首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clostridium josui xylanase Xyn10A is a modular enzyme comprising two family-22 carbohydrate-binding modules (CBMs), a family-10 catalytic module (CM), a family-9 CBM, and two S-layer homologous modules, consecutively from the N-terminus. To study the functions of the family-22 CBMs, truncated derivatives of Xyn10A were constructed: a recombinant CM polypeptide (rCM), a family-22 CBM polypeptide (rCBM), and a polypeptide composed of the family-22 CBMs and CM (rCBM-CM). Recombinant proteins were characterized by enzyme and binding assays. rCBM-CM showed the highest activity toward xylan and weak activity toward some polysaccharides such as barley beta-glucan and carboxymethyl-cellulose. Although rCBM showed an affinity for insoluble and soluble xylan as well as barley beta-glucan and Avicel in qualitative binding assays, removal of the CBMs negligibly affected the catalytic activity and thermostability of the CM.  相似文献   

2.
The nucleotide sequence of the Clostridium thermocellum F1 celQ gene, which codes for the endoglucanase CelQ, consists of 2,130 bp encoding 710 amino acids. The precursor form of CelQ has a molecular weight of 79,809 and is composed of a signal peptide, a family 9 cellulase domain, a family IIIc carbohydrate-binding module (CBM), and a dockerin domain. Truncated derivatives of CelQ were constructed: CelQdeltadoc consisted of the catalytic domain and the CBM; CelQcat consisted of the catalytic domain only. CelQdeltadoc showed strong activity toward carboxymethylcellulose (CMC) and barley beta-glucan and low activity toward Avicel, acid-swollen cellulose, lichenan, and xylan. The Vmax and Km values were 235 micromol/min/mg and 3.3 mg/ml, respectively, for CMC. By contrast, CelQcat, which was devoid of the CBM, showed negligible activity toward CMC, i.e., about 1/1,000 of the activity of CelQdeltadoc, supporting the previously proposed idea that family IIIc CBMs participate in the catalytic function of the enzyme. Immunological analysis using an antiserum raised against CelQdeltadoc confirmed that CelQ is a component of the C. thermocellum cellulosome.  相似文献   

3.
Xyn30D from the xylanolytic strain Paenibacillus barcinonensis has been identified and characterized. The enzyme shows a modular structure comprising a catalytic module family 30 (GH30) and a carbohydrate-binding module family 35 (CBM35). Like GH30 xylanases, recombinant Xyn30D efficiently hydrolyzed glucuronoxylans and methyl-glucuronic acid branched xylooligosaccharides but showed no catalytic activity on arabinose-substituted xylans. Kinetic parameters of Xyn30D were determined on beechwood xylan, showing a K(m) of 14.72 mg/ml and a k(cat) value of 1,510 min(-1). The multidomain structure of Xyn30D clearly distinguishes it from the GH30 xylanases characterized to date, which are single-domain enzymes. The modules of the enzyme were individually expressed in a recombinant host and characterized. The isolated GH30 catalytic module showed specific activity, mode of action on xylan, and kinetic parameters that were similar to those of the full-length enzyme. Computer modeling of the three-dimensional structure of Xyn30D showed that the catalytic module is comprised of a common (β/α)(8) barrel linked to a side-associated β-structure. Several derivatives of the catalytic module with decreasing deletions of this associated structure were constructed. None of them showed catalytic activity, indicating the importance of the side β-structure in the catalysis of Xyn30D. Binding properties of the isolated carbohydrate-binding module were analyzed by affinity gel electrophoresis, which showed that the CBM35 of the enzyme binds to soluble glucuronoxylans and arabinoxylans. Analysis by isothermal titration calorimetry showed that CBM35 binds to glucuronic acid and requires calcium ions for binding. Occurrence of a CBM35 in a glucuronoxylan-specific xylanase is a differential trait of the enzyme characterized.  相似文献   

4.
Clostridium thermocellum xylanase Xyn10C (formerly XynC) is a modular enzyme, comprising a family-22 carbohydrate-binding module (CBM), a family-10 catalytic module of the glycoside hydrolases, and a dockerin module responsible for cellulosome assembly consecutively from the N-terminus. To study the functions of the CBM, truncated derivatives of Xyn10C were constructed: a recombinant catalytic module polypeptide (rCM), a family-22 CBM polypeptide (rCBM), and a polypeptide composed of the family-22 CBM and CM (rCBM-CM). The recombinant proteins were characterized by enzyme and binding assays. Although the catalytic activity of rCBM-CM toward insoluble xylan was four times higher than that of rCM toward the same substrate, removal of the CBM did not severely affect catalytic activity toward soluble xylan or beta-1,3-1,4-glucan. rCBM showed an affinity for amorphous celluloses and insoluble and soluble xylan in qualitative binding assays. The optimum temperature of rCBM-CM was 80 degrees C and that of rCM was 60 degrees C. These results indicate that the family-22 CBM of C. thermocellum Xyn10C not only was responsible for the binding of the enzyme to the substrates, but also contributes to the stability of the CM in the presence of the substrate at high temperatures.  相似文献   

5.
The celT gene of Clostridium thermocellum strain F1 was found downstream of the mannanase gene man26B [Kurokawa J et al. (2001) Biosci Biotechnol Biochem 65:548–554] in pKS305. The open reading frame of celT consists of 1,833 nucleotides encoding a protein of 611 amino acids with a predicted molecular weight of 68,510. The mature form of CelT consists of a family 9 cellulase domain and a dockerin domain responsible for cellulosome assembly, but lacks a family 3c carbohydrate-binding module (CBM) and an immunoglobulin (Ig)-like domain, which are often found with family 9 catalytic domains. CelT devoid of the dockerin domain (CelTΔdoc) was constructed and purified from a recombinant Escherichia coli, and its enzyme properties were examined. CelTΔdoc showed strong activity toward carboxymethylcellulose (CMC) and barley β-glucan, and low activity toward xylan. The V max and K m values were 137 μmol min–1 mg–1 and 16.7 mg/ml, respectively, for CMC. Immunological analysis indicated that CelT is a catalytic component of the C. thermocellum F1 cellulosome. This is the first report describing the characterization of a family 9 cellulase without an Ig-like domain or family 3c CBM. Electronic Publication  相似文献   

6.
Chhabra SR  Kelly RM 《FEBS letters》2002,531(2):375-380
The genome of the hyperthermophilic bacterium Thermotoga maritima (Tm) encodes at least eight glycoside hydrolases with putative signal peptides; the biochemical characteristics of seven of these have been reported previously. The eighth, Tm Cel74, is encoded by an open reading frame of 2124 bp corresponding to a polypeptide of 79 kDa with a signal peptide at the amino-terminus. The gene (lacking the signal peptide) encoding Tm Cel74 was expressed as a 77 kDa monomeric polypeptide in Escherichia coli and found to be optimally active at pH 6, 90 degrees C, with a melting temperature of approximately 105 degrees C. The cel74 gene was previously found to be induced during T. maritima growth on a variety of polysaccharides, including barley glucan, carboxymethyl cellulose (CMC), glucomannan, galactomannan and starch. However, while Tm Cel74 was most active towards barley glucan and to a lesser extent CMC, glucomannan and tamarind (xyloglucan), no activity was detected on other glycans, including galactomannan, laminarin and starch. Also, Tm Cel74 did not contain a carbohydrate binding module (CBM), versions of which have been identified in the amino acid sequences of other family 74 enzymes. As such, a CBM associated with a chitinase in another hyperthermophile, Pyrococcus furiosus, was used to create a fusion protein that was active on crystalline cellulose; Tm Cel74 lacked activity on this substrate. Based on the cleavage pattern determined for Tm Cel74 on glucan-based substrates, this enzyme likely initiates recruitment of carbohydrate carbon and energy sources by creating oligosaccharides that are transported into the cell for further processing.  相似文献   

7.
The cellulosomal family 9 cellulase genes engH, engK, engL, engM, and engY of Clostridium cellulovorans have been cloned and sequenced. We compared the enzyme activity of family 9 cellulosomal cellulases from C. cellulovorans and their derivatives. EngH has the highest activity toward soluble cellulose derivatives such as carboxymethylcellulose (CMC) as well as insoluble cellulose such as acid-swollen cellulose (ASC). EngK has high activity toward insoluble cellulose such as ASC and Avicel. The results of thin-layer chromatography showed that the cleavage products of family 9 cellulases were varied. These results indicated that family 9 endoglucanases possess different modes of attacking substrates and produce varied products. To investigate the functions of the carbohydrate-binding module (CBM) and the catalytic module, truncated derivatives of EngK, EngH, and EngY were constructed and characterized. EngHΔCBM and EngYΔCBM devoid of the CBM lost activity toward all substrates including CMC. EngKΔCBM and EngMΔCBM did not lose activity toward CMC but lost activity toward Avicel. These observations suggest that the CBM is extremely important not only because it mediates the binding of the enzyme to the substrates but also because it participates in the catalytic function of the enzyme or contributes to maintaining the correct tertiary structure of the family 9 catalytic module for expressing enzyme activity.  相似文献   

8.
Isolation, expression, and characterization of a novel endo-beta-1,3(4)-D-glucanase with high specific activity and homology to Bacillus lichenases is described. One clone was screened from a genomic library of Paenibacillus sp. F-40, using lichenan-containing plates. The nucleotide sequence of the clone contains an ORF consisting of 717 nucleotides, encoding a beta-glucanase protein of 238 amino acids and 26 residues of a putative signal peptide at its N-terminus. The amino acid sequence showed the highest similarity of 87% to other beta-1,3-1,4-glucanases of Bacillus. The gene fragment Bg1 containing the mature glucanase protein was expressed in Pichia pastoris at high expression level in a 3-1 high-cell-density fermenter. The purified recombinant enzyme Bgl showed activity against barley beta-glucan, lichenan, and laminarin. The gene encodes an endo-beta-1,3(4)-D-glucanase (E. C. 3.2.1.6). When lichenan was used as substrate, the optimal pH was 6.5, and the optimal temperature was 60 degrees C. The K(m), V(max), and k(cat) values for lichenan are 2.96 mg/ml, 6,951 micromol/min x mg, and 3,131 s(-1), respectively. For barley beta-glucan the values are 3.73 mg/ml, 8,939 micromol/min x mg, and 4,026 s(-1), respectively. The recombinant Bg1 had resistance to pepsin and trypsin. Other features of recombinant Bg1 including temperature and pH stability, and sensitivity to some metal ions and chemical reagents were also characterized.  相似文献   

9.
Thermobifida fusca Cel9A-90 is a processive endoglucanase consisting of a family 9 catalytic domain (CD), a family 3c cellulose binding module (CBM3c), a fibronectin III-like domain, and a family 2 CBM. This enzyme has the highest activity of any individual T. fusca enzyme on crystalline substrates, particularly bacterial cellulose (BC). Mutations were introduced into the CD or the CBM3c of Cel9A-68 using site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli; purified; and tested for activity on four substrates, ligand binding, and processivity. The results show that H125 and Y206 play an important role in activity by forming a hydrogen bonding network with the catalytic base, D58; another important supporting residue, D55; and Glc(-1) O1. R378, a residue interacting with Glc(+1), plays an important role in processivity. Several enzymes with mutations in the subsites Glc(-2) to Glc(-4) had less than 15% activity on BC and markedly reduced processivity. Mutant enzymes with severalfold-higher activity on carboxymethyl cellulose (CMC) were found in the subsites from Glc(-2) to Glc(-4). The CBM3c mutant enzymes, Y520A, R557A/E559A, and R563A, had decreased activity on BC but had wild-type or improved processivity. Mutation of D513, a conserved residue at the end of the CBM, increased activity on crystalline cellulose. Previous work showed that deletion of the CBM3c abolished crystalline activity and processivity. This study shows that it is residues in the catalytic cleft that control processivity while the CBM3c is important for loose binding of the enzyme to the crystalline cellulose substrate.  相似文献   

10.
Boraston AB  Chiu P  Warren RA  Kilburn DG 《Biochemistry》2000,39(36):11129-11136
The C-terminal carbohydrate-binding module (CBM17) from Clostridium cellulovorans cellulase 5A is a beta-1,4-glucan binding module with a preference for soluble chains. CBM17 binds to phosphoric acid swollen Avicel (PASA) and Avicel with association constants of 2.9 (+/-0.2) x 10(5) and 1.6 (+/-0.2) x 10(5) M(-1), respectively. The capacity values for PASA and Avicel were 11.9 and 0.4 micromol/g of cellulose, respectively. CBM17 did not bind to crystalline cellulose. CBM17 bound tightly to soluble barley beta-glucan and the derivatized celluloses HEC, EHEC, and CMC. The association constants for binding to barley beta-glucan, HEC, and EHEC were approximately 2.0 x 10(5) M(-1). Significant binding affinities were found for cello-oligosaccharides greater than three glucose units in length. The affinities for cellotriose, cellotetraose, cellopentaose, and cellohexaose were 1.2 (+/-0.3) x 10(3), 4.3 (+/-0.4) x 10(3), 3.8 (+/-0.1) x 10(4), and 1.5 (+/-0.0) x 10(5) M(-1), respectively. Fluorescence quenching studies and N-bromosuccinimide modification indicate the participation of tryptophan residues in ligand binding. The possible architecture of the ligand-binding site is discussed in terms of its binding specificity, affinity, and the participation of tryptophan residues.  相似文献   

11.
A non-cellulosomal xylanase from Clostridium thermocellum, XynX, consists of a family-22 carbohydratebinding module (CBM22), a family-10 glycoside hydrolase (GH10) catalytic module, two family-9 carbohydrate-binding modules (CBM9-I and CBM9-II), and an S-layer homology (SLH) module. E. coli BL21(DE3) (pKM29), a transformant carrying xynX', produced several truncated forms of the enzyme. Among them, three major active species were purified by SDS-PAGE, activity staining, gel-slicing, and diffusion from the gel. The truncated xylanases were different from each other only in their C-terminal regions. In addition to the CBM22 and GH10 catalytic modules, XynX(1) had the CBM9-I and most of the CBM9-II, XynX(2) had the CBM9-I and about 40% of the CBM9-II, and XynX(3) had about 75% of the CBM9-I. The truncated xylanases showed higher binding capacities toward Avicel than those toward insoluble xylan. XynX(1) showed a higher affinity toward Avicel (70.5%) than XynX(2) (46.0%) and XynX(3) (42.1%); however, there were no significant differences in the affinities toward insoluble xylan. It is suggested that the CBM9 repeat, especially CBM9-II, of XynX plays a role in xylan degradation in nature by strengthening cellulose binding rather than by enhancing xylan binding.  相似文献   

12.
Cellulase Cel5A from alkalophilic Bacillus sp. 1139 contains a family 17 carbohydrate-binding module (BspCBM17) and a family 28 CBM (BspCBM28) in tandem. The two modules have significantly similar amino acid sequences, but amino acid residues essential for binding are not conserved. BspCBM28 was obtained as a discrete polypeptide by engineering the cel5A gene. BspCBM17 could not be obtained as a discrete polypeptide, so a family 17 CBM from endoglucanase Cel5A of Clostridium cellulovorans, CcCBM17, was used to compare the binding characteristics of the two families of CBM. Both CcCBM17 and BspCBM28 recognized two classes of binding sites on amorphous cellulose: a high affinity site (K(a) approximately 1 x 10(6) M(-1)) and a low affinity site (K(a) approximately 2 x 10(4) M(-1)). They did not compete for binding to the high affinity sites, suggesting that they bound at different sites on the cellulose. A polypeptide, BspCBM17/CBM28, comprising the tandem CBMs from Cel5A, bound to amorphous cellulose with a significantly higher affinity than the sum of the affinities of CcCBM17 and BspCBM28, indicating cooperativity between the linked CBMs. Cel5A mutants were constructed that were defective in one or both of the CBMs. The mutants differed from the wild-type enzyme in the amounts and sizes of the soluble products produced from amorphous cellulose. This suggests that either the CBMs can modify the action of the catalytic module of Cel5A or that they target the enzyme to areas of the cellulose that differ in susceptibility to hydrolysis.  相似文献   

13.
The C-terminal family 9 carbohydrate-binding module of xylanase 10A from Thermotoga maritima (CBM9-2) binds to amorphous cellulose, crystalline cellulose, and the insoluble fraction of oat spelt xylan. The association constants (K(a)) for adsorption to insoluble polysaccharides are 1 x 10(5) to 3 x 10(5) M(-1). Of the soluble polysaccharides tested, CBM9-2 binds to barley beta-glucan, xyloglucan, and xylan. CBM9-2 binds specifically to the reducing ends of cellulose and soluble polysaccharides, a property that is currently unique to this CBM. CBM9-2 also binds glucose, xylose, galactose, arabinose, cellooligosaccharides, xylooligosaccharides, maltose, and lactose, with affinities ranging from 10(3) M(-1) for monosaccharides to 10(6) M(-1) for disaccharides and oligosaccharides. Cellooligosaccharides longer than two glucose units do not bind with improved affinity, indicating that cellobiose is sufficient to occupy the entire binding site. In general, the binding reaction is dominated by favorable changes in enthalpy, which are partially compensated by unfavorable entropy changes.  相似文献   

14.
The nucleotide sequence of a chromosome fragment of the thermophilic anaerobic bacterium Caldicellulosiruptor bescii (syn. Anaerocellum thermophilum) has been determined. The fragment contains four open reading frames with the second encoding a 749 aa multimodular endo-1,4-β-glucanase CelD (85019 Da). The N-terminal region of the protein includes a signal peptide and a catalytic module of glycoside hydrolase family 5 (GH5), followed by a carbohydrate-binding module of family 28 (CBM28). The C-terminal region bears three SLH modules. The recombinant endoglucanase and its two separate modules, the catalytic module and CBM28, were produced in E. coli cells and purified to homogeneity. An analysis of the catalytic properties showed CelD to be an endo-1,4-β-glucanase with maximum activity on barley β-glucan at pH 6.2 and 70°C. The enzyme was stable at 50°C for 30 days. Upon removal of the C-terminal CBM28, the activity of GH5 was decreased on cellulose substrates, and its thermostability has dropped. Binding of CBM28 to amorphous cellulose has been almost irreversible as it could not be removed from this substrate in a range of pH of 4–11, temperatures of 0–75°C, and NaCl concentrations of 0–5 M. Only 100% formamide or 1% SDS have been able to remove the protein.  相似文献   

15.
Qiu X  Selinger B  Yanke L  Cheng K 《Gene》2000,245(1):119-126
Two cellulase cDNAs, celB29 and celB2, were isolated from a cDNA library derived from mRNA extracted from the anaerobic fungus, Orpinomyces joyonii strain SG4. The nucleotide sequences of celB2 and celB29 and the primary structures of the proteins encoded by these cDNAs were determined. The larger celB29 cDNA was 1966bp long and encoded a 477 amino acid polypeptide with a molecular weight of 54kDa. Analysis of the 1451bp celB2 cDNA revealed an 1164bp open reading frame coding for a 44kDa protein consisting of 388 amino acids. Both deduced proteins had a high sequence similarity in central regions containing putative catalytic domains. Primary structure analysis revealed that CelB29 contained a Thr/Pro-rich sequence that separated the N-terminal catalytic domain from a C-terminal reiterated region of unknown function. Homology analysis showed that both enzymes belong to glycosyl hydrolase family 5 and were most closely related to endoglucanases from the anaerobic fungi Neocallimastic patriciarum, Neocallimastix frontalis and Orpinomyces sp. The classification of CelB29 and CelB2 as endoglucanases was supported by enzyme assays. The cloned enzymes had high activities towards barley beta-glucan, lichenan and carboxymethylcellulose (CMC), but not Avicel, laminarin, pachyman, xylan and pullulan. In addition, CelB29 and CelB2 showed activity against p-nitrophenyl-beta-D-cellobioside (pNP-G(2)) to p-nitrophenyl-beta-D-cellopentaoside (pNP-G(5)) but not p-nitrophenyl-beta-D-glucopyranoside (pNP-G(1)) with preferential activity against p-nitrophenyl-beta-D-cellotrioside (pNP-G(3)). Based on these results, we proposed that CelB29 and CelB2 are endoglucanases with broad substrate specificities for short- and long-chain beta-1,4-glucans.  相似文献   

16.
A cellulase from the ruminal fungus Orpinomyces joyonii cloned in Escherichia coli was purified 88-fold by chromatography on High Q and hydroxyapatite. N-terminal amino acid sequence analyses confirmed that the cellulase represented the product of the cellulase gene Cel B2. The purified enzyme possessed high activity toward barley beta-glucan, lichenan, carboxymethyl cellulose (CMC), xylan, but not toward laminarin and pachyman. In addition, the cloned enzyme was able to hydrolyze p-nitrophenyl (PNP)-cellobioside, PNP-cellotrioside, PNP-cellotetraoside, PNP-cellopentaoside, but not PNP-glucopyranoside. The specific activity of the cloned enzyme on barley beta-glucan was 297 units/mg protein. The purified enzyme appeared as a single band in SDS-polyacrylamide gel electrophoresis and the molecular mass of this enzyme (58000) was consistent with the value (56463) calculated from the DNA sequence. The optimal pH of the enzyme was 5.5, and the enzyme was stable between pH 5.0 and pH 7.5. The enzyme had a temperature optimum at 40 degrees C. The K(m) values estimated for barley beta-glucan and CMC were 0.32 and 0.50 mg/ml, respectively.  相似文献   

17.
During growth on crystalline cellulose, the thermophilic bacterium Caldicellulosiruptor bescii secretes several cellulose-degrading enzymes. Among these enzymes is CelA (CbCel9A/Cel48A), which is reported as the most highly secreted cellulolytic enzyme in this bacterium. CbCel9A/Cel48A is a large multi-modular polypeptide, composed of an N-terminal catalytic glycoside hydrolase family 9 (GH9) module and a C-terminal GH48 catalytic module that are separated by a family 3c carbohydrate-binding module (CBM3c) and two identical CBM3bs. The wild-type CbCel9A/Cel48A and its truncational mutants were expressed in Bacillus megaterium and Escherichia coli, respectively. The wild-type polypeptide released twice the amount of glucose equivalents from Avicel than its truncational mutant that lacks the GH48 catalytic module. The truncational mutant harboring the GH9 module and the CBM3c was more thermostable than the wild-type protein, likely due to its compact structure. The main hydrolytic activity was present in the GH9 catalytic module, while the truncational mutant containing the GH48 module and the three CBMs was ineffective in degradation of either crystalline or amorphous cellulose. Interestingly, the GH9 and/or GH48 catalytic modules containing the CBM3bs form low-density particles during hydrolysis of crystalline cellulose. Moreover, TM3 (GH9/CBM3c) and TM2 (GH48 with three CBM3 modules) synergistically hydrolyze crystalline cellulose. Deletion of the CBM3bs or mutations that compromised their binding activity suggested that these CBMs are important during hydrolysis of crystalline cellulose. In agreement with this observation, seven of nine genes in a C. bescii gene cluster predicted to encode cellulose-degrading enzymes harbor CBM3bs. Based on our results, we hypothesize that C. bescii uses the GH48 module and the CBM3bs in CbCel9A/Cel48A to destabilize certain regions of crystalline cellulose for attack by the highly active GH9 module and other endoglucanases produced by this hyperthermophilic bacterium.  相似文献   

18.
Thermobifida fusca Cel9A-90 is a processive endoglucanase consisting of a family 9 catalytic domain (CD), a family 3c cellulose binding module (CBM3c), a fibronectin III-like domain, and a family 2 CBM. This enzyme has the highest activity of any individual T. fusca enzyme on crystalline substrates, particularly bacterial cellulose (BC). Mutations were introduced into the CD or the CBM3c of Cel9A-68 using site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli; purified; and tested for activity on four substrates, ligand binding, and processivity. The results show that H125 and Y206 play an important role in activity by forming a hydrogen bonding network with the catalytic base, D58; another important supporting residue, D55; and Glc(−1) O1. R378, a residue interacting with Glc(+1), plays an important role in processivity. Several enzymes with mutations in the subsites Glc(−2) to Glc(−4) had less than 15% activity on BC and markedly reduced processivity. Mutant enzymes with severalfold-higher activity on carboxymethyl cellulose (CMC) were found in the subsites from Glc(−2) to Glc(−4). The CBM3c mutant enzymes, Y520A, R557A/E559A, and R563A, had decreased activity on BC but had wild-type or improved processivity. Mutation of D513, a conserved residue at the end of the CBM, increased activity on crystalline cellulose. Previous work showed that deletion of the CBM3c abolished crystalline activity and processivity. This study shows that it is residues in the catalytic cleft that control processivity while the CBM3c is important for loose binding of the enzyme to the crystalline cellulose substrate.  相似文献   

19.

Background

Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed.

Results

CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolytic activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass.

Conclusion

We have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.
  相似文献   

20.
Xylanase Xyn10B from Clostridium thermocellum is a modular enzyme that contains two family 22 carbohydrate binding modules N- (CBM22-1) and C- (CBM22-2) terminal of the family 10 glycoside hydrolase catalytic domain (GH10). In a previous study, we showed that removal of CBM22-1 reduces the resistance to thermoinactivation of the enzyme suggesting that this module is a thermostabilizing domain. Here, we show that it is the module border on the N-terminal side of GH10 that confers resistance to thermoinactivation and to proteolysis. Therefore, CBM22-1 does not function as a thermostabilizing domain and the role for this apparently non-functional CBM remains elusive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号