首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of immune or gamma interferon (IFN-gamma) by major histocompatibility complex (MHC)-restricted pigeon cytochrome c-specific Lyt 1+2-, interleukin 2 (IL 2)-producing proliferative T cell clones when cultured with antigen and antigen-presenting cells (APC) is a sensitive measure of the state of activation of the cell. In general, the fine specificity of T cell activation was similar when activation was measured either by IFN-gamma production or by proliferation. In response to antigen and the correct Ia molecule, the T cell clones produced both high titered IFN-gamma and a strong proliferative response. However, IFN-gamma production and the degree of proliferation of the T cell clones differed at high antigen concentrations. As antigen concentration increased, the magnitude of proliferation became submaximal whereas the IFN-gamma response became maximal suggesting that IFN-gamma produced by the cells might act as an autoregulatory molecule inhibiting the proliferative response. Stimulating the T cell to divide via its IL 2 receptor by adding exogenous IL 2 produced high levels of proliferation but only low titers of IFN-gamma activity. In addition, irradiation of the clone eliminated the IFN-gamma release induced by IL 2 but did not affect the IFN-gamma release induced by antigen and Ia. Thus proliferation is not essential for IFN-gamma production and unlike antigen and Ia, IL 2 functions predominantly as a proliferative signal and not as a signal for factor release. Two T cell clones showed a dissociation of IFN-gamma production and proliferation. In one case, a clone that proliferated in response to both allogeneic and antigenic stimuli released IFN-gamma in response to antigen but failed to produce IFN-gamma in response to the allogeneic stimulus. A second clone that showed a strong proliferative response to pigeon cytochrome c but no proliferative response to a species variant of cytochrome c, tobacco hornworm moth (THWM) cytochrome c, produced IFN-gamma when stimulated with either of these antigens. Thus, the sensitivity of detecting activation of T cell clones as measured by the release of an individual lymphokine varies from one clone to another.  相似文献   

2.
The activation of an apo-cytochrome c-specific T cell clone was found to differ, depending on the antigen-presenting cell population. Whereas total syngeneic spleen cells and bone marrow macrophages could be shown to trigger proliferation, IL 2, and MAF production by the T cell clone, a B cell lymphoma only induced MAF secretion. Further studies demonstrated that this effect was not due to a different antigen processing by the B lymphoma or to limiting amounts of Ia and antigen molecules on the B lymphoma cell surface. The dissociation of induction of MAF production from IL-2 production/proliferation found with the different antigen-presenting cells indicates strongly that molecules other than Ia and antigen may be required for the complete functional activation of antigen-specific T cell clones.  相似文献   

3.
We have studied the relationship between major histocompatibility complex (MHC)-restricted antigen recognition and alloreactivity by examining T cell receptor (TCR) alpha and beta gene expression in cytochrome c-specific, Ek alpha:Ek beta (Ek)-restricted helper T cell clones derived from B10.A mice. The clones could be segregated on the basis of four distinct alloreactivity patterns. Clones cross-reactive for three different allogeneic la molecules (As alpha:As beta [As], Ab alpha:Ab beta [Ab], Ek alpha: Eb beta [Eb]) expressed the same V alpha and V beta gene segments, generating the distinct alloreactive specificities via unique V alpha-J alpha and V beta-D beta-J beta joining events. Ek alpha:Es beta (Es)-alloreactive B10.A clones expressed the same V alpha, J alpha, and V beta segments as an Es-restricted, Ek-alloreactive, cytochrome c-specific, H-2-congenic B10.S(9R) clone. This homology between TCRs mediating allorecognition of la molecules and recognition of the same la molecules as restriction elements associated with nominal antigen suggests that MHC-restricted recognition and allorecognition represent differences in the affinity of the TCR-MHC molecule interaction.  相似文献   

4.
Antigen-induced activation of T lymphocytes that co-recognize Ia molecules has been shown to require an antigen-processing step by the presenting cell before T cell stimulation can occur. In this report, we demonstrate that antigen presentation of pigeon cytochrome c to an E kappa beta:E kappa alpha-restricted T cell hybridoma, 2C2, is inhibited by pretreatment of the antigen-presenting cells (APC) either with chloroquine or with fixation by paraformaldehyde. The chloroquine effect was partially reversible after 22 hr; the paraformaldehyde effect was not. In contrast, these treatments had little or no effect on the presentation of the carboxy-terminal cyanogen bromide cleavage fragment of pigeon cytochrome c, residues 81 to 104. There was at least a 50-fold greater potency of the fragment, as compared to that of the intact molecule, when paraformaldehyde-fixed APC were used. In addition, the fixed cells did not present synthetic fragments of the cytochrome c that were nonstimulatory when presented by unfixed cells. This observation showed that the loss of potency, demonstrated previously for analogs of pigeon cytochrome c with single amino acid substitutions at positions such as 99, was not a consequence of an alteration in the rate of antigen-processing. This result is consistent with our earlier hypothesis that these residues are contact amino acids with the antigen-specific T cell receptor or the Ia molecule. The major goal of these experiments was to define the molecular transition that occurred as a result of antigen processing. To achieve this end, we tested a variety of pigeon cytochrome c molecules and fragments for their ability to be presented by paraformaldehyde-fixed APC. Apocytochrome c, the denatured form of the molecule with the heme removed, could not be presented by the fixed cells, nor could the fragment 60-104, derived by acid cleavage of the tryptophan at position 59. Both molecules stimulated an IL 2 response from the T cell hybridoma when unfixed APC were utilized, demonstrating that the conditions used to prepare these two molecules did not destroy their antigenic determinant. In contrast, carboxy-terminal fragments, both native and synthetic, ranging in size from 16 to 39 amino acids, were capable of stimulating in the presence of paraformaldehyde-fixed APC. In particular, the partial-digest cyanogen bromide fragment, residues 66 to 104, was only twofold less potent than the pigeon fragment 81-104.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
An examination of the proliferative response to pigeon cytochrome c fragments 1 to 65 and 1 to 80 by T cells from mice that are low responders to the native molecule revealed that some of the strains could respond to antigenic determinants on these fragments. T cell clones derived from B10.A(3R) and B10.A(4R) mice were used to characterize the antigenic determinants on fragment 1 to 65. All of the clones recognized syngeneic A beta:A alpha Ia molecules as their restriction element. Three B10.A(3R) clones and six B10.A(4R) clones recognized fragment 39 to 65. Another four B10.A(4R) clones responded to fragment 1 to 38. By stimulating with a series of cytochrome c fragments from different species, as well as a synthetic peptide, it was possible to localize the antigenic determinant(s) recognized by the B10.A(3R) clones to residues 45 to 58. Each clone showed a unique pattern of responsiveness to the various fragments, suggesting a diversity of T cell receptors specific for the same peptide. One B10.A(3R) clone could be stimulated by many of the 1 to 65 fragments in association with allogeneic B10.SM presenting cells and by tuna fragment 1 to 65 in association with B10.M presenting cells, although the rank order of potency for several of the fragments was different than that observed with syngeneic antigen-presenting cells. In addition, the clone was poorly reactive to a synthetic peptide containing a conservative substitution, serine for threonine, at position 49. The implications of these results for subsite dissection (agretope and epitope) of the antigenic determinant recognized by this clone are discussed.  相似文献   

6.
Increasing the number of antigen-specific T cell clones in a T cell proliferation assay resulted in a shift in the antigen dose-response curves toward higher amounts of antigen (i.e., more antigen was required to achieve a given degree of stimulation). The antigen dose-response curve shifts were found to reflect the competition that occurred between the antigen-specific T cell receptors for their ligand, a combination of antigen and Ia molecule. This observation made it possible to determine whether the difference in the potency with which several synthetic cytochrome c analogs could stimulate one cytochrome c-specific T cell clone was due to a difference in the avidity of the antigen-specific receptors on the T cell clone for the different Ia molecule-antigen combinations. It was demonstrated that a single amino acid substitution at position 103 (which greatly diminished the potency of the analog) did not significantly alter the avidity of the T cell antigen-specific receptor for its ligand. In contrast, a substitution at position 99 (which resulted in a comparable decrease in potency) caused a dramatic loss of avidity. These results are consistent with the previous designation of residue 99 as one site on the antigen that contacts the T cell antigen-specific receptor, and of residue 103 as one part of the antigen that contacts the Ia molecule.  相似文献   

7.
The activation of Ag-specific, Ia molecule-restricted, TCR V beta 3+ T cell clones by staphylococcal toxic shock syndrome toxin-1 (TSST-1), was investigated. The results show that although Ag- and TSST-1-induced activation of T cell clones both require TCR expression and similar biologic activation signals, the Ia molecule requirement for TSST-1 recognition was much less stringent than that observed for antigenic peptide recognition. In addition, T cell clones recognized TSST-1 without processing by APC. These results suggest that the ability of TSST-1 to polyclonally activate T cells is dependent on TCR recognition of the intact toxin molecule bound to a nonpolymorphic region(s) of the Ia molecule resulting in the same activation events induced by Ag recognition.  相似文献   

8.
The fine specificity of the response of T cell clones derived from B10.BR and B10.S congenic mouse strains restricted by I-Ak and I-As molecules, respectively, and which recognize the same 17 amino acid sequence (102-118) of myoglobin, has been investigated and compared with that of T cell clones specific for the same peptide with I-A.d The critical amino acid residues within the 102-118 region of myoglobin required for stimulation of I-Ak-and I-As-restricted T cell clones specific for this determinant were compared using a panel of synthetic peptide analogs. Residues 109, 113, and 116 were critical for stimulation of clones from both haplotypes, although the precise fine specificity varied, even among clones using the same restriction molecule. Residues 109 and 116 are also critical for stimulation of myoglobin-specific I-Ad-restricted clones (Berkower, I., L. A. Matis, G.K. Buckenmeyer, F.R. N. Gurd, D. L. Longo, and J. A. Berzofsky. J. Immunol. 132:1370, 1984). There was also considerable overlap in the size of the minimal determinant necessary for full activity: 106-118 for B10.BR and B10.D2 (Cease, K. B., I. Berkower, J. York-Jolley, and J. A. Berzofsky. J. Exp. Med. 164:1779, 1986) clones and 102-117 for B10.S clones. Despite this similarity in fine specificity, T cell clones were genetically restricted and could not be stimulated with the 102-118 peptide presented by Ia molecules of other haplotypes that could also present this epitope to syngeneic clones. These results suggest that binding of an immunogenic peptide to class II molecules is not sufficient to ensure recognition by a given T cell antigen receptor specific for the peptide, but do not indicate whether the major histocompatibility complex molecules interact directly with the T cell antigen receptor or induce a different recognizable conformation of the peptide.  相似文献   

9.
The dominant T cell determinant on moth and pigeon cytochromes c in B10.A (E beta k:E alpha k) mice is located in the C-terminal portion of the protein, contained within residues 93-103 or 93-104. Thirty-seven antigen analogs, containing single amino acid substitutions at positions 98, 99, 101, 102, 103, and 104, were synthesized. The effects of the substitutions on in vitro antigenicity and in vivo immunogenicity were determined. Functional assays with T cell clones identified residues 99, 101, 102, and 103 as critical, based on their effect on antigenic potency. Peptides containing substitutions at residues 99, 101, and 102 were capable of eliciting unique clones upon immunization of B10.A mice. This was consistent with the identification of these residues as part of the epitope, the site on the antigen that interacts with the T cell receptor. Immunization with peptides substituted at residue 103, however, failed to elicit clones with unique specificity for the immunogen. When these peptides were tested for their ability to stimulate the T cell clones with antigen-presenting cells from B10.A(5R) mice expressing the E beta b:E alpha k Ia molecule, a consistent change in the relative antigenic potency was observed with 50% of the peptides. The effect of the Ia molecule on the antigenic potency ruled out the possibility that residue 103 nonspecifically affected antigen uptake or processing and identified residue 103 as part of the agretope, the site that interacts with the Ia molecule. The locations of the agretope and the epitope on this antigenic determinant appear to be fixed, even in the presence of large numbers of amino acid substitutions. However, some substitutions were found to affect both the agretope and the epitope, placing limits on the functional independence of the two sites. The results are discussed in terms of the trimolecular complex model of T cell activation and the implications of these data for antigen-Ia molecule interactions.  相似文献   

10.
Helper T cell recognition of globular protein antigens requires the intracellular processing of the native molecule by an antigen-presenting cell and subsequent presentation of a peptide fragment, containing the antigenic determinant, on the cell surface where it is recognized by the specific T cell in conjunction with Ia. B lymphocytes can function as antigen-presenting cells and, when antigen is bound by their surface Ig, are greatly enhanced in this capacity. In this report it is demonstrated that pigeon cytochrome c covalently coupled to antibodies directed toward either B cell surface immunoglobulin, class I or class II are effectively processed and presented by B cells to cytochrome c-specific T cells, requiring up to 1000-fold less cytochrome c as compared with cytochrome c alone or cytochrome c coupled to nonspecific immunoglobulin. The potent activity of the cytochrome c-antibody conjugates appears to be due to the ability of B cells to concentrate the antigen when the process becomes receptor mediated rather than to a signal provided to the B cell by the conjugate binding, because cytochrome c was not more effectively presented in the presence of unconjugated antibodies as compared with cytochrome c alone. Furthermore, the binding of the native antigen to B cell surfaces is not alone sufficient for T cell activation, in that the cytochrome c-antibody conjugates require processing and are major histocompatibility complex restricted. The results presented here indicate that surface immunoglobulin is not unique in its ability to facilitate antigen processing and/or presentation and that Ig, class I and class II are capable of transporting the cytochrome c to a cytoplasmic vesicle where proteolysis occurs yielding the required peptide, minimally of 10 amino acids. Cytochrome c coupled to monovalent fragments of anti-Ig-antibodies was nearly as effectively presented as cytochrome c coupled to bivalent antibodies, indicating that phenomena mediated by bivalent binding, such as patching and capping of the surface Ig, were not required for effective antigen presentation. The cytochrome c-antibody conjugates, which allow antigen processing to be initiated by receptor-mediated endocytosis, may provide the necessary tools to unravel the intracellular processes by which protein antigens are processed and presented by B lymphocytes.  相似文献   

11.
The observation has previously been made that receptor-bearing cells in culture compete with each other for their ligand. As a result, at a fixed concentration of ligand, the fractional occupancy of the receptor will tend to fall as the number of cells is increased. We have demonstrated that T cells in culture also compete for their ligand, the combination of foreign antigen and the Ia molecule (antigen-Ia), and that this manifests itself as shifts in the antigen dose-response curves as the number of responding T cells is increased. Because of the complexity of T cell activation, modifications to the antigen that affected its stimulatory capacity (i.e., its potency) could come about by altering its interaction with either the T cell receptor or the Ia molecule. We could distinguish between these two possibilities by studying the extent to which the antigen dose-response curves shifted as the T cell number was increased. Amino acid substitutions in the antigen that affected the interaction with the T cell receptor caused changes in the dose-response curve shifts, whereas substitutions that decreased potency by other means did not cause such changes. Finally, two allelic forms of the Ia molecule that differed only slightly in their amino-terminal domain were used to present a single antigen to a T cell clone. Despite a difference in antigenic potency in the presence of these two Ia molecules, no difference was demonstrated in the avidity of the T cell receptor for either antigen-Ia combination. These results suggest that the antigen and the Ia molecule make physical contact during the process of antigen recognition, and that the potency of an antigen can vary as a result of its interaction with either the T cell receptor or the Ia molecule.  相似文献   

12.
The interaction between the clonally selected T cell receptor, antigen, and Ia molecule is poorly understood at the molecular level. A cell line bearing an altered E beta k molecule has been examined to provide more information about the relationship between Ia structure and function. The cell line, 2B1, was derived from the TA3 B cell hybridoma through a series of negative and positive immunoselection steps. The 2B1 mutant lacked the binding site recognized by the 17.3.3 monoclonal antibody (mAb) but presented antigen normally to all I-Ek-restricted T cell hybridomas and clones examined. Sequence analysis of the mutant E beta k gene showed a single base transition (G----A) that resulted in an arginine to a histidine substitution at amino acid 49 of the beta 1 domain. This mutation demonstrates that residue 49 is not involved in antigen presentation to T cells but can be involved in B cell recognition (mAb binding).  相似文献   

13.
Culture of normal inducer T cell clones with antigen and purified Ek beta:Ek alpha incorporated into planar lipid membranes resulted in specific T cell activation as determined by cell volume increase and IL 3 production. However, in contrast to results obtained with T cell hybridomas, antigen presentation by planar membranes did not induce measurable IL 2 production, and proliferative responses were not detected. Rather, recognition of only Ek beta:Ek alpha and antigen resulted in the specific induction of a long-lived state of proliferative nonresponsiveness to subsequent stimulation by conventional APC and antigen. Induction of nonresponsiveness required protein synthesis, and was not simply due to the absence of IL 2. The antigen-nonresponsive cells could respond to either PMA plus ionomycin or IL 2, and they expressed normal levels of surface antigen-receptor molecules. These results demonstrate that recognition by normal T cell clones of antigen and Ia molecules in the absence of other accessory cell molecules and signals results in a prolonged state of proliferative nonresponsiveness, possibly similar to a state of T cell tolerance in vivo.  相似文献   

14.
Previous studies have demonstrated that a single T cell clone can respond to both a foreign antigen in the context of self major histocompatibility complex (MHC)-encoded molecules (self plus X) and to an allogeneic class I or class II molecule in the absence of antigen (non-self). We have used limiting dilution of T cells obtained from the draining lymph nodes of antigen-primed B10.A mice to establish a large number of T cell clones that recognize either GAT, pigeon cytochrome c, or sheep insulin in association with syngeneic antigen-presenting cells. Sixty-two antigen-specific T cell clones were assayed for their ability to proliferate in response to a panel of nine different allogeneic haplotypes. Of these, 38 (61%) responded to at least one allogeneic haplotype, and 15 of the 38 (39%) responded to more than one allogeneic stimulator. In addition, the patterns of alloreactivity varied with the immunizing antigen. The GAT-specific T cells had at least one responder to every haplotype tested, although H-2u-responsive T cell clones were the most common. In contrast, no pigeon cytochrome c-specific T cells responded to stimulators of the H-2u haplotype, but rather predominantly responded to H-2t4/H-2s and H-2i5/H-2b. Finally, sheep insulin-reactive T cell clones preferentially responded to H-2u stimulators, although stimulation by antigen-presenting cells of the H-2p and H-2q haplotypes was also common. A chi 2 analysis of the data demonstrated that the dependence of the pattern of alloreactivity observed upon the antigen used for immunization was statistically significant (p less than 0.01). The high frequency of alloreactivity found in antigen-specific T cell clones is discussed, as well as the implications that the antigen-dependent skewing of the distribution of alloreactivity have for a one-receptor model vs a two-receptor model of T cell recognition.  相似文献   

15.
Three classes of signalling molecules on B-cell membranes   总被引:1,自引:0,他引:1  
The question of whether surface immunoglobulin and Ia molecules have a signalling function in helper T cell-dependent activation of B cells has been evaluated. Two sources of B cells have been used, one a purified population of hapten-binding B cells, the other a B-cell lymphoma, CH12, with known antigen specificity. Evidence is presented that both immunoglobulin and Ia molecules are receptors actively involved in the initial activation of resting B cells. Nevertheless, the requirements for ligand binding to either receptor can be bypassed under appropriate conditions, and the implications of this result for the function of these molecules is discussed. With respect to B-cell Ia, the authors present data that demonstrate two distinct functions of this molecule, one as a restricting element for T-cell activation, the second as a signalling receptor for B-cell excitation. On the CH12 surface, the I-A molecule fulfills the former function, but T-cell interactions with I-A fail to result in B-cell stimulation, suggesting that B-cell Ia may limit helper T cell-B cell interactions. We suggest that the binding of antigen surface immunoglobulin and binding of helper T-cell receptors to the appropriate Ia molecule(s) results in the activation of genes that encode for a third class of membrane B-cell receptors, those that bind B-cell stimulating factors.  相似文献   

16.
Hybrid cell lines were established by fusion between keyhole limpet hemocyanin(KLH) binding T cells of A/J mice and an AKR T cell tumor line, BW5147. Hybrids were selected for the presence of Ia antigen and KLH-specific augmenting activity of their extracts in the secondary antibody response. The detailed phenotypic and functional analysis of 1 of these clones, FL10, is reported here. The hybrid was positive for both Thy1.1 and Thy1.2 antigens and possessed the Lyt-1+,2-,3- phenotype. Both VH and Ia determinants were detected on their cell surface. The IA locus was mapped in the I-A subregion, but the Ia specificities were serologically distinct from those of B cell Ia antigen. This was demonstrated by the fact that anti-Ia antiserum preabsorbed with B cells could react with the hybrid cells, whereas none of the monoclonal anti-Ia specific for private and public determinations of Iak could. The extract from the cell line specifically augmented the in vitro secondary antibody response against dinitrophenylated KLH, and this activity was removed by absorption with antigen and conventional anti-Ia antisera. The results indicate that the cell line, FL10, carries Ia antigen unique to the T cell, which is associated with the antigen-specific augmenting molecule.  相似文献   

17.
To examine the role of Ia molecules in T cell responses to allo-class I major histocompatibility antigens, a series of allo-class I-reactive T cell hybridomas was established. Of 134 T cell hybridomas obtained from the fusion of C3H/HeJm or B10.HTT T cells stimulated with C57BL/6 splenocytes, nine T cell hybridomas were reactive to class I antigens and 126 T cell hybridomas were reactive to class II antigens. Six of the nine IL 2-producing T cell hybridomas were further analyzed: five mapped to H-2Kb and the other mapped to H-2Db. Three of these T cell hybridomas, HTB-157.7, HTB-176.10, and HTB-177.2, could react to the EL-4 cell line that expresses H-2Kb and H-2Db class I antigens but lacks class II I-Ab molecules. Furthermore, the activation of these three T cell hybridomas with C57BL/6-derived splenocytes was not blocked by either anti-I-A or anti-L3T4 antibody. In contrast, the other three T cell hybridomas, CB-127.6, CB-221.7, and HTB-102.7, failed to react with EL-4 but reacted with the LB cell line which expresses class I (H-2Kb, H-2Db) and class II (I-Ab) molecules. Although class II molecules were required for activation of the latter clones, there was no apparent I-A allele specificity, suggesting that a relatively nonpolymorphic Ia determinant was involved. The activation of the three latter T cell hybridoma clones with C57BL/6 splenocytes could be blocked completely by either anti-I-A or anti-L3T4 antibody. The data are interpreted in terms of possible T cell receptor models for recognition of class I with nonpolymorphic class II determinants.  相似文献   

18.
Th initial step in cytolytic T lymphocyte (CTL)-mediated cytolysis involves target cell adhesion and antigen recognition. To investigate these initial events in the CTL-target interaction, we used HLA-A2- and HLA-B7-specific human CTL clones and HLA-typed B lymphoblastoid target cells. By using two different adhesion assays, we demonstrated antigen nonspecific CTL-target cell adhesion. To more precisely define the contribution of the antigen-specific receptor to CTL-target cell adhesion, we used the HLA-A2, HLA-B7, and mock transfected RD target cells. Consistent with the results when using B lymphoblastoid target cells, the CTL clones demonstrated equivalent adhesions to the RD target cells whether or not they expressed HLA-A2 or HLA-B7. These results suggested that CTL-target cell adhesion occurred independent of the T cell receptor. By using the calcium-sensitive dye Indo-1 and flow cytometry, we assessed CTL-target cell adhesion and CTL activation. Simultaneous measurement of adhesion and intracellular free calcium demonstrated that CTL-target cell adhesion alone did not activate CTL clones. Both CTL-target cell adhesion and the presence of the appropriate HLA target molecule were necessary for the efficient activation of human CTL. MAb inhibition studies indicated that antigen nonspecific adhesion is largely regulated by the LFA-1, CD2 (LFA-2/T11), and LFA-3 cell surface molecules. These antigen nonspecific cell-cell interaction molecules appear to play an important role in facilitating antigen recognition and subsequent target cell lysis.  相似文献   

19.
The activation requirements of alloreactive and antigen reactive murine T cells were examined by stimulating class II restricted T cell clones with monoclonal B lymphoma cells. One B lymphoma cell line (T27A) was found to stimulate IL 2 release from some alloreactive T cell clones without stimulating any significant T cell proliferation response. The same B lymphoma cells are capable of stimulating IL 2 release and proliferative responses from other T cell clones. Evidence is presented suggesting that B lymphoma cell stimulation of these T cell clones is largely IL 1 independent and that at least some T cell clones may require activation signals other than Ia, antigen, and IL 1. The addition of exogenous, purified IL 1 to the T cell activation assays was found to have a wide range of stimulatory effects on the proliferative responses of different T cell clones. The absence of comparable IL 1-induced stimulation of IL 2 secretion suggests that IL 1 primarily enhances antigen specific T cell proliferation through mechanisms other than acting as a co-stimulant for IL 2 release.  相似文献   

20.
To induce Ia molecules on the surface of murine keratinocytes (KC), healthy mice were treated daily with i.p. injections of rIFN-gamma at a dose of 50,000 U/day for 6 days. This resulted in strong Ia expression by KC as determined by immunofluorescence of epidermal sheets or cell suspensions with anti-class II mAb. To obtain a population of Ia-bearing KC devoid of Langerhans cells, a method of depleting Langerhans cells from such suspensions was developed. Although Ia+ KC were unable to stimulate allogeneic T cells in a primary epidermal cell-lymphocyte reaction (less than 5% control), they did induce a proliferative response in an allospecific T cell line. Ia+ KC were unable to present native peptide molecules to class II restricted, Ag-specific T cell hybridomas. However, Ia+ KC were able to present a peptide fragment of pigeon cytochrome c to a hybridoma, suggesting that although these cells cannot process native protein Ag, they can present antigenic peptides. Ia+ (but not Ia-) KC also served as targets for class II restricted cytolytic T cell clones. These data indicate that the Ia expressed by KC is a functional molecule, and that Ia+ KC can participate in some immunologic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号