首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cystine, an oxidized form of cysteine (Cys), is imported into cells via the protein xCT, which is also associated with the export of glutamate as the counter amino acid. In the current study, we attempted to rationalize roles of xCT in the livers of male mice. While xCT was not expressed in the livers of ordinary mice, it was induced under conditions of glutathione depletion, caused by the administration of acetaminophen (AAP). To differentiate the role between xCT and the transsulfuration pathway on the supply of Cys, we employed an inhibitor of the enzyme cystathionine γ-lyase, propargylglycine (PPG). This inhibitor caused a marked aggravation in AAP-induced hepatic damage and the mortality of the xCT?/? mice was increased to a greater extent than that for the xCT+/+ mice. While a PPG pretreatment had no effect on liver condition or Cys levels, the administration of AAP to the PPG-pretreated mice reduced the levels of Cys as well as glutathione to very low levels in both the xCT+/+ and xCT?/? mice. These findings indicate that the transsulfuration pathway plays a major role in replenishing Cys when glutathione levels are low. Moreover, an ascorbic acid insufficiency, induced by Akr1a ablation, further aggravated the AAP-induced liver damage in the case of the xCT deficiency, indicating that glutathione and ascorbic acid function cooperatively in protecting the liver. In conclusion, while the transsulfuration pathway plays a primary role in supplying Cys to the redox system in the liver, xCT is induced in cases of emergencies, by compensating for Cys supply systems.  相似文献   

2.
Excitatory amino acid transporter 2 (EAAT2), the gene of which is known as solute carrier family 1 member 2 (SLC1A2), is an important membrane-bound transporter that mediates approximately 90% of the transport and clearance of l -glutamate at synapses in the central nervous system (CNS). Transmembrane domain 2 (TM2) of EAAT2 is close to hairpin loop 2 (HP2) and far away from HP1 in the inward-facing conformation. In the present study, 14 crucial amino acid residues of TM2 were identified via alanine-scanning mutations. Further analysis in EAAT2-transfected HeLa cells in vitro showed that alanine substitutions of these residues resulted in a decrease in the efficiency of trafficking/targeting to the plasma membrane and/or reduced functionality of membrane-bound, which resulted in impaired transporter activity. After additional mutations, the transporter activities of some alanine-substitution mutants recovered. Specifically, the P95A mutant decreased EAAT2-associated anion currents. The Michaelis constant (Km) values of the mutant proteins L85A, L92A and L101A were increased significantly, whereas R87 and P95A were decreased significantly, indicating that the mutations L85A, L92A and L101A reduced the affinity of the transporter and the substrate, whereas R87A and P95A enhanced this affinity. The maximum velocity (Vmax) values of all 14 alanine mutant proteins were decreased significantly, indicating that all these mutations reduced the substrate transport rate. These results suggest that critical residues in TM2 affect not only the protein expression and membrane-bound localization of EAAT2, but also its interactions with substrates. Additionally, our findings elucidate that the P95A mutant decreased EAAT2-related anion currents. Our results indicate that the TM2 of EAAT2 plays a vital role in the transport process. The key residues in TM2 affect protein expression in the membrane, substrate transport and the anion currents of EAAT2.  相似文献   

3.
4.
5.
Oxidative glutamate toxicity in the neuronal cell line HT22 is a model for cell death by oxidative stress. In this paradigm, an excess of extracellular glutamate blocks the glutamate/cystine-antiporter system Xc-, depleting the cell of cysteine, a building block of the antioxidant glutathione. Loss of glutathione leads to the accumulation of reactive oxygen species and eventually cell death. We selected cells resistant to oxidative stress, which exhibit reduced glutamate-induced glutathione depletion mediated by an increase in the antiporter subunit xCT and system Xc- activity. Cystine uptake was less sensitive to inhibition by glutamate and we hypothesized that glutamate import via excitatory amino acid transporters and immediate re-export via system Xc- underlies this phenomenon. Inhibition of glutamate transporters by l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) and DL-threo-beta-benzyloxyaspartic acid (TBOA) exacerbated glutamate-induced cell death. PDC decreased intracellular glutamate accumulation and exacerbated glutathione depletion in the presence of glutamate. Transient overexpression of xCT and the glutamate transporter EAAT3 cooperatively protected against glutamate. We conclude that EAATs support system Xc- to prevent glutathione depletion caused by high extracellular glutamate. This knowledge could be of use for the development of novel therapeutics aimed at diseases associated with depletion of glutathione like Parkinson's disease.  相似文献   

6.
Glutamate excitotoxicity is implicated in the aetiology of amyotrophic lateral sclerosis (ALS) with impairment of glutamate transport into astrocytes a possible cause of glutamate-induced injury to motor neurons. It is possible that mutations of Cu/Zn superoxide dismutase (SOD1), responsible for about 20% of familial ALS, down-regulates glutamate transporters via oxidative stress. We transfected primary mouse astrocytes to investigate the effect of the FALS-linked mutant hSOD1(G93A) and wild-type SOD1 (hSOD1wt) on the glutamate uptake system. Using western blotting, immunocytochemistry and RT-PCR it was shown that expression of either hSOD1(G93A) or hSOD1wt in astrocytes produced down-regulation of the levels of a glutamate transporter GLT-1, without alterations in its mRNA level. hSOD1(G93A) or hSOD1wt expression caused a decrease of the monomeric form of GLT-1 without increasing oxidative multimers of GLT-1. The effects were selective to GLT-1, since another glutamate transporter GLAST protein and mRNA levels were not altered. Reflecting the decrease in GLT-1 protein, [3H]d-aspartate uptake was reduced in cultures expressing hSOD1(G93A) or hSOD1wt. The hSOD1-induced decline in GLT-1 protein and [3H]d-aspartate uptake was not blocked by the antioxidant Trolox nor potentiated by antioxidant depletion using catalase and glutathione peroxidase inhibitors. Measurement of 2',7'-dichlorofluorescein (DCF)-induced fluorescence revealed that expression of hSOD1(G93A) or hSOD1wt in astrocytes does not lead to detectable increase of intracellular reactive oxygen species. This study suggests that levels of GLT-1 protein in astrocytes are reduced rapidly by overexpression of hSOD1, and is due to a property shared between the wild-type and G93A mutant form, but does not involve the production of intracellular oxidative stress.  相似文献   

7.
8.
9.
Excitatory amino acid transporters (EAATs) regulate glutamatergic signal transmission by clearing extracellular glutamate. Dysfunction of these transporters has been implicated in the pathogenesis of various neurological disorders. Previous studies have shown that venom from the spider Parawixia bistriata and a purified compound (Parawixin1) stimulate EAAT2 activity and protect retinal tissue from ischemic damage. In the present study, the EAAT2 subtype specificity of this compound was explored, employing chimeric proteins between EAAT2 and EAAT3 transporter subtypes and mutants to characterize the structural region targeted by the compound. This identified a critical residue (Histidine‐71 in EAAT2 and Serine‐45 in EAAT3) in transmembrane domain 2 (TM2) to be important for the selectivity between EAAT2 and EAAT3 and for the activity of the venom. Using the identified residue in TM2 as a structural anchor, several neighboring amino acids within TM5 and TM8 were identified to also be important for the activity of the venom. This structural domain of the transporter lies at the interface of the rigid trimerization domain and the central substrate‐binding transport domain. Our studies suggest that the mechanism of glutamate transport enhancement involves an interaction with the transporter that facilitates the movement of the transport domain.

  相似文献   


10.
We here investigated whether an acute bout of endurance exercise would induce the expression of amino acid transporters that regulate leucine transport across plasma and lysosomal membranes in rat skeletal muscle. Rats ran on a motor-driven treadmill at a speed of 28 m/min for 90 min. Immediately after the exercise, we observed that expression of mRNAs encoding l-type amino acid transporter 1 (LAT1) and CD98 was induced in the gastrocnemius, soleus, and extensor digitorum longus (EDL) muscles. Sodium-coupled neutral amino acid transporter 2 (SNAT2) mRNA was also induced by the exercise in those three muscles. Expression of proton-assisted amino acid transporter 1 (PAT1) mRNA was slightly but not significantly induced by a single bout of exercise in soleus and EDL muscles. Exercise-induced mRNA expression of these amino acid transporters appeared to be attenuated by repeated bouts of the exercise. These results suggested that the expression of amino acid transporters for leucine may be induced in response to an increase in the requirement for this amino acid in the cells of working skeletal muscles.  相似文献   

11.
12.
An inflammatory process in association with reactive gliosis has been suggested to play an important role in the pathogenesis of amyotrophic lateral sclerosis (ALS). One of the key findings is a marked increase in the level of cyclooxygenase-2 (COX-2), a therapeutic target of ALS. We investigated the expression of CD40 in the spinal cord of a transgenic mouse model of ALS (G93A mice), and its relevance to COX-2 upregulation. CD40 was predominantly expressed in neurons in normal spinal cord and upregulated in reactive glial cells in spinal cord injury. In the spinal cord of G93A mice, the expression of CD40 was increased in both reactive microglia and astrocytes, where COX-2 was especially increased. The level of COX-2 was upregulated in microglia and astrocytes by CD40 stimulation in vitro. CD40 stimulation in primary spinal cord cultures caused motor neuron loss that was protected by selective COX-2 inhibitor. These results suggest that CD40, which is upregulated in reactive glial cells in ALS, participates in motor neuron loss via induction of COX-2.  相似文献   

13.
14.
Amyotrophic lateral sclerosis (ALS), a fatal adult-onset degenerative neuromuscular disorder with a poorly defined etiology, progresses in an orderly spatiotemporal manner from one or more foci within the nervous system, reminiscent of prion disease pathology. We have previously shown that misfolded mutant Cu/Zn superoxide dismutase (SOD1), mutation of which is associated with a subset of ALS cases, can induce endogenous wild-type SOD1 misfolding in the intracellular environment in a templating fashion similar to that of misfolded prion protein. Our recent observations further extend the prion paradigm of pathological SOD1 to help explain the intercellular transmission of disease along the neuroaxis. It has been shown that both mutant and misfolded wild-type SOD1 can traverse cell-to-cell either as protein aggregates that are released from dying cells and taken up by neighboring cells via macropinocytosis, or released to the extracellular environment on the surface of exosomes secreted from living cells. Furthermore, once propagation of misfolded wild-type SOD1 has been initiated in human cell culture, it continues over multiple passages of transfer and cell growth. Propagation and transmission of misfolded wild-type SOD1 is therefore a potential mechanism in the systematic progression of ALS pathology.  相似文献   

15.
X Zou  J Gao  Y Zheng  X Wang  C Chen  K Cao  J Xu  Y Li  W Lu  J Liu  Z Feng 《Cell death & disease》2014,5(5):e1218
Zeaxanthin (Zea) is a major carotenoid pigment contained in human retina, and its daily supplementation associated with lower risk of age-related macular degeneration. Despite known property of Zea as an antioxidant, its underlying molecular mechanisms of action remain poorly understood. In this study, we aim to study the regulation mechanism of Zea on phase II detoxification enzymes. In normal human retinal pigment epithelium cells, Zea promoted the nuclear translocation of NF-E2-related factor 2 (Nrf2) and induced mRNA and protein expression of phase II enzymes, the induction was suppressed by specific knockdown of Nrf2. Zea also effectively protected against tert-butyl hydroperoxide-induced mitochondrial dysfunction and apoptosis. Glutathione (GSH) as the most important antioxidant was also induced by Zea through Nrf2 activation in a time- and dose-dependent manner, whereas the protective effects of Zea were decimated by inhibition of GSH synthesis. Finally, Zea activated the PI3K/Akt and MAPK/ERK pathway, whereas only PI3K/Akt activation correlated with phase II enzymes induction and Zea protection. In further in vivo analyses, Zea showed effects of inducing phase II enzymes and increased GSH content, which contributed to the reduced lipid and protein peroxidation in the retina as well as the liver, heart, and serum of the Sprague–Dawley rats. For the first time, Zea is presented as a phase II enzymes inducer instead of being an antioxidant. By activating Nrf2-mediated phase II enzymes, Zea could enhance anti-oxidative capacity and prevent cell death both in vivo and in vitro.  相似文献   

16.
17.
18.
19.
刘薇  王红霞  王立魁  苏丽丽  罗成 《生命科学》2011,(10):1027-1033
近年新研究发现COX-2可使用比COX-1更广泛的底物。比如,除了标准的花生四烯酸外,COX-2也能将二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)等转换成前列腺素衍生物。这些前列腺素衍生物可进一步转化成促进消炎、抗氧化的亲电羰基衍生物(EFOX)分子,并且可以从Keap1解离转录因子Nrf2,继而可以激活多种与抗氧化相关的含ARE应答元件的基因,如血红素氧化酶-1、谷胱甘肽还原酶等。COX-2的这些新功能有可能帮助更好地理解Nrf2/ARE信号通路及其抗炎、抗氧化、诱导肿瘤细胞凋亡等机理。对外源性抗氧化剂触发体内的抗氧化基因及抗炎信号的可能性,以及与饮食相关的抗衰老机理进行探讨。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号