首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of importance   总被引:3,自引:0,他引:3  
Failure to distinguish between 'importance' and 'intensity' of competition has hindered our ability to resolve key questions about the role interactions may play in plant communities. Here we examine how appropriate application of metrics of importance and intensity is integral to investigating key theories in plant community ecology and how ignoring this distinction has lead to confusion and possibly spurious conclusions. We re-explore the relationship between competition intensity and importance for individuals across gradients, and apply our review of concepts to published data to help clarify the debate. We demonstrate that competition importance and intensity need not be correlated and show how explicit application of the intensity and importance of competition may reconcile apparently incompatible paradigms.  相似文献   

2.
Competition is ubiquitous in plant communities with various effects on plant fitness and community structure. A long-standing debate about different approaches to explain competition is the controversy between David Tilman and Philip Grime. Grime stated that the importance of competition relative to the impact of the environment increases along a productivity gradient, while Tilman argued that the intensity of competition is independent of productivity. To revisit this controversy, we assumed that the effects of plant–plant interactions are additive and applied the new competition indices by Díaz-Sierra et al. (2017) in a field experiment along a productivity gradient in S-Germany, using the rare arable plant Arnoseris minima as a study species. The ‘target technique' was applied, to separate the effects of root and shoot competition. The study plants were exposed to five competition treatments with three replicates in 18 sites, respectively. We investigated the expectation that root competition is more intense in unproductive sites than shoot competition. Additionally, we predicted survival to be less affected by competition than growth-related plant parameters. Using the biomass of individuals without competition as a proxy for site productivity there was a positive relationship with competition importance but no relationship with competition intensity when plants experienced full competition. Survival of the target plants was unaffected by competition. Root competition was the main mechanism determining the performance of the target plants, whereas the effect of shoot competition was relatively low albeit increasing with productivity. We conclude that when considering plant–plant interactions additive both Grime's and Tilman's theories can be supported.  相似文献   

3.
Competition and facilitation between tree individuals are two kinds of non-random processes influencing the structure and functioning of forest communities, but how these two plant-plant interactions change along gradient of resources or environments remains very much a matter of debate. We developed a null model to test the size-distance regression, and assessed the effects of competition and facilitation (including interspecific interactions, intraspecific interactions and overall species interactions) on each adult tree species assemblage [diameter at breast height (dbh) ≥5 cm] across two types of tropical cloud forest with different environmental and resource regimes. The null model test revealed that 17% to 27% tree species had positive dbh-distance correlations while 11% to 19% tree species showed negative dbh-distance correlations within these two forest types, indicating that both competition and facilitation processes existed during the community assembly. The importance of competition for heterospecific species, and the intensity of competition for both heterospecific and overall species increased from high to low resources for all the shared species spanning the two forests. The importance of facilitation for conspecific and overall species, as well as that the intensity of facilitation for both heterospecific and conspecific species increased with increasing low air temperature stress for all the shared species spanning the two forests. Our results show that both competition and facilitation processes simultaneously affect parts of species assemblage in the tropical cloud forests. Moreover, the fact that nearly 50% species assemblage is not detected with our approaches suggest that tree species in these tropical forest systems are assembled with multiple ecological processes, and that there is a need to explore the processes other than the two biotic interactions in further researches.  相似文献   

4.
Assessing the importance of deterministic processes in structuring ecological communities is a central focus of community ecology. Typically, community ecologists study a single taxonomic group, which precludes detection of potentially important biotic interactions between distantly related species, and inherently assumes competition is strongest between closely related species. We examined distribution patterns of vertebrate species across the island of Borneo in Southeast Asia to assess the extent to which inter-specific competition may have shaped ecological communities on the island and whether the intensity of inter-specific competition in present-day communities varies as a function of evolutionary relatedness. We investigated the relative extent of competition within and between species of primates, birds, bats and squirrels using species presence–absence and attribute data compiled for 21 forested sites across Borneo. We calculated for each species pair the checkerboard unit value (CU), a statistic that is often interpreted as indicating the importance of interspecific competition. The percentage of species pairs with significant CUs was lowest in within-taxon comparisons. Moreover, for invertebrate-eating species the percentage of significantly checkerboarded species pairs was highest in comparisons between primates and other taxa, particularly birds and squirrels. Our results are consistent with the interpretation that competitive interactions between distantly related species may have shaped the distribution of species and thus the composition of Bornean vertebrate communities. This research highlights the importance of taking into account the broad mammalian and avian communities in which species occur for understanding the factors that structure biodiversity.  相似文献   

5.
Pathogens are potent selective forces whose importance in shaping the size and structure of individual plant populations and whole communities has been underestimated. Even in situations where host and pathogen have been associated over long periods of time, pathogens regularly affect host fitness by reducing fecundity and increasing mortality either directly or indirectly through reductions in competitive ability. The genetic consequences of such disease-induced reductions in fitness are profound. On a broad geographic scale, race-specific resistance generally occurs more frequently in regions characterized by environments favourable for disease development. Within such areas, however, the distribution of resistant plant genotypes is often very patchy. This probably reflects the importance of extinction and colonization events in the continuing co-evolutionary dynamics of host-pathogen associations. At a demographic level, pathogen-induced reductions in host fitness may lead to changes in the size of populations. In turn, this may lead to changes in the relative diversity of whole communities. Documentation of this scale of interaction is poor, but the devastating consequences of the introduction of pathogens into alien environments provides a salutary reminder of their power to change plant communities radically.  相似文献   

6.
How plant competition varies across environmental gradients has been a long debate among ecologists. We conducted a growth chamber experiment to determine the intensity and importance of competition for plants grown in changed environmental conditions. Festuca rubra and Trifolium pratense were grown in monoculturs and in two- and/or three-species mixtures under three environmental treatments. The measured competitive variations in terms of growth (height and biomass) were species-dependent. Competition intensity for Festuca increased with decreased productivity, whilst competition importance displayed a humpback response. However, significant response was detected in neither competition intensity nor importance for Trifolium. Intensity and importance of competition followed different response patterns, suggesting that they may not be correlated along an environmental gradient. The biological and physiological variables of plants play an important role to determine the interspecific competition associated with competition intensity and importance. However, the competitive feature can be modified by multiple environmental changes which may increase or hinder how competitive a plant is.  相似文献   

7.
Natural environments, like soils or the mammalian gut, frequently contain microbial consortia competing within a niche, wherein many species contain genetically encoded mechanisms of interspecies competition. Recent computational work suggests that physical structures in the environment can stabilize local competition between species that would otherwise be subject to competitive exclusion under isotropic conditions. Here we employ Lotka-Volterra models to show that interfacial competition localizes to physical structures, stabilizing competitive ecological networks of many species, even with significant differences in the strength of competitive interactions between species. Within a limited range of parameter space, we show that for stable communities the length-scale of physical structure inversely correlates with the width of the distribution of competitive fitness, such that physical environments with finer structure can sustain a broader spectrum of interspecific competition. These results highlight the potentially stabilizing effects of physical structure on microbial communities and lay groundwork for engineering structures that stabilize and/or select for diverse communities of ecological, medical, or industrial utility.  相似文献   

8.
Questions: 1. Can the importance and the intensity of competition vary independently along a nutrient gradient? 2. Are these variations species dependent? Location: Sub‐alpine pastures of the northern French Alps. Methods: Competition intensity measures how much competition decreases the performances of an organism. Competition importance measures how much competition contributes to affect performance, among other processes (such as environmental stress or disturbance). Competition intensity and importance were measured on three co‐occurring species: Festuca rubra, a perennial grass, and two forbs of contrasting basal area, Chaerophyllum hirsutum and Alchemilla xantho‐chlora. A neighbour removal experiment was performed on Festuca rubra in three sub‐alpine grassland communities differing in fertility and on Chaerophyllum hirsutum and Alchemilla xanthochlora in the two more fertile of these communities. The importance of competition was quantified using an index proposed by Brooker et al. (2005). Results: Competition intensity and importance showed different patterns of variation along the fertility gradient for Festuca rubra: competition importance decreased with decreasing fertility whereas competition intensity did not change. The largest forb was the least affected by competition. Our results suggest that the importance of competition for all three species depended on their individual tolerance to low nutrient availability. Conclusions: 1. The distinction between the importance and the intensity of competition is helpful to explain conflicting results obtained on the variations of competition indices along productivity gradients. 2. The choice of a phytometer can affect the conclusions drawn from empirical studies.  相似文献   

9.
We examined whether the intense root competition in a rough fescue grassland plant community in central Alberta, Canada, was important in structuring plant species diversity or community composition. We measured competition intensity across gradients of species richness, evenness, and community composition, using pairs of naturally occurring plants of 12 species. One plant in each pair was isolated from neighbors to measure competition; community structure and environmental conditions were also measured at each pair. We used structural equation modeling to examine how competition influenced community structure. Competition intensity was unrelated to species richness and community composition, but increased competition intensity was associated with a slight decline in evenness. Size-symmetric root competition was probably unimportant in structuring this plant community because there are no feedback mechanisms through which size-symmetric competition can magnify small initial differences and eventually lead to competitive exclusion. In plant communities with little shoot competition, competition and community structure should be unlinked regardless of competition intensity. In more productive systems, we propose that interactions between root and shoot competition may indirectly structure communities by altering the overall asymmetry of competition.  相似文献   

10.
Plants exist across varying biotic and abiotic environments, including variation in the composition of soil microbial communities. The ecological effects of soil microbes on plant communities are well known, whereas less is known about their importance for plant evolutionary processes. In particular, the net effects of soil microbes on plant fitness may vary across environmental contexts and among plant genotypes, setting the stage for microbially mediated plant evolution. Here, we assess the effects of soil microbes on plant fitness and natural selection on flowering time in different environments. We performed two experiments in which we grew Arabidopsis thaliana genotypes replicated in either live or sterilized soil microbial treatments, and across varying levels of either competition (isolation, intraspecific competition or interspecific competition) or watering (well‐watered or drought). We found large effects of competition and watering on plant fitness as well as the expression and natural selection of flowering time. Soil microbes increased average plant fitness under interspecific competition and drought and shaped the response of individual plant genotypes to drought. Finally, plant tolerance to either competition or drought was uncorrelated between soil microbial treatments suggesting that the plant traits favoured under environmental stress may depend on the presence of soil microbes. In summary, our experiments demonstrate that soil microbes can have large effects on plant fitness, which depend on both the environment and individual plant genotype. Future work in natural systems is needed for a complete understanding of the evolutionary importance of interactions between plants and soil microorganisms.  相似文献   

11.
Nutrient enrichment of rivers and lakes has been increasing rapidly over the past few decades, primarily because of agricultural intensification. Although nutrient enrichment is known to drive excessive algal and microbial growth, which can directly and indirectly change the ecological community composition, the resulting changes in food web emergent properties are poorly understood. We used ecological network analysis (ENA) to examine the emergent properties of 12 riverine food webs across a nutrient enrichment gradient in the Manawatu, New Zealand. We also derive Keystone Sensitivity Indices to explore whether nutrients change the trophic importance of species in a way that alters the resilience of the communities to further nutrient enrichment or floods. Nutrient enrichment resulted in communities composed of energy inefficient species with high community (excluding microbes) respiration. Community respiration was several times greater in enriched communities, and this may drive hypoxic conditions even without concomitant changes in microbial respiration. Enriched communities exhibited weaker trophic cascades, which may yield greater robustness to energy flow loss. Interestingly, enriched communities were also more structurally and functionally affected by species sensitive to flow disturbance making these communities more vulnerable to floods.  相似文献   

12.
When species' elevational ranges are wider where putative competitors are absent, researchers have concluded that interspecific competition influences elevational distributions. This overlooks the distinction between factors that limit distributions directly and factors that only influence organisms indirectly through covarying regulators or resources. Because elevation affects organisms indirectly, testing whether competition influences elevational ranges relies on the heretofore untested assumption that the relationship between elevation and factors influencing organisms directly is similar across geography. Focusing on Buarremon brush-finches (Aves: Emberizidae), a group in which distributions represent one of the best examples of the potential role of competition limiting elevational ranges, we show that when distributions are compared along axes of climatic variation, some patterns of elevational range variation do appear to be consistent with predictions of the hypothesis that release from competition underlies expanded elevational ranges in allopatry. However, other patterns of expanded elevational ranges in the absence of putative competitors are better explained by hypothesis related to species' autoecology and geographic variation in the environment. This latter finding cautions against using elevation uncritically as a dimension of ecological niches, and suggests that classical examples of interspecific competition may need re-evaluation.  相似文献   

13.
刈牧对草原植物的影响   总被引:7,自引:0,他引:7  
在草原科学发展的早期 ,人们认识了重要植物的生长营养需要和生活史特性 ,对草原管理基本理论的发展起到了重要作用[1 ] 。此后 ,为了更有效地管理草原和食草家畜 ,以使刈牧对草原植物的有害影响降到最低限度 ,并维持植物和家畜的持续生产 ,人们开始将植物对刈牧响应的知识与不同的过程结合起来。70年代中期 ,随着放牧最优化假设的提出 ,植物 -食草动物相互作用的模拟研究盛况空前[2 ,3] 。这种假设认为最大植物生产力产生于最优的刈牧强度 ,而不是不刈牧的植物。但这种假设在生态学家和自然资源管理学家之间产生了许多分歧[3~ 6] 。此时 ,…  相似文献   

14.
Damage to plants by herbivores is ubiquitous and sometimes severe. Tolerance is the capacity of a plant to maintain its fitness through growth and reproduction after sustaining herbivore damage. Recent physiological and ecological work indicates that tolerance mechanisms are numerous and varied. Some of the plant traits involved may reflect selection by herbivores, while others are likely to be by-products of selection for other ecological functions. Similarly, some tolerance mechanisms may participate In trade-offs with plant defence, while many do not. Regardless of its ultimate origin or physiological relationship to plant defence, tolerance often may Influence the evolution of plant defence and the composition of plant communities.  相似文献   

15.
Knowledge of species interactions is vital to understand ecological and evolutionary patterns in nature. Traditional species interactions (e.g., competition, predation, symbiosis) have received a great deal of deserved attention and their general importance in shaping the evolution of populations and structure of communities is unquestioned. Recently, reproductive interference has been receiving attention as an important species interaction. Reproductive interference is defined as interspecific reproductive activities that decrease the fitness of at least one of the species involved in the interaction. Reproductive interference has the potential to affect the evolutionary trajectories of populations and structure of communities. Here, I comment on seven papers that make up this special feature on reproductive interference. Along the way I highlight key discoveries of these studies and areas of research that may contribute to our understanding of the causes and consequences of reproductive interference.  相似文献   

16.
1.  Currently, there is a debate among plant ecologists on the concepts of the intensity of competition and the importance of competition, which is central to many issues of modern plant population ecology and plant community ecology.
2.  It is problematic that the current measures of intensity and importance of competition, typically, are reported as dimensionless indices because they hide the fact that both indices are functions of plant density and the level of the environmental gradient.
3.  Here, a new formulation of the concepts is suggested, which explicitly highlights the functional dependencies on plant density and the level of the environmental gradient. The new measures are a generalization of the previous indices and correspond to the previous indices in the case of a simple experimental design.
4.  The suggested measures of the intensity and importance of competition are exemplified using data from a response surface competition experiment between Agrostis capillaris and Festuca ovina along a herbicide gradient, where the expected clear effect of plant density was demonstrated.
5.   Synthesis . As the suggested measures of the intensity and importance of competition explicitly highlight the functional dependencies on plant density and the level of the environmental gradient, we think that they will help to ensure a closer connection between experimental plant ecology and the attempts to model plant populations and communities.  相似文献   

17.
Sexual conflict is a pervasive evolutionary force that can reduce female fitness. Experimental evolution studies in the laboratory might overestimate the importance of sexual conflict because the ecological conditions in such settings typically include only a single species. Here, we experimentally manipulated conspecific male density (high or low) and species composition (sympatric or allopatric) to investigate how ecological conditions affect female survival in a sexually dimorphic insect, the banded demoiselle (Calopteryx splendens). Female survival was strongly influenced by an interaction between male density and species composition. Specifically, at low conspecific male density, female survival increased in the presence of heterospecific males (C. virgo). Behavioral mating experiments showed that interspecific interference competition reduced conspecific male mating success with large females. These findings suggest that reproductive interference competition between con‐ and heterospecific males might indirectly facilitate female survival by reducing mating harassment from conspecific males. Hence, interspecific competitors can show contrasting effects on the two sexes thereby influencing sexual conflict dynamics. Our results call for incorporation of more ecological realism in sexual conflict research, particularly how local community context and reproductive interference competition between heterospecific males can affect female fitness.  相似文献   

18.
Fertilization causes species loss and species dominance changes in plant communities worldwide. However, it still remains unclear how fertilization acts upon species functional traits, e.g. seed mass. Seed mass is a key trait of the regeneration strategy of plants, which influences a range of processes during the seedling establishment phase. Fertilization may select upon seed mass, either directly by increased nutrient availability or indirectly by increased competition. Since previous research has mainly analyzed the indirect effects of fertilization, we disentangled the direct and indirect effects to examine how nutrient availability and competition influence the seed mass relationships on four key components during seedling establishment: seedling emergence, time of seedling emergence, seedling survival and seedling growth. We conducted a common garden experiment with 22 dry grassland species with a two‐way full factorial design that simulated additional nutrient supply and increased competition. While we found no evidence that fertilization either directly by additional nutrient supply or indirectly by increased competition alters the relationship between seed mass and (time of) seedling emergence, we revealed that large seed mass is beneficial under nutrient‐poor conditions (seedlings have greater chances of survival, particularly in nutrient‐poor soils) as well as under competition (large‐seeded species produced larger seedlings, which suffered less from competition than small‐seeded species). Based on these findings, we argue that both factors, i.e. nutrient availability and competition intensity, ought to be considered to understand how fertilization influences seedling establishment and species composition with respect to seed mass in natural communities. We propose a simple conceptual model, in which seed mass in natural communities is determined by competition intensity and nutrient availability. Here, we hypothesize that seed mass shows a U‐shaped pattern along gradients of soil fertility, which may explain the contrasting soil fertility‐seed mass relationships found in the recent literature.  相似文献   

19.
Bird studies have gained a central role in the debate on the importance of interspecific competition in nature. Thus, the negative results reported from a breeding bird community in a North American shrubsteppe area have created ripples throughout community ecology. However, the set of coexisting breeding birds might be an inappropriate operational definition of a bird community, because the intensity of interspecific competition can be expected to peak in autumn-winter. A review of North European data on wintering birds suggests that the case for the competition theory remains strong when bird communities are defined on the basis of winter coexistence.  相似文献   

20.
A niche for neutrality   总被引:2,自引:0,他引:2  
Ecologists now recognize that controversy over the relative importance of niches and neutrality cannot be resolved by analyzing species abundance patterns. Here, we use classical coexistence theory to reframe the debate in terms of stabilizing mechanisms (niches) and fitness equivalence (neutrality). The neutral model is a special case where stabilizing mechanisms are absent and species have equivalent fitness. Instead of asking whether niches or neutral processes structure communities, we advocate determining the degree to which observed diversity reflects strong stabilizing mechanisms overcoming large fitness differences or weak stabilization operating on species of similar fitness. To answer this question, we propose combining data on per capita growth rates with models to: (i) quantify the strength of stabilizing processes; (ii) quantify fitness inequality and compare it with stabilization; and (iii) manipulate frequency dependence in growth to test the consequences of stabilization and fitness equivalence for coexistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号