SV40) hybrids distinguished by differences in the efficiency with which they produce SV40 progeny in lytically infected African green monkey kidney cells. These virus populations are composed of nonhybrid Ad2 and hybrid virions, the majority of which contain more than 1 unit of SV40 DNA. The Ad2++ HEY and LEY populations also differ in their ability to induce SV40 transplantation immunity in rodents. Only Ad2++ HEY induces SV40 transplantation immunity in hamsters, whereas both viruses induce significant SV40 transplantation immunity in adult BALB/c mice.  相似文献   

2.
Two defective adenovirus-simian virus 40 hybrids which contain the entire SV40 genome (Ad2++HEY and Ad2++LEY)2 have been isolated. Upon infection of cells permissive for SV40 both hybrids give rise to infectious SV40 virions, but with markedly different efficiencies. In the case of Ad2++HEY nearly all cells infected with a hybrid particle yield SV40 progeny, whereas in the case of Ad2++LEY infectious SV40 is produced in only about one in 104 cells infected with hybrid particles. The structures of the DNA molecules in the Ad2++HEY and Ad2++LEY populations were examined using electron microscope heteroduplex methods. Both populations were found to be heterogeneous. Ad2++HEY contained three hybrids (HEY-I, HEY-II, and HEY-III) whose genomes differed only in their content of SV40 DNA (0.45 ± 0.02, 1.43 ± 0.04, and 2.39 ± 0.09 SV40 genomes, respectively). Ad2++LEY contained two hybrids (LEY-I and LEY-II), which also differed only in their content of SV40 DNA (0.03 ± 0.01 and 1.05 ± 0.01 SV40 genomes, respectively). In those hybrids which contained more than one complete SV40 genome (HEY-II, HEY-III, LEY-II) the excess SV40 DNA was shown to be organized as a tandem repetition. These data suggest that the various hybrid genomes within each population are interconvertible by recombination events, which insert or excise an SV40 genome. It is proposed that HEY-II and HEY-III yield infectious SV40 with higher efficiency than LEY-II because their SV40 DNA segments contain longer tandem repetitions; thus, the probability of an intramolecular recombination event which results in excision of an SV40 genome is greater.  相似文献   

3.
L E Ling  M M Manos    Y Gluzman 《Nucleic acids research》1982,10(24):8099-8112
The nucleotide sequences of six Ad2-SV40 junctions from three Ad2-SV40 hybrid viruses (Ad2++HEY, Ad2++LEY and Ad2+D1) were determined. Comparison of parental adenovirus 2 and SV40 DNA sequences with the sequence at the Ad2-SV40 junctions revealed that 5 out of 6 junctions are abrupt transitions from Ad2 to SV40 DNA, and in one case (Ad2++LEY, right junction) there is an additional nucleotide at the junction, which cannot be ascribed to either DNA. Ad2++HEY and Ad2+D1 right junctions are identical and Ad2++LEY and Ad2+ND4 left junctions are identical, a result that strongly suggests these Ad2-SV40 hybrids arose by recombination between the linear Ad2 DNA and circular SV40 DNA, followed by recombination between Ad2 DNA and SV40 DNA present in the Ad2-SV40 hybrid DNA. The unambiguous transition of Ad2 DNA into SV40 DNA at the junction sites is an example of recombination events which have apparently occurred without any homology at the recombination site.  相似文献   

4.
Four new nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated. Although these viruses (designated Ad2(+)ND(2), Ad2(+)ND(3), Ad2(+)ND(4), and Ad2(+)ND(5)) were clonal derivatives of the same Ad2-SV40 hybrid population, they differ significantly from each other and from the previously isolated nondefective hybrid, Ad2(+)ND(1), in their biological properties or in the amount of SV40-specific RNA induced during lytic infection.Like Ad2(+)ND(1), Ad2(+)ND(2), and Ad2(+)ND(4) pass serially in both human embryonic kidney (HEK) and primary African green monkey kidney cells. In contrast, Ad2(+)ND(3) and Ad2(+)ND(5) pass serially only in HEK cells. Ad2(+)ND(2) is like Ad2(+)ND(1) in that it induces the SV40 U antigen, but not SV40 T antigen; however, in contrast to the perinuclear SV40 antigen induced by Ad2(+)ND(1), the SV40 antigen induced by Ad2(+)ND(2) is located peripherally in the cytoplasm as well as in the perinuclear region of infected cells. Ad2(+)ND(4) induces both the SV40 T and U antigens. Ad2(+)ND(3) and Ad2(+)ND(5) do not induce serologically detectable SV40 antigens and are distinguished from each other on the basis of the relative quantities of SV40-specific RNA which they induce. The induction of different SV40-specific functions suggests the incorporation of different segments of SV40 DNA within the genomes of the respective hybrid viruses.  相似文献   

5.
The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), does not induce heat-labile SV40 T antigen but does induce a previously uncharacterized heat-stable SV40 antigen-the SV40 "U" antigen. This antigen is detectable by both immunofluorescence and complement fixation by using sera from hamsters with SV40 tumors. Sera from hamsters bearing SV40 tumors can be divided into two groups, those that react with both SV40 T and U antigens (T(+)U(+) sera) and those that react with SV40 T antigen only (T(+)U(-) sera). SV40 U-specific sera from monkeys immunized with Ad2(+)ND(1)-infected cells do not react with SV40 T antigen by immunofluorescence but do react with an antigen in the nucleus of SV40-transformed cells and with an early, cytosine arabinoside-resistant antigen present in the nucleus of SV40-infected cells. A heat-stable SV40 antigen detectable by complement fixation with T(+)U(+) hamster sera is present in extracts of SV40-induced hamster tumors and in cell packs of SV40-infected or -transformed cells. SV40 U-antigen synthesis by Ad2(+)ND(1) virus is partially sensitive to inhibitors of deoxyribonucleic acid synthesis, whereas U-antigen synthesis by SV40 virus is an early cytosine arabinoside-resistant event. As an early SV40 antigen differing from SV40 T antigen, U antigen may play a role in malignant transformation mediated by SV40.  相似文献   

6.
Five nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated and found to contain segments of SV40 DNA covalently linked to Ad2 DNA. The quantity of SV40 DNA present is a stable characteristic of each hybrid virus, and varies from less than 5% (in Ad2(+)ND(3)) to more than 30% (in Ad2(+)ND(4)) of the SV40 genome. We have characterized the SV40 portions of these hybrids by relating the SV40-specific RNA sequences transcribed in cells infected with each hybrid virus to those transcribed in cells infected with each of the other hybrid viruses and with SV40 itself. RNA-DNA hybridization-competition experiments indicate that the number of unique SV40 RNA sequences transcribed in infected cells is proportional to the size of the SV40 DNA segment contained within each hybrid and, in the case of the three hybrids which induce detectable SV40-specific antigens, to the number of SV40 antigens induced. Furthermore, the SV40-specific RNA sequences transcribed from any one of the hybrids are completely represented in the RNA transcribed from all other hybrids with longer SV40 segments. Thus, the SV40 DNA regions in the five hybrid viruses appear to contain some nucleotide sequences in common. The SV40-specific RNA transcribed from Ad2(+)ND(4), the hybrid containing the largest SV40 segment, is qualitatively similar to the SV40-specific RNA transcribed early (i.e., prior to viral DNA replication) in SV40 lytic infection. Thus, it appears that no significant amount of late SV40 DNA is transcribed during infection by any of the five nondefective Ad2-SV40 hybrid viruses.  相似文献   

7.
Syrian hamster embryo cells transformed by adenovirus type 2 (Ad2) or simian virus 40 (SV40) differ markedly in morphology, tumorigenicity, and susceptibility to in vitro lysis by nonspecific cytotoxic cells. Hybrid cells formed by fusing Ad2- and SV40-transformed Syrian hamster embryo cells may express only SV40 T antigens or both SV40 and Ad2 T antigens. Hybrids that express only SV40 T antigens are indistinguishable from the nonhybrid SV40-transformed phenotype, whereas hybrid cells that express T antigens from both viruses closely resemble the nonhybrid parental Ad2-transformed phenotype. Because these hybrid cells have been useful in the study of neoplastic transformation, we determined the amount of viral antigens that they accumulate in an attempt to correlate the level of expression of the transforming viral genes with some of their phenotypic properties. Hybrid cells that expressed proteins from both viruses showed reduced levels of SV40 T antigens compared with those of hybrid cells that did not express Ad2 T antigens. We also found that the production of several cellular proteins that influence cytomorphology was inhibited in hybrid and nonhybrid cells that expressed Ad2 T antigens, and the repression of these cellular proteins correlated with a change in cytomorphology from fibroblastic to spherical. Finally, we showed that the susceptibility of our hybrid cells to in vitro lysis by natural killer cells and activated macrophages, two putative host-effector cells involved in defense against neoplasia, correlated closely with the level of expression of a 58,000-dalton Ad2 protein. The results reported here, together with the results of previous studies, indicate that the oncogenic potential of hybrid cells that express both Ad2 and SV40 antigens is extremely sensitive to Ad2 expression, whereas other phenotypic properties depend on Ad2 expression in a dose-dependent manner.  相似文献   

8.
The genomes of the two nondefective adenovirus 2/simian virus 40 (Ad2/SV 40) hybrid viruses, nondefective Ad2/SV 40 hybrid virus 1 (Ad2+ND1) and nondefective hybrid virus 3 (Ad2+ND3), WERE FORMED BY A DELETION OF ABOUT 5% OF Ad2 DNA and insertion of part of the SV40 genome. We have compared the cytoplasmic RNA synthesized during both the early and late stages of lytic infection of human cells by these hybrid viruses to that expressed in Ad2-infected and SV40-infected cells. Separated strands of the six fragments of 32P-labeled Ad2 DNA produced by cleavage with the restriction endonuclease EcoRI (isolated from Escherichia coli) and the four fragments of 32P-labeled SV40 DNA produced by cleavage with both a restriction nuclease isolated from Haemophilus parainfluenzae, Hpa1, and EcoRI were prepared by electrophoresis of denatured DNA in agarose gels. The fraction of each fragment strand expressed as cytoplasmic RNA was determined by annealing fragmented 32P-labeled strands to an excess of cellular RNA extracted from infected cells. The segment of Ad2 DNA deleted from both hybrid virus genomes is transcribed into cytoplasmic mRNA during the early phase of Ad2 infection. Hence, we suggest that Ad2 codes for at least one "early" gene product which is nonessential for virus growth in cell culture. In both early Ad2+ND1 and Ad2+ND3-infected cells, 1,000 bases of Ad2 DNA adjacent to the integrated SV40 sequences are expressed as cytoplasmic RNA but are not similarly expressed in early Ad2-infected cells. The 3' termini of this early hybrid virus RNA maps in the vicinity of 0.18 on the conventional SV40 map and probably terminates at the same position as early lytic SV40 cytoplasmic RNA. Therefore, the base sequence in this region of SV40 DNA specifies the 3' termini of early messenger RNA present in both hybrid virus and SV40-infected cells.  相似文献   

9.
The deoxyribonucleic acid (DNA) from the adenovirus-encapsidated particles of the adenovirus type 2 (Ad2)-simian virus 40 (SV40) hybrid population plaque variant (Ad2(++) HEY), known to yield SV40 virus with high efficiency, was studied by equilibrium density centrifugation followed by ribonucleic acid-DNA hybridization employing virus-specific complementary ribonucleic acids synthesized in vitro. These techniques establish linkage between the Ad2 and SV40 components in the adenovirus-encapsidated particles of this population. The linkage is alkali-resistant and presumably covalent; thus, the Ad2 DNA and SV40 DNA are present in a hybrid molecule. Velocity centrifugation studies in alkaline sucrose gradients eliminated the possibility that supercoiled circular SV40 DNA is present in the adenovirus capsids. The DNA obtained from the adenovirus-encapsidated particles of the Ad2(++) HEY population appears to consist of nonhybrid Ad2 DNA and Ad2-SV40 hybrid DNA molecules.  相似文献   

10.
Mapping of Simian Virus 40 Early Functions on the Viral Chromosome   总被引:40,自引:35,他引:5       下载免费PDF全文
The simian virus 40 (SV40) DNA segment in the nondefective adenovirus 2-SV40 hybrid, Ad2(+)ND(4), is colinear with the segment between 0.11 and 0.59 SV40 fractional length from the site at which the R(1) restriction endonuclease cleaves SV40 DNA. This specifies the region of the SV40 DNA molecule which induces the early SV40 antigens: U antigen, tumor specific transplantation antigen, and T antigen. A variant of Ad2(+)ND(4), called Ad2(+)ND(4del), was found which has a deletion of the DNA segment between 0.50 and 0.57 SV40 fractional length from the R(1) endonuclease cleavage point.  相似文献   

11.
Ad2(+)ND(1), a nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, has been previously shown to contain a small segment of the SV40 genome covalently linked to Ad2 deoxyribonucleic acid (DNA). The SV40 portion of this hybrid virus has been characterized by relating the SV40-specific ribonucleic acid (RNA) sequences transcribed from the Ad2(+)ND(1) DNA to those transcribed from the DNA of SV40 itself. RNA-DNA hybridization-competition studies indicate that the SV40 component of Ad2(+)ND(1) consists of some, but not all, of that part of the SV40 genome which is transcribed early, i.e., prior to viral DNA replication, in SV40 lytic infection.  相似文献   

12.
13.
A series of viable recombinants between adenovirus 2 (Ad2) and simian virus 40 (SV40) (nondefective Ad2-SV40 hybrids) have been isolated. The members of this series (designated Ad2(+)ND(1) through Ad2(+)ND(5)) differ from one another in the early SV40-specific antigens and the SV40-specific RNA species which they induce in infected cells. They also contain different amounts of SV40 DNA as shown by RNA-DNA hybridization techniques. We have examined the structure of the DNA molecules from these hybrids, using electron microscope heteroduplex mapping techniques. Each hybrid was found to contain a single segment of SV40 DNA of characteristic size covalently inserted at a unique location in the adenovirus 2 DNA molecule. The SV40 segments of the various hybrids formed an overlapping series with a common end point. When the results of the electron microscopic study were combined with data on antigen induction, it was found that a self-consistent map could be constructed which related specific regions of the SV40 genome to the induction of specific antigens. The order of these early SV40 antigen inducing regions in the SV40 DNA segments contained in the nondefective hybrids is: U antigen, tumor specific transplantation antigen, and T antigen with the U antigen region being nearest the common end point.  相似文献   

14.
Simian virus 40 (SV40)-transformed cells and cells infected by the nondefective adenovirus 2(Ad2)-SV40 hybrid viruses Ad2+ND1 and Ad2+ND2 were analyzed for SV40 T- and U-antigens, respectively, using individual hamster SV40 tumor sera or serum for which U-antibodies were removd by absorption. These studies showed that (i) T- and U-antigens can be defined by separate classes of antigenic determinants and (ii) the U-antigenic determinants in SV40-transformed cells and in hybrid virus-infected cells are similar. The apparent discrepancy in the subcellular location of U-antigen in SV40-transformed cells (nuclear location) and in hybrid virus-infected cells (perinuclear location) as determined by immunofluorescence staining of methanol/acetone-fixed cells could be resolved by treating hybrid virus-infected cells with a hypotonic KCl solution before fixation. Upon this treatment hybrid virus-infected cells also showed nuclear U-antigen staining. The possibility of an association of T- and U-antigens with different nuclear subfractions in SV40-transformed cells was investigated. Detergent-cleaned nuclei of SV40-transformed cells were fractionated into nuclear matrices and a DNase-treated, high-salt nuclear extract. Analysis of the nuclear matrices by immunofluorescence microscopy with T+U+ and T+U- hamster SV40 tumor serum revealed that U-antigen remained associated with the nuclear matrices, whereas T-antigen could not be detected in this nuclear subfraction. T-antigen, however, could be immunoprecipitated from nuclear extracts of the SV40-transformed cells.  相似文献   

15.
Cell surface T antigen, detected by a radioimmune assay that uses 125I-labeled Staphylococcus aureus protein A and antibodies against either authentic T antigen or D2 hybrid T antigen, was found in simian virus 40-transformed and -infected cells and in cells infected with an adenovirus-simian virus 40 hybrid, Ad2+D2. In simian virus 40 lytic infection, the surface T antigen appeared at the same time as the nuclear T antigen.  相似文献   

16.
17.
18.
Ad2(+)ND(1), a nondefective hybrid virus containing a segment of the early region of simian virus 40 (SV40) DNA covalently inserted into the human adenovirus 2 genome, enhances the growth of human adenoviruses in simian cells and induces the SV40 U antigen. This hybrid previously has been shown to code for a 28,000 (28K) molecular weight protein not present in wild-type adenovirus 2-infected cells. By radioimmunoprecipitation using sera from hamsters bearing SV40-specific tumors, we have established that the Ad2(+)ND(1)-induced 28K protein is SV40-specific. This Ad2(+)ND(1)-induced protein is synthesized as a 30K molecular weight precursor, which is detectable only when infected cells are pulse-labeled in the presence of the protease inhibitor tosylamino phenylethyl chloromethyl ketone. Upon fractionation of labeled cell extracts, about 80% of the 28K protein is found in the plasma membrane fraction, whereas the remaining 20% is associated with the outer nuclear membrane. This protein is not detectable either in the nucleus or in the cytoplasm. Blockage of proteolytic cleavage by tosylamino phenylethyl chloromethyl ketone did not alter the topographic distribution of this SV40-specific protein, although the amount of the precursor protein in the outer nuclear membrane increased fourfold while that in the plasma membrane was proportionately decreased. This result suggests that the 28K protein is transferred from the outer nuclear membrane to the plasma membrane after posttranslational cleavage of the 30K precursor polypeptide. These data offer further support to the proposal that the 28K protein contains the determinants for SV40 U antigen and is responsible for SV40 enhancement of adenovirus growth in simian cells.  相似文献   

19.
20.
Human adenoviruses fail to multiply effectively in monkey cells. The block to the replication of these viruses can be overcome by coinfection with simian virus 40 (SV40) or when part of the SV40 genome is integrated into and expressed as part of the adenovirus type 2 (Ad2) genome, as occurs in several Ad2+SV40 hybrid viruses, such as Ad2+ND1, Ad2+ND2, and Ad2+ND4. The SV40 helper-defective Ad2+SV40 hybrid viruses Ad2+ND5 and Ad2+ND4del were analyzed to determine why they are unable to grow efficiently in monkey cells even though they contain the appropriate SV40 genetic information. Characterization of the Ad2+ND5-SV40-specific 42,000-molecular-weight (42K) protein revealed that this protein is closely related, but not identical, to the SV40-specific 42K protein of the SV40 helper-competent Ad2+ND2 hybrid virus. Although the minor differences between these proteins may be sufficient to account for the poor growth of Ad2+ND5 in monkey cells, the most striking difference between helper-competent Ad2+ND2 and helper-defective Ad2+ND5 is in the production of the SV40-specific protein after infection of monkey cells. Whereas synthesis of the SV40-specific proteins of Ad2+ND2 is very similar in human and in monkey cells, production of the 42K protein of Ad2+ND5 is dramatically reduced in monkey cells compared with human cells. Similarly, the synthesis of the SV40-specific proteins of Ad2+ND4del is markedly reduced in monkey cells. Thus, it is likely that both Ad2+ND5 and Ad2+ND4del are helper defective because of a block in the production of their SV40-specific proteins rather than because their SV40-specific proteins are nonfunctional. This block, like the block to adenovirus fiber synthesis, is overcome by coinfection with SV40, with helper-competent hybrid viruses, or with host range mutants of adenoviruses. This suggests that the synthesis of fiber and the synthesis of SV40-specific proteins are similarly regulated in Ad2+SV40 hybrid viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号