首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a series of dual-task experiments, in which a rapid serial visual presentation (RSVP) task was combined with a visual search task. Orientation, motion, and color were used as the defining target features in the search task. Lag between target onsets was manipulated and interference between the two tasks was quantified by measuring detection scores for the search task as a function of lag. While simultaneous performance of an orientation detection task with an RSVP letter identification task resulted in a performance decrease for lags up to 320 ms, no such decrease was detected for highly salient motion- and color-defined targets. Subsequently, detectability of the motion and color feature was matched to that of the orientation-feature resulting in the reintroduction of a (smaller) performance decrease, but only during simultaneous performance (lag 0 ms). The results suggest that there are two causes for the impaired search performance occurring when a feature search task is combined with an RSVP task. The first is short-lasting interference probably due to attentional competition; the second, which plays a role only when targets for both tasks share features, is interference that may be attributed to a central processing bottleneck.  相似文献   

2.
Active visual tracking of points on occlusion boundaries can simplify certain computations involved in determining scene structure and dynamics based on visual motion. Tracking is particularly effective at surface boundaries where large, discontinuous changes in depth are occurring. Two such techniques are described here. The first provides a measure of ordinal depth by distinguishing between occluding and occluded surfaces at a surface boundary. The second can be used to determine the direction of observer motion through a scene.A preliminary version of this material appeared in the Proceedings of the Workshop on Visual Motion, 1989. This work was supported by NSF Grant IRI-8722576  相似文献   

3.
Motion is a potent sub-modality of vision. Motion cues alone can be used to segment images into figure and ground and break camouflage. Specific patterns of motion support vivid percepts of form, guide locomotion by specifying directional heading and the passage of objects, and in case of an impending collision, the time to impact. Visual motion also drives smooth pursuit eye movements (SPEMs) that serve to stabilize the retinal image of objects in motion. In contrast, the auditory system does not appear to be particularly sensitive to motion. We review the ambiguous status of auditory motion processing from the psychophysical and electrophysiological perspectives. We then report the results of two experiments that use ocular tracking performance as an objective measure of the perception of auditory motion in humans. We examine ocular tracking of auditory motion, visual motion, combined auditory + visual motion and imagined motion in both the frontal plane and in depth. The results demonstrate that ocular tracking of auditory motion is no better than ocular tracking of imagined motion. These results are consistent with the suggestion that, unlike the visual system, the human auditory system is not endowed with low-level motion sensitive elements. We hypothesize however, that auditory information may gain access to a recently described high-level motion processing system that is heavily dependent on 'top-down' influences, including attention.  相似文献   

4.
In E. coli homologous recombination, a filament of RecA protein formed on DNA searches and pairs a homologous sequence within a second DNA molecule with remarkable speed and fidelity. Here, we directly probe the strength of the two-molecule interactions involved in homology search and recognition using dual-molecule manipulation, combining magnetic and optical tweezers. We find that the filament's secondary DNA-binding site interacts with a single strand of the incoming double-stranded DNA during homology sampling. Recognition requires opening of the helix and is strongly promoted by unwinding torsional stress. Recognition is achieved upon binding of both strands of the incoming dsDNA to each of two ssDNA-binding sites in the filament. The data indicate a physical picture for homology recognition in which the fidelity of the search process is governed by the distance between the DNA-binding sites.  相似文献   

5.
Researchers have conjectured that eye movements during visual search are selected to minimize the number of saccades. The optimal Bayesian eye movement strategy minimizing saccades does not simply direct the eye to whichever location is judged most likely to contain the target but makes use of the entire retina as an information gathering device during each fixation. Here we show that human observers do not minimize the expected number of saccades in planning saccades in a simple visual search task composed of three tokens. In this task, the optimal eye movement strategy varied, depending on the spacing between tokens (in the first experiment) or the size of tokens (in the second experiment), and changed abruptly once the separation or size surpassed a critical value. None of our observers changed strategy as a function of separation or size. Human performance fell far short of ideal, both qualitatively and quantitatively.  相似文献   

6.
Motion sickness is a complex condition that includes both overt signs (e.g., vomiting) and more covert symptoms (e.g., anxiety and foreboding). The neural pathways that mediate these signs and symptoms are yet to identified. This study mapped the distribution of c-fos protein (Fos)-like immunoreactivity elicited during a galvanic vestibular stimulation paradigm that is known to induce motion sickness in felines. A principal components analysis was used to identify networks of neurons activated during this stimulus paradigm from functional correlations between Fos labeling in different nuclei. This analysis identified five principal components (neural networks) that accounted for greater than 95% of the variance in Fos labeling. Two of the components were correlated with the severity of motion sickness symptoms, and likely participated in generating the overt signs of the condition. One of these networks included neurons in locus coeruleus, medial, inferior and lateral vestibular nuclei, lateral nucleus tractus solitarius, medial parabrachial nucleus and periaqueductal gray. The second included neurons in the superior vestibular nucleus, precerebellar nuclei, periaqueductal gray, and parabrachial nuclei, with weaker associations of raphe nuclei. Three additional components (networks) were also identified that were not correlated with the severity of motion sickness symptoms. These networks likely mediated the covert aspects of motion sickness, such as affective components. The identification of five statistically independent component networks associated with the development of motion sickness provides an opportunity to consider, in network activation dimensions, the complex progression of signs and symptoms that are precipitated in provocative environments. Similar methodology can be used to parse the neural networks that mediate other complex responses to environmental stimuli.  相似文献   

7.
Certain visual stimuli can give rise to contradictory perceptions. In this paper we examine the temporal dynamics of perceptual reversals experienced with biological motion, comparing these dynamics to those observed with other ambiguous structure from motion (SFM) stimuli. In our first experiment, naïve observers monitored perceptual alternations with an ambiguous rotating walker, a figure that randomly alternates between walking in clockwise (CW) and counter-clockwise (CCW) directions. While the number of reported reversals varied between observers, the observed dynamics (distribution of dominance durations, CW/CCW proportions) were comparable to those experienced with an ambiguous kinetic depth cylinder. In a second experiment, we compared reversal profiles with rotating and standard point-light walkers (i.e. non-rotating). Over multiple test repetitions, three out of four observers experienced consistently shorter mean percept durations with the rotating walker, suggesting that the added rotational component may speed up reversal rates with biomotion. For both stimuli, the drift in alternation rate across trial and across repetition was minimal. In our final experiment, we investigated whether reversals with the rotating walker and a non-biological object with similar global dimensions (rotating cuboid) occur at random phases of the rotation cycle. We found evidence that some observers experience peaks in the distribution of response locations that are relatively stable across sessions. Using control data, we discuss the role of eye movements in the development of these reversal patterns, and the related role of exogenous stimulus characteristics. In summary, we have demonstrated that the temporal dynamics of reversal with biological motion are similar to other forms of ambiguous SFM. We conclude that perceptual switching with biological motion is a robust bistable phenomenon.  相似文献   

8.
Motion stimuli in one visual hemifield activate human primary visual areas of the contralateral side, but suppress activity of the corresponding ipsilateral regions. While hemifield motion is rare in everyday life, motion in both hemifields occurs regularly whenever we move. Consequently, during motion primary visual regions should simultaneously receive excitatory and inhibitory inputs. A comparison of primary and higher visual cortex activations induced by bilateral and unilateral motion stimuli is missing up to now. Many motion studies focused on the MT+ complex in the parieto-occipito-temporal cortex. In single human subjects MT+ has been subdivided in area MT, which was activated by motion stimuli in the contralateral visual field, and area MST, which responded to motion in both the contra- and ipsilateral field. In this study we investigated the cortical activation when excitatory and inhibitory inputs interfere with each other in primary visual regions and we present for the first time group results of the MT+ subregions, allowing for comparisons with the group results of other motion processing studies. Using functional magnetic resonance imaging (fMRI), we investigated whole brain activations in a large group of healthy humans by applying optic flow stimuli in and near the visual field centre and performed a second level analysis. Primary visual areas were activated exclusively by motion in the contralateral field but to our surprise not by central flow fields. Inhibitory inputs to primary visual regions appear to cancel simultaneously occurring excitatory inputs during central flow field stimulation. Within MT+ we identified two subregions. Putative area MST (pMST) was activated by ipsi- and contralateral stimulation and located in the anterior part of MT+. The second subregion was located in the more posterior part of MT+ (putative area MT, pMT).  相似文献   

9.
Motion in the visual periphery of lizards, and other animals, often causes a shift of visual attention toward the moving object. This behavioral response must be more responsive to relevant motion (predators, prey, conspecifics) than to irrelevant motion (windblown vegetation). Early stages of visual motion detection rely on simple local circuits known as elementary motion detectors (EMDs). We presented a computer model consisting of a grid of correlation-type EMDs, with videos of natural motion patterns, including prey, predators and windblown vegetation. We systematically varied the model parameters and quantified the relative response to the different classes of motion. We carried out behavioral experiments with the lizard Anolis sagrei and determined that their visual response could be modeled with a grid of correlation-type EMDs with a spacing parameter of 0.3° visual angle, and a time constant of 0.1 s. The model with these parameters gave substantially stronger responses to relevant motion patterns than to windblown vegetation under equivalent conditions. However, the model is sensitive to local contrast and viewer-object distance. Therefore, additional neural processing is probably required for the visual system to reliably distinguish relevant from irrelevant motion under a full range of natural conditions.  相似文献   

10.
Attention to surfaces modulates motion processing in extrastriate area MT   总被引:1,自引:0,他引:1  
Wannig A  Rodríguez V  Freiwald WA 《Neuron》2007,54(4):639-651
In the visual system, early atomized representations are grouped into higher-level entities through processes of perceptual organization. Here we present neurophysiological evidence that a representation of a simple object, a surface defined by color and motion, can be the unit of attentional selection at an early stage of visual processing. Monkeys were cued by the color of a fixation spot to attend to one of two transparent random-dot surfaces, one red and one green, which occupied the same region of space. Motion of the attended surface drove neurons in the middle temporal (MT) visual area more strongly than physically identical motion of the non-attended surface, even though both occurred within the spotlight of attention. Surface-based effects of attention persisted even without differential surface coloring, but attentional modulation was stronger with color. These results show that attention can select surface representations to modulate visual processing as early as cortical area MT.  相似文献   

11.
When humans detect and discriminate visual motion, some neural mechanism extracts the motion information that is embedded in the noisy spatio-temporal stimulus. We show that an ideal mechanism in a motion discrimination experiment cross-correlates the received waveform with the signals to be discriminated. If the human visual system uses such a cross-correlator mechanism, discrimination performance should depend on the cross-correlation between the two signals. Manipulations of the signals' cross-correlation using differences in the speed and phase of moving gratings produced the predicted changes in the performance of human observers. The cross-correlator's motion performance improves linearly as contrast increases and human performance is similar. The ideal cross-correlator can be implemented by passing the stimulus through linear spatio-temporal filters matched to the signals. We propose that directionally selective simple cells in the striate cortex serve as matched filters during motion detection and discrimination.  相似文献   

12.
Motion of visual scene (optokinetic stimulus) projected on a wide screen frequently induces motion sickness. Rotational movements of 3D visual images were analyzed to examine what factors are effective in visually-induced motion sickness and how the gravity contributes to its inducement. While an angle of a rotational axis of 3D visual image from the gravitational direction and its angle from the subjective vertical which was perceived by viewers through 3D visual image were varied, the severity of visually-induced motion sickness was measured.  相似文献   

13.
It has long been known that the brain is limited in the amount of sensory information that it can process at any given time. A well-known form of capacity limitation in vision is the set-size effect, whereby the time needed to find a target increases in the presence of distractors. The set-size effect implies that inputs from multiple objects interfere with each other, but the loci and mechanisms of this interference are unknown. Here we show that the set-size effect has a neural correlate in competitive visuo-visual interactions in the lateral intraparietal area, an area related to spatial attention and eye movements. Monkeys performed a covert visual search task in which they discriminated the orientation of a visual target surrounded by distractors. Neurons encoded target location, but responses associated with both target and distractors declined as a function of distractor number (set size). Firing rates associated with the target in the receptive field correlated with reaction time both within and across set sizes. The findings suggest that competitive visuo-visual interactions in areas related to spatial attention contribute to capacity limitations in visual searches.  相似文献   

14.
In order to follow optic neuritis patients and evaluate the effectiveness of their treatment, a handy, accurate and quantifiable tool is required to assess changes in myelination at the central nervous system (CNS). However, standard measurements, including routine visual tests and MRI scans, are not sensitive enough for this purpose. We present two visual tests addressing dynamic monocular and binocular functions which may closely associate with the extent of myelination along visual pathways. These include Object From Motion (OFM) extraction and Time-constrained stereo protocols. In the OFM test, an array of dots compose an object, by moving the dots within the image rightward while moving the dots outside the image leftward or vice versa. The dot pattern generates a camouflaged object that cannot be detected when the dots are stationary or moving as a whole. Importantly, object recognition is critically dependent on motion perception. In the Time-constrained Stereo protocol, spatially disparate images are presented for a limited length of time, challenging binocular 3-dimensional integration in time. Both tests are appropriate for clinical usage and provide a simple, yet powerful, way to identify and quantify processes of demyelination and remyelination along visual pathways. These protocols may be efficient to diagnose and follow optic neuritis and multiple sclerosis patients.In the diagnostic process, these protocols may reveal visual deficits that cannot be identified via current standard visual measurements. Moreover, these protocols sensitively identify the basis of the currently unexplained continued visual complaints of patients following recovery of visual acuity. In the longitudinal follow up course, the protocols can be used as a sensitive marker of demyelinating and remyelinating processes along time. These protocols may therefore be used to evaluate the efficacy of current and evolving therapeutic strategies, targeting myelination of the CNS.  相似文献   

15.
Attention can be directed to particular spatial locations, or to objects that appear at anticipated points in time. While most work has focused on spatial or temporal attention in isolation, we investigated covert tracking of smoothly moving objects, which requires continuous coordination of both. We tested two propositions about the neural and cognitive basis of this operation: first that covert tracking is a right hemisphere function, and second that pre-motor components of the oculomotor system are responsible for driving covert spatial attention during tracking. We simultaneously recorded event related potentials (ERPs) and eye position while participants covertly tracked dots that moved leftward or rightward at 12 or 20°/s. ERPs were sensitive to the direction of target motion. Topographic development in the leftward motion was a mirror image of the rightward motion, suggesting that both hemispheres contribute equally to covert tracking. Small shifts in eye position were also lateralized according to the direction of target motion, implying covert activation of the oculomotor system. The data addresses two outstanding questions about the nature of visuospatial tracking. First, covert tracking is reliant upon a symmetrical frontoparietal attentional system, rather than being right lateralized. Second, this same system controls both pursuit eye movements and covert tracking.  相似文献   

16.
Motion camouflage is a stealth strategy that allows a predator to conceal its apparent motion as it approaches a moving prey. Although male hoverflies have been observed to move in a manner consistent with motion camouflage to track females, the successful application of the technique has not previously been demonstrated. This article describes the implementation and results of a psychophysical experiment suggesting that humans are susceptible to motion camouflage. The experiment masqueraded as a computer-game competition. The basis of the competition was a game designed to test the comparative success of different predatory-approach strategies. The experiment showed that predators were able to approach closer to their prey (the player of the game) before being detected when using motion camouflage than when using other approach strategies tested. For an autonomous predator, the calculation of a motion-camouflage approach is a non-trivial problem. It was, therefore, of particular interest that in the game the players were deceived by motion-camouflage predators controlled by artificial neural systems operating using realistic levels of input information. It is suggested that these results are especially of interest to biologists, visual psychophysicists, military engineers and computer-games designers.  相似文献   

17.
Summary Freely flying honeybees are innately attracted to moving objects, as revealed by their spontaneous preference for a moving disc over an identical, but stationary disc. We have exploited this spontaneous preference to explore the visual cues by which a bee, which is herself in motion, recognizes a moving object. We find that the moving disc is not detected on the basis that it produces a more rapidly moving image on the retina. The relevant cue might therefore be the motion of the disc relative to the visual surround. We have attempted to test this hypothesis by artificially rotating the structured environment, together with the moving disc, around the bee. Under these conditions, the image of the stationary disc rather than that of the actually moving disc is in motion relative to the surround. We find that rotation of the surround disrupts the bee's capacity not only to distinguish a moving object from a stationary one, but also to discriminate stationary objects at different ranges. Possible interpretations of these results are discussed.  相似文献   

18.
运动分析是视觉信息加工中的一个重要问题。本文利用Reichardt的相关型初级运动检测器(EMD)二维阵列可以有效地进行图象-背景相对运动分辨的特点,以及小波变换的频谱分析特性与人类视觉多频率通道特性相类似的性质,将EMD模型、小波变换和图象的塔式结构处理有机地结合起来,提出了一种类似视觉信息加工方式的新的运动分析算法。计算机仿真结果表明,算法能够较好地模拟视觉运动检测的功能,与Horn&Schunck算法[1]相比,提高了运动估计的速度与精度。  相似文献   

19.
There is much evidence in primates' visual processing for distinct mechanisms involved in object recognition and encoding object position and motion, which have been identified with 'ventral' and 'dorsal' streams, respectively, of the extra-striate visual areas [1] [2] [3]. This distinction may yield insights into normal human perception, its development and pathology. Motion coherence sensitivity has been taken as a test of global processing in the dorsal stream [4] [5]. We have proposed an analogous 'form coherence' measure of global processing in the ventral stream [6]. In a functional magnetic resonance imaging (fMRI) experiment, we found that the cortical regions activated by form coherence did not overlap with those activated by motion coherence in the same individuals. Areas differentially activated by form coherence included regions in the middle occipital gyrus, the ventral occipital surface, the intraparietal sulcus, and the temporal lobe. Motion coherence activated areas consistent with those previously identified as V5 and V3a, the ventral occipital surface, the intraparietal sulcus, and temporal structures. Neither form nor motion coherence activated area V1 differentially. Form and motion foci in occipital, parietal, and temporal areas were nearby but showed almost no overlap. These results support the idea that form and motion coherence test distinct functional brain systems, but that these do not necessarily correspond to a gross anatomical separation of dorsal and ventral processing streams.  相似文献   

20.
Previous work has demonstrated that upcoming saccades influence visual and auditory performance even for stimuli presented before the saccade is executed. These studies suggest a close relationship between saccade generation and visual/auditory attention. Furthermore, they provide support for Rizzolatti et al.'s premotor model of attention, which suggests that the same circuits involved in motor programming are also responsible for shifts in covert orienting (shifting attention without moving the eyes or changing posture). In a series of experiments, we demonstrate that saccade programming also affects tactile perception. Participants made speeded saccades to the left and right side as well as tactile discriminations of up versus down. The first experiment demonstrates that participants were reliably faster at responding to tactile stimuli near the location of upcoming saccades. In our second experiment, we had the subjects cross their hands and demonstrated that the effect occurs in visual space (rather than the early representations of touch). In our third experiment, the tactile events usually occurred on the opposite side of upcoming eye movement. We found that the benefit at the saccade target location vanished, suggesting that this shift is not obligatory but that it may be vetoed on the basis of expectation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号