首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human epidermal growth factor receptor 2 (HER2) is highly expressed in approximately 30% of breast cancer patients, and substantial evidence supports the relationship between HER2 overexpression and poor overall survival. However, the biological function of HER2 signal transduction pathways is not entirely clear. To investigate gene activation within the pathways, we screened differentially expressed genes in HER2-positive mouse mammary tumor using two-directional suppression subtractive hybridization combined with reverse dot-blotting analysis. Forty genes and expressed sequence tags related to transduction, cell proliferation/growth/apoptosis and secreted/extracellular matrix proteins were differentially expressed in HER2-positive mammary tumor tissue. Among these, 19 were already reported to be differentially expressed in mammary tumor, 11 were first identified to be differentially expressed in mammary tumor in this study but were already reported in other tumors, and 10 correlated with other cancers. These genes can facilitate the understanding of the role of HER2 signaling in breast cancer.  相似文献   

2.
Regulation of epidermal growth factor receptor gene expression   总被引:1,自引:0,他引:1  
Synthesis and metabolism of the epidermal growth factor (EGF) receptor are extensively regulated to modulate cellular responses to ligand. To study regulation of EGF receptor gene expression, the 5' region of the gene was isolated from a human placental genomic library. A 5' proximal 1.1-kilobase fragment (-1100 to -19 relative to the ATG translation start site) and subfragments of this were subcloned in both forward and reverse orientations into the luciferase expression vector pSVOAL delta 5' and transfected into human cell lines. Luciferase activity was stimulated by treatment of transfected HeLa cells with EGF, 12-O-tetradecanoylphorbol 13-acetate (TPA), (Bu)2 cAMP, retinoic acid, and dexamethasone. Deletion analysis indicated full retention of activity after removal of the -1100 to -485 region (-485 to -19 fragment), but a 5-fold reduction in activity on removal of the -485 to -153 region (-153 to -19 fragment). Despite a reduction in basal activity, the proximal 134-basepair fragment retained responses to all inducers. Additivity was observed in response to maximal concentrations of TPA plus retinoic acid and of TPA plus (Bu)2 cAMP; the response to a combination of four inducers exceeded that to the RSV-LTR strong promoter. Differences in stimulated responses were observed in various recipients, with hepatoma HepG2 cells lacking responses to (Bu)2 cAMP and glioblastoma T98G cells lacking responses to EGF and TPA. These results indicate that a 134-basepair DNA fragment closely adjacent to the translation start site contains elements responsible for directing basal and stimulated expression of the EGF receptor gene.  相似文献   

3.
4.
We have characterized the expression of transforming growth factor alpha (TGF alpha) and its receptor, the epidermal growth factor receptor (EGF-R), in normal and malignantly transformed human mammary epithelial cells. Human mammary epithelial cells were derived from a reduction mammoplasty (184), immortalized by benzo-a-pyrene (184A 1N4), and further transformed by the oncogenes simian virus 40 T (SV40 T), v-Ha-ras, and v-mos alone or in combination using retroviral vectors. 184 and 184A 1N4 cells require EGF for anchorage-dependent clonal growth. In mass culture, they secrete TGF alpha at high concentrations and exhibit an attenuated requirement for exogenous EGF/TGF alpha. SV40 T transformed cells have 4-fold increased EGF-R, have acquired the ability to clone in soft agar with EGF/TGF alpha supplementation, but are not tumorigenic. Cells transformed by v-mos or v-Ha-ras are weakly tumorigenic and capable of both anchorage dependent and independent growth in the absence of EGF/TGF alpha. Cells transformed by both SV40 T and v-Ha-ras are highly tumorigenic, are refractory to EGF/TGF alpha, and clone with high efficiency in soft agar. The expression of v-Ha-ras is associated with a loss of the high (but not low) affinity binding component of the EGF-R. Malignant transformation and loss of TGF alpha/EGF responsiveness did not correlate with an increase in TGF alpha production. Thus, TGF alpha production does not appear to be a tumor specific marker for human mammary epithelial cells. Differential growth responses to EGF/TGF alpha, rather than enhanced production of TGF alpha, may determine the transition from normal to malignant human breast epithelium.  相似文献   

5.
Rat mammary carcinoma (RMC) cells derived from serially transplantable mammary tumors are independent of epidermal growth factor (EGF) for long-term growth in serum-free medium. This phenotype is in contrast to that of normal mammary epithelial cells or cells derived from nontransplantable tumors that express an absolute requirement for EGF for growth in culture. The results of the experiments reported here indicate that EGF-independent RMC cells secrete a growth factor with potent EGF-like mitogenic activity. Conditioned media obtained from these cells can substitute for EGF for the growth of the EGF-dependent cell line MCF-10. This growth factor is neither EGF nor transforming growth factor alpha and does not compete with 125I-EGF for binding to EGF receptors. Phosphotyrosine Western blot analysis of lysates obtained from EGF-independent RMC cells revealed the presence of a 190 kilodalton (kDa) protein that was distinct from the EGF receptor. Similarly, growth of MCF-10 cells to confluence in serum-free medium supplemented with conditioned medium growth factor in place of EGF resulted in the disappearance of the EGF receptor band and appearance of the 190 kDa band in phosphotyrosine Western blots. The 190 kDa tyrosine-phosphorylated protein detected in cells stimulated by the conditioned medium factor is unlikely to be the c-erbB-2 protein, as indicated by negative results in immunoprecipitation experiments and in vitro kinase assays. In summary, EGF-independent RMC cells secrete a factor with potent EGF-like mitogenic activity. This suggests that an autocrine loop involving this growth factor mediates EGF independence in these cells.  相似文献   

6.
7.
Expression and function of epidermal growth factor receptor (EGFR) was investigated in a metastatic cell clone (MTLn3) derived from the 13762NF rat mammary adenocarcinoma. No receptor phosphorylation could be identified in intact cells or in membrane preparations, while EGF-dependent phosphorylation of substrates occurred in intact cells. Indications for active suppression of receptor phosphorylation came from the fact that EGFRs bound in immunocomplexes or associated with the cytoskeleton of detergent treated cells were able to undergo basal and EGF-induced phosphorylation in vitro. Cross-linking experiments with 125I-EGF, as well as [35S]methionine labeling followed by immunoprecipitation with receptor specific antibodies readily detected in MTLn3 cells the expected 170-kDa EGFR protein. In addition, two proteins with molecular masses of 420-480 and 95 kDa specifically bound 125I-EGF on intact MTLn3 and sparse cultures of A431 cells. Phosphorylation of the 420-480 kDa molecule could be identified in immunocomplexes of EGFRs isolated from MTLn3 and sparse A431 cells, but the 95-kDa receptor molecule was never phosphorylated. While the presence of alternative forms of EGFR in the highly metastatic cell clone MTLn3 was unexpected, our observations of inefficient receptor autophosphorylation are in agreement with other recent reports and suggest that in MTLn3 cells EGFR-mediated signal transduction can be an event independent from receptor autophosphorylation.  相似文献   

8.
The C57BL/6J-cpk mouse has an inheritable form of polycystic kidney disease similar to the autosomal recessive disorder seen in humans. Between approximately 1 and 3 weeks of age, affected cpk mice develop numerous large cysts in the collecting tubule segment of kidney nephrons. The present study examined the ontogeny of renal and submandibular gland prepro-epidermal growth factor (preproEGF) gene expression in the cpk mouse using Northern blot hybridization and immunohistochemistry. There was a virtual absence of renal preproEGF gene expression in cystic kidneys over the 3-week postnatal period, during which time renal preproEGF mRNA and proEGF/EGF protein normally reach significant levels. PreproEGF mRNA was expressed in salivary glands of cystic mice; however, this mRNA could not be further elevated with testosterone suggesting that there are abnormalities in the regulation of the preproEGF gene in the submandibular gland, as well as in the kidney. Since renal preproEGF expression during the early postnatal period occurs when collecting duct cysts form, it is possible that a deficiency in renal proEGF or EGF contributes to the rapid development of collecting duct cysts and the concomitant renal failure in the C57BL/6J-cpk cystic mouse.  相似文献   

9.
Wild-type murine epidermal growth factor (mEGF) and mutants with Leu47 replaced by serine and valine, respectively, have been produced by recombinant DNA methodology. A synthetic gene for mEGF was fused to the coding sequence for the signal peptide of the outer membrane protein A (ompA) of Escherichia coli in the secretion vector pIN-III-ompA3, and the recombinant plasmid was used to transform E. coli. Upon induction of gene expression, mEGF and the mutants was expressed and secreted into the periplasmic space. Purification of the wild-type Leu47-mEGF and the mutants was carried out by reversed-phase and anion-exchange high-performance liquid chromatography (HPLC). Amino acid analysis and Western blot analysis further confirmed the identities of the proteins. Specific activities for wild-type and mutant proteins were measured in both mEGF receptor binding and autophosphorylation assays. The recombinant mEGF has specific activities identical with that of mEGF purified from mouse submaxillary glands, while both mutants have reduced specific activities in both bioassays. The data demonstrate the importance of the highly conserved Leu47 residue in mEGF for full biological activity.  相似文献   

10.
Decorin is an established natural oncosuppressive factor whose action is being studied in detail. Recently, decorin gene therapy formulations using adenoviral vectors have been shown in several animal models with very promising results. The present study describes the first exception to the established oncosuppression model using human osteosarcoma cells. MG-63 osteosarcoma cells were found to constitutively produce decorin, and furthermore, to be resistant to decorin-induced growth arrest. On the contrary, decorin seemed to be beneficial to osteosarcoma cells because it was necessary for MG-63 cell migration and acted as a mediator, counteracting the transforming growth factor-beta2-induced cytostatic function. Efforts to determine how MG-63 cells could overcome the decorin-induced cytostatic effect established that decorin in MG-63 cells does not induce p21 expression nor does it cause protracted retraction and inactivation of the epidermal growth factor receptor. Conversely, epidermal growth factor receptor seemed to be overexpressed and continuously phosphorylated. In view of the proposed design of decorin-based anticancer therapeutic strategies, our study provides new data on pathways that cancer cells might employ to overcome the established decorin-induced growth suppression.  相似文献   

11.
SSKOIDE 《Cell research》1997,7(1):51-59
INTRODUCTIONEpidermalgrowthfactor(EGF)wasinitiallyisolatedandpurifiedfromthesubmaxillarygland(SMG)ofmalemouse[1].Itisapolypeptidecomposedof53aminoacidresidues[2].Itinfluencescellproliferationanddifferentiationandmodulatesthegrowthanddevelopmentofmammalianorgans[3--7].AnoteworthyfindingisthatextirpationofmouseSMGresultsinamarkedreductionofserumEGFconcentrationassociatedwithanimpairedspermatogenesis[3].ThisfindingsuggeststhatEGFmayregulatespermproductionanddifferentiation.Inhumantest…  相似文献   

12.
13.
14.
HER2, a member of the epidermal growth factor receptor (EGFR) tyrosine kinase family, functions as an accessory EGFR signaling component and alters EGFR trafficking by heterodimerization. HER2 overexpression leads to aberrant cell behavior including enhanced proliferation and motility. Here we applied a combination of computational modeling and quantitative experimental studies of the dynamic interactions between EGFR and HER2 and their downstream activation of ERK to understand this complex signaling system. Using cells expressing different levels of HER2 relative to the EGFR, we could separate relative contributions of EGFR and HER2 to signaling amplitude and duration. Based on our model calculations, we demonstrated that, in contrast with previous suggestions in the literature, the intrinsic capabilities of EGFR and HER2 to activate ERK were quantitatively equivalent. We found that HER2-mediated effects on EGFR dimerization and trafficking were sufficient to explain the observed HER2-mediated amplification of epidermal growth factor-induced ERK signaling. Our model suggests that transient amplification of ERK activity by HER2 arises predominantly from the 2-to-1 stoichiometry of receptor kinase to bound ligand in EGFR/HER2 heterodimers compared with the 1-to-1 stoichiometry of the EGFR homodimer, but alterations in receptor trafficking yielding increased EGFR sparing cause the sustained HER2-mediated enhancement of ERK signaling.  相似文献   

15.
A better understanding of the molecular effects of epidermal growth factor (EGF) on target cell can help to reveal important aspects of cellular proliferation, transformation, and apoptosis, as well as embryonic and fetal development. In this study, we examined the differences in gene expression of cultured fibroblasts with EGF stimulation for 48 h by using high-density complementary deoxyribonucleic acid (cDNA) arrays. We found that EGF could cause widespread alteration in gene expression. Eight hundred and fifty-five genes, more than 20% of those assayed, showed changed expression, which are involved in various cellular processes, such as energetic metabolism, biosynthesis, the progress of cell cycle, and the signaling pathways of receptor tyrosine kinase (RTKs) and G protein-coupled receptors (GPCRs). The most striking finding is that long-term EGF treatment on cultured fibroblasts resulted in down-regulation of the genes encoding membrane receptors and ion channels and desensitized RTKs and GPCRs to their physiological and nonphysiological stimuli, which seems to be a slow-acting, but permanent, effect of EGF on RTK and GPCR signaling pathways and to play important roles in embryonic and fetal development.  相似文献   

16.
Qin XQ  Sun XH  Luo ZQ 《生理学报》1999,51(4):419-424
为探索肺内调节血管活性肠肽(VIP)和表皮生长因子(EGF)抗氧化保护的基因机制,用逆转录聚合酶链式反应(RT-PCR)及Southemblot杂交等方法检测的代培养的兔支气管上皮(BEC)内bcl-2和c-myc基因的表达中加入去甲肾上腺素观察VIP、EGF热应激对这两个基因表达的影响。结果显示:(1)基基础情况下BEC内有bcl-2和c-myc基因的低水平表达;(2)EGF和VIP明显增强bc  相似文献   

17.
18.
In contrast to the well known cytotoxic effects of tumor necrosis factor (TNF) alpha in many mammary cancer cells, we have found that TNF stimulates the proliferation and motility of human mammary epithelial cells (HMECs). Since the response of HMECs to TNF is similar to effects mediated by epidermal growth factor receptor (EGFR) activation, we explored the potential role of cross-talk through the EGFR signaling pathways in mediating cellular responses to TNF. Using a microarray enzyme-linked immunoassay, we found that exposure to TNF stimulated the dose-dependent shedding of the EGFR ligand transforming growth factor alpha (TGFalpha). Both proliferation and motility of HMECs induced by TNF was prevented either by inhibiting membrane protein shedding with a metalloprotease inhibitor, by blocking epidermal growth factor receptor (EGFR) kinase activity, or by limiting ligand-receptor interactions with an antagonistic anti-EGFR antibody. EGFR activity was also necessary for TNF-induced release of matrix metalloprotease-9, thought to be an essential regulator of mammary cell migration. The cellular response to TNF was associated with a biphasic temporal pattern of extracellular signal-regulated kinase (ERK) phosphorylation, which was EGFR-dependent and modulated by inhibition of metalloprotease-mediated shedding. Significantly, the late phase of ERK phosphorylation, detectable within 4 h after exposure, was blocked by the metalloprotease inhibitor batimastat, indicating that autocrine signaling through ligand shedding was responsible for this secondary wave of ERK activity. Our results indicate a novel and important role for metalloprotease activation and EGFR transmodulation in mediating the cellular response to TNF.  相似文献   

19.
The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.  相似文献   

20.
We have demonstrated previously that the inoculation of murine mammary tumor cells genetically modified to express high levels of secretory leukocyte protease inhibitor (2C1) do not develop tumors in immunocompetent mice and these cells are more prone to apoptosis than control cells. The aim of the present study was to evaluate the role of the adaptive immune response in the lack of tumor growth of 2C1 cells and the possibility of using these cells for immunotherapy. The s.c. administration of mock transfected F3II cells induces tumor in BALB/c and Nude mice. However, the inoculation of 2C1 cells develops tumor in Nude but not in BALB/c mice. The inoculation of mock transfected F3II cells to 2C1 immunized BALB/c mice by repeated administration of 2C1 cells (once a week for 3 weeks) developed significantly smaller tumors than those observed in non-immunized mice. Remarkably, survival of tumor-bearing immunized mice was higher than non-immunized animals. Herein, we demonstrate that an immunotherapy with SLPI over-expressing non-irradiated tumor cells which do not develop tumor in immunocompetent mice, partially restrain the tumor growth induced by F3II cells and increase the survival of the mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号