首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neurite development requires rearrangement of cytoskeletal elements, which are mechanically and functionally integrated with each other. Although the process of how an extracellular signal induces rearrangement of a single element has been closely examined, the mechanisms by which the signal regulates cytoskeletal integration during cell shape changes are poorly understood. We previously reported that lysophosphatidic acid (LPA) induces actin polymerization-dependent microtubule (MT) rearrangement, leading to neurite retraction in cultured neurons. Here we examined whether the crosslinker proteins were involved in LPA-induced neurite retraction using immortalized mouse neuroblast TR cells. When the MT-binding domains of MACF (MT actin-crosslinking factor) were exogenously expressed in TR cells, MTs were found to be stabilized and become resistant to exposure to LPA. On the other hand, expression of MT-associated protein 2c showed no effect on LPA-induced neurite retraction. These findings suggest that MACF is involved in actin-dependent MT rearrangement during LPA-induced neurite retraction.  相似文献   

2.
Recent studies suggest that Bcl-2 may play an active role in neuronal differentiation. Here, we showed a marked neurite extension in MN9D dopaminergic neuronal cells overexpressing Bcl-2 (MN9D/Bcl-2) or Bcl-X(L) (MN9D/Bcl-X(L)). We found a specific increase in phosphorylation of c-Jun N-terminal kinase (JNK) accompanied by neurite extension in MN9D/Bcl-2 but not in MN9D/Bcl-X(L) cells. Consequently, neurite extension in MN9D/Bcl-2 but not in MN9D/Bcl-X(L) cells was suppressed by treatment with SP600125, a specific inhibitor of JNK. Inhibition of other mitogen-activated protein kinases-including p38 and extracellular signal-regulated kinase-did not affect Bcl-2-mediated neurite extension in MN9D cells. While the expression levels of such protein markers of maturation as SNAP-25, phosphorylated NF-H, and neuron-specific enolase were increased in MN9D/Bcl-2 cells, only upregulation of SNAP-25 was inhibited after treatment with SP600125. Thus, the JNK signal activated by Bcl-2 seems to play an important role during morphological and certain biochemical differentiation in cultured dopaminergic neurons.  相似文献   

3.
Laminin, neural cell adhesion molecule (N-CAM) and the neurotrophins, ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) play important roles in the formation and maintenance of the axons and dendrites of vertebrate neurons. The conventional explanation of the action of N-CAM and laminin has been that they provide suitable substrata on which the cells can adhere, spread and extend. We show by applying these molecules immobilised to small beads (tethered) that they activate adhesion and cell extension on substrata where no special adhesion molecules have been placed. This activation occurs even when the beads are attached to the side of the cell not in contact with the substratum, implying that the signal is transduced to activate parts of the cell remote from the vicinity of the bead.  相似文献   

4.
Optically anisotropic zones occur spontaneously in solutions of microtubules. These tactoids, in which microtubules are arranged in parallel arrays, can be visualized by their birefringence. With microtubules assembled in the presence of associated proteins (MAPs), birefringence appears immediately after nucleation of polymerization, even at relatively low protein concentrations. It is not dependent on whether the assembly is initiated by temperature jump or by isothermal addition of GTP. With pure tubulin, assembled in buffers containing 25% glycerol or 4% dimethylsulfoxide and/or taxol, birefringence appears within a few hours, but it can be speeded up by gentle agitation. With tubulin assembled in the presence of MAPs, spontaneous orientation occurs simultaneously with polymerization. This may be due to the existence of more pronounced repulsive forces between microtubules when they are covered with MAPs. A simple calculation of the covolume, suggests that tactoid formation is expected for microtubules of lengths of 5 to 10 m at protein concentrations in the range 1 to 3 mg/ml (as observed), and that repulsive forces will promote tactoid formation at even lower protein concentrations. Offprint requests to: Y. Engelborghs  相似文献   

5.
Using RNA interference (RNAi) to suppress gene expression, we attempted to identify tyrosine kinases involved in the extension of neurites from SH-SY5Y cells. A comprehensive analysis of gene “knock-down” profiles with small interfering RNAs (siRNAs) revealed candidate proteins that might control neurite extension. Phenotype-based screening of differentiating SH-SY5Y cells following retinoic acid (RA) stimulation indicated that twinfilin-2 is a protein that is involved in neurite outgrowth, as confirmed by morphological analysis of twinfilin-2-overexpressing cells.  相似文献   

6.
Neurons extend neurites from the cell body before formation of the polarized processes of an axon and dendrites. Neurite outgrowth involves remodeling of the cytoskeletal components, which are initially regulated by small GTPases of the Rho family. Here we show that c-Jun N-terminal kinase (JNK), which is controlled by Rho GTPases Rac1 and Cdc42, is activated following neurite extension in mouse N1E-115 neuroblastoma cells as a model. The extension is inhibited by JNK inhibitors (SP600125 and the small JNK-binding peptide) and Clostridium difficile Toxin B, the inhibitor for Rho GTPases. Additionally, paxillin, the multifunctional focal adhesion protein, is phosphorylated at Ser 178 by upregulation of the Rac1/Cdc42/JNK cascade. Conversely, transfection of the paxillin construct harboring the Ser 178-to-Ala mutation into cells inhibits neurite extension. Taken together, these results suggest the novel role of the Rac1/Cdc42/JNK signaling cascade in neurite extension and indicate that the downstream target paxillin may be one of the convergent points of various signaling pathways underlying neurite extension.  相似文献   

7.
8.
9.
10.
Microtubules define the architecture and internal organization of cells by positioning organelles and activities, as well as by supporting cell shape and mechanics. One of the major functions of microtubules is the control of polarized cell motility. In order to support the asymmetry of polarized cells, microtubules have to be organized asymmetrically themselves. Asymmetry in microtubule distribution and stability is regulated by multiple molecular factors, most of which are microtubule-associated proteins that locally control microtubule nucleation and dynamics. At the same time, the dynamic state of microtubules is key to the regulatory mechanisms by which microtubules regulate cell polarity, modulate cell adhesion and control force-production by the actin cytoskeleton. Here, we propose that even small alterations in microtubule dynamics can influence cell migration via several different microtubule-dependent pathways. We discuss regulatory factors, potential feedback mechanisms due to functional microtubule-actin crosstalk and implications for cancer cell motility.  相似文献   

11.
Fibrin plays an important role in wound healing and regeneration, and enjoys widespread use in surgery and tissue engineering. The enzymatic activity of Factor XIIIa was employed to covalently incorporate exogenous bioactive peptides within fibrin during coagulation. Fibrin gels were formed with incorporated peptides from laminin and N-cadherin alone and in combination at concentrations up to 8.2 mol peptide per mole of fibrinogen. Neurite extension in vitro was enhanced when gels were augmented with exogenous peptide, with the maximal improvement reaching 75%. When this particular fibrin derivative was evaluated in rats in the repair of the severed dorsal root within polymeric tubes, the number of regenerated axons was enhanced by 85% relative to animals treated with tubes filled with unmodified fibrin. These results demonstrate that it is possible to enhance the biological activity of fibrin by enzymatically incorporating exogenous oligopeptide domains of morphoregulatory proteins.  相似文献   

12.
The process of neurite extension after activation of the TrkA tyrosine kinase receptor by nerve growth factor (NGF) involves complex signaling pathways. Stimulation of sphingosine kinase 1 (SphK1), the enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P), is part of the functional TrkA signaling repertoire. In this paper, we report that in PC12 cells and dorsal root ganglion neurons, NGF translocates SphK1 to the plasma membrane and differentially activates the S1P receptors S1P1 and S1P2 in a SphK1-dependent manner, as determined with specific inhibitors and small interfering RNA targeted to SphK1. NGF-induced neurite extension was suppressed by down-regulation of S1P1 expression with antisense RNA. Conversely, when overexpressed in PC12 cells, transactivation of S1P1 by NGF markedly enhanced neurite extension and stimulation of the small GTPase Rac, important for the cytoskeletal changes required for neurite extension. Concomitantly, differentiation down-regulated expression of S1P2 whose activation would stimulate Rho and inhibit neurite extension. Thus, differential transactivation of S1P receptors by NGF regulates antagonistic signaling pathways that modulate neurite extension.  相似文献   

13.
Monoclonal M6 antibody binds to the surface of murine central nervous system neurons as well as to apical surfaces of epithelial cells in the choroid plexus and proximal tubules of the kidney. M6 antigen is expressed in the central nervous system as early as embryonic day 10, most strongly in the marginal zone of the neural tube, and remains detectable in adulthood. IgG or Fab fragments of M6 antibody interfere with the extension of neurites by cultured cerebellar neurons. Effects of the antibody on neurite extension are readily detectable after 24 h. No reduction of cell viability is detected during the first 3 days of antibody treatment. Cultures maintained in the presence of antibody for longer than 5 days exhibit reduced viability of neurons. This reduction in long-term viability in the presence of M6 antibody is largely avoided when 25 mM KCl is included in the culture medium. The antibody-mediated perturbation of neurite outgrowth is not blocked by the presence of elevated KCl. The unusually short and flattened appearance of neurites in these cultures suggests that the M6 antibody selectively affects neurite extension. Time-lapse cinematography of anti-M6-treated neurons reveals no apparent effect on movement of lamellipodia and filopdia of growth cones. Only the overall extension of the neurite appears to be inhibited. M6 antigen is a 35 kD glycoprotein that can be isolated from a deoxycholate- (DOC) solubilized membrane fraction from adult mouse brain.  相似文献   

14.
Fibroblast growth factor (FGF) is an important modulator of cell growth and differentiation of various cells including neuron. Cells need to adhere specifically to cellular and extracellular components of their environment to carry out diverse physiological functions. Here, we examined whether fibronectin (FN) and FGF can cooperate for neuronal adhesion and neurite outgrowth. Using recombinant FN peptide (FNIII9-10), we found that FNIII9-10-mediated adhesion promotes the effect of FGF1 on neurite outgrowth of PC12 cells, while FGF1 enhances the FNIII9-10-mediated neuronal adhesion of PC12 cells. This collaboration of FNIII9-10 and FGF1 was the result of the sustained activation of extracellular signal-regulated kinase (ERK)-type MAP kinase. Finally, the synergistic activity of FGF1 and FN was inhibited by PD98059, an MEK inhibitor. Taken together, these findings indicate that FN-mediated signaling can collaborate with FGFRs signaling for neurite outgrowth through selective activation of ERK-type MAP kinase in PC12 cells, and suggest that FN and FGF act in concert to regulate cell differentiation in the nervous system.  相似文献   

15.
An endocrine disrupter, bisphenol-A is widely used in the production of plastics and coatings. Recently, it was reported that bisphenol-A affected neurotransmitters in the mammalian brain. On the basis of these reports, it was considered that bisphenol-A affected neuronal differentiation. In this study, the morphological changes in nerve growth factor (NFG)-induced differentiation caused by bisphenol-A were confirmed using a PC12 cell system. When a low concentration of bisphenol-A was added to medium containing NGF, it inhibited neurite extension. In addition, to clarify whether bisphenol-A affects the early and late stages of the NGF-signaling pathway in cell differentiation, changes of phosphorylation of MAP kinases and cAMP-response element binding protein (CREB) in PC12 cells treated with and without BPA in medium containing NGF were investigated using western blot analysis. As results, bisphenol-A significantly inhibited phosphorylation of CREB and ERK1/2 MAPK.  相似文献   

16.
BMP inhibits neurite growth by a mechanism dependent on LIM-kinase   总被引:1,自引:0,他引:1  
Bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor-beta superfamily. BMPs regulate several crucial aspects of embryonic development and organogenesis. Here, we demonstrate that BMP-2 inhibits the neurite outgrowth of postnatal cerebellar neurons in vitro. Although receptor-regulated Smad proteins are activated by BMP-2, this signal transduction is not necessary for the inhibitory effect of BMP-2. Interestingly, BMP-2 activates LIM-kinase 1 in the neurons, and the dominant negative form of LIM-kinase 1 abolishes the effect of BMP-2. Thus, BMP-2 inhibits neurite outgrowth by a LIM-kinase 1-dependent mechanism, and our findings add a new member to the group of neurite growth inhibitors.  相似文献   

17.
K Murato  D Monard 《FEBS letters》1982,144(2):321-325
The hog sucrase—isomaltase complex is anchored to the small-intestinal brush border membrane, as in the rabbit, via a hydrophobic segment located in the N-terminal region of the isomaltase subunit. The immediate precursor of the ‘final’ sucrase—isomaltase (i.e., pro-sucrase—isomaltase as prepared from adult hogs whose pancreas had been disconnected from the duodenum) is an amphiphilic single polypeptide chain of Mr 260 000–265 000. Its N-terminal sequence is virtually identical with (not merely homologous to) the corresponding region of the isomaltase subunit of ‘final’ sucrase-isomaltase. This shows that the isomaltase portion of pro-sucrase—isomaltase in the N-terminal ‘half’ of the precursor polypeptide chain. Thus the succession of domains in pro-sucrase—isomaltase and its mode of anchoring in the membrane could be deduced. On this basis a likely mechanism of biosynthesis and insertion is proposed.  相似文献   

18.
Bryan B  Cai Y  Wrighton K  Wu G  Feng XH  Liu M 《FEBS letters》2005,579(5):1015-1019
The Rho-family of small GTPases consists of essential regulators of neurite outgrowth, axonal pathfinding, and dendritic arborization. Previous work has demonstrated in non-neuronal cell types that Smurf1, an E3 ubiquitin ligase, regulates cell polarity and protrusive activity via PKCzeta-dependent recruitment to cellular protrusion sites, and subsequent ubiquitination and proteasomal degradation of RhoA. In this study, we show that Smurf1 enhances neurite outgrowth in Neuro2a neuroblastoma cells. We demonstrate that RhoA is ubiquitinated, and that Smurf1 and RhoA physically interact in vivo. Interestingly, Smurf1 overexpression in Neuro2a cells dramatically reduces RhoA protein levels during dibutyric cyclic AMP, but not retinoic acid induced neurite outgrowth. This Smurf1-dependent reduction in RhoA protein levels was abrogated using the general proteasome inhibitor MG132, suggesting that RhoA is targeted for ubiquitination and degradation via Smurf1. Together, our data suggest that localized regulation of different subsets of Rho GTPases by specific guidance signals results in an intracellular asymmetry of RhoA activity, which could regulate neurite outgrowth and guidance.  相似文献   

19.
Summary The arrangement and relative stability of cortical microtubules during and after wound induction in internodal cells ofNitella flexilis andNitella pseudoflabellata were examined by immunofluorescence and by microinjection of fluorescently tagged tubulin. The formation of cellulosic wall appositions (wound walls), induced by treatment with 5×10–2MCaCl2, was identicalin young, growing cells and older non-growing internodes, suggesting that the initial microtubule pattern, which differs in growing and non-growing cells, does not influence wound wall formation. Depolymerization of microtubules with oryzalin did not alter wound wall morphology and microtubules were not detected during wound wall formation. After cessation of wound wall growth, microtubules were once again found in the wound site but these were always randomly oriented, even in young cells where the surrounding microtubules were organized into transverse arrays. Microtubules were similarly randomized in chloroplast-free windows induced by laser irradiation. Analysis of microtubule organization in living cells revealed that the microtubules in wound sites are less stable than the microtubules of adjacent transversely oriented arrays. The results indicate that although wounding can alter the relative stability and spatial organization of cortical microtubules, microtubules are neither involved in vesicle transport nor the construction of cellulosic wound walls.Abbreviations AFW artificial fresh water - BSA bovine serum albumin - DMSO dimethyl sulfoxide - FITC fluorescein isothiocyanate - PBS phosphate-buffered saline  相似文献   

20.
The superposition of the regular arrangement of tubulin subunits in microtubules gives rise to moiré patterns in cryo-electron micrographs. The moiré period can be predicted from the dimensions of the tubulin subunits and their arrangement in the surface lattice. Although the average experimental moiré period is usually in good agreement with the theoretical one, there is variation both within and between microtubules. In this study, we addressed the origin of this variability. We examined different possibilities, including artefacts induced by the preparation of the vitrified samples, and variations of the parameters that describe the microtubule surface lattice. We show that neither flattening nor bending of the microtubules, nor changes in the subunit dimensions, can account for the moiré period variations observed in 12 and 14 protofilament microtubules. These can be interpreted as slight variations, in the range –0.5 Å to +0.9 Å, of the lateral interactions between tubulin subunits in adjacent protofilaments. These results indicate that the inter-protofilament bonds are precisely maintained in microtubules assembled in vitro from pure tubulin. The fact that the moiré period is not affected by bending indicates that the local interactions between tubulin subunits are sufficiently stiff to accommodate large deformations of the microtubule wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号