首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure and membrane topology of the antimicrobial peptide temporin L (FVQWFSKFLGRIL- NH(2)) were studied using liposomes as model bilayers. Circular dichroic spectra revealed temporin L to adopt an alpha-helical conformation when bound to liposomes. Binding of temporin L to liposomes induced significant blue shifts of the emission spectra of the single Trp residue (Trp(4)) and also changed its quantum yield. The observed changes in the characteristics of the Trp(4) fluorescence are in keeping with the insertion of this residue into the hydrophobic region of the liposomal bilayers. Access of the aqueous quencher acrylamide to Trp(4) decreased in the sequence 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC)/cholesterol (X(chol) = 0.1) > SOPC > SOPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG, X(POPG) = 0.1) > SOPC/POPG (X(POPG) = 0.2) approximately SOPC/POPG (X(POPG) = 0.4), where X represents molar fraction of the indicated lipid. Whereas quenching of Trp(4) by brominated phospholipids was significant in SOPC liposomes, the quenching efficiency was enhanced when the vesicles contained POPG. The depth of insertion of Trp(4) into lipid bilayers was calculated by both the parallax method and distribution analysis and revealed this residue to reside at an average distance of d approximately 8.0 +/- 0.5 A from the center of both SOPC and SOPC/POPG bilayers. However, in the presence of cholesterol, d was increased to 9.5 +/- 0.5 A, thus revealing Trp(4) to become accommodated more superficially in the bilayer. The above data suggest the presence of two populations of temporin L in SOPC- and POPG-containing membranes with parallel and perpendicular orientation with respect to the plane of the membrane surface.  相似文献   

2.
Interactions of two antimicrobial peptides, magainin 2 and indolicidin, with three different model biomembranes, namely, monolayers, large unilamellar vesicles (LUVs), and giant liposomes, were studied. Insertion of both peptides into lipid monolayers was progressively enhanced when the content of an acidic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) in a film of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) was increased. Indolicidin and magainin 2 penetrated also into lipid monolayers containing cholesterol (mole fraction, X = 0.1). Membrane association of magainin 2 attenuated lipid lateral diffusion in POPG-containing LUVs as revealed by the decrease in the excimer/monomer fluorescence ratio I(e)/I(m) for the pyrene fatty-acid-containing phospholipid derivative 1-palmitoyl-2-[10-(pyren-1-yl) decanoyl]-sn-glycero-3-phospho-rac-glycerol (PPDPG). Likewise, an increase in steady-state fluorescence anisotropy of the membrane-incorporated diphenylhexatriene (DPH) was observed, revealing magainin 2 to increase acyl chain order and induce segregation of acidic phospholipids. Similar effects were observed for indolicidin. The topological effects of magainin 2 and indolicidin on phospholipid membranes were investigated using optical microscopy of giant vesicles. Magainin 2 had essentially no influence on either SOPC or SOPC:cholesterol (X = 0.1) giant liposomes. However, effective vesiculation was observed when acidic phospholipid (X(PG) = 0.1) was included in the giant vesicles. Indolicidin caused only a minor shrinkage of giant SOPC vesicles whereas the formation of endocytotic vesicles was observed when the giant liposome contained POPG (X(PG) = 0.1). Interestingly, for indolicidin, vesiculation was also observed for giant vesicles composed of SOPC/cholesterol (X(chol) = 0.1). Possible mechanisms of membrane transformation induced by these two peptides are discussed.  相似文献   

3.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

4.
The effects of oxidatively modified phospholipids on the association with model biomembranes of four antimicrobial peptides (AMPs), temporin B and L, indolicidin, and LL-37(F27W) were studied by Langmuir balance and fluorescence spectroscopy. In keeping with previous reports the negatively charged phospholipid phosphatidylglycerol (PG) enhanced the intercalation of all four peptides into lipid monolayers and liposomal bilayers under low ionic strength conditions. Interestingly, similar effect was observed for 1-palmitoyl-2-(9′-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), a zwitterionic oxidized phospholipid bearing an aldehyde function at the end of its truncated sn-2 acyl chain. Instead, the structurally similar 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC) containing a carboxylic moiety was less efficient in promoting the membrane association of these peptides. Physiological saline reduced the binding of the above peptides to membranes containing PG, whereas interactions with PoxnoPC were found to be insensitive to ionic strength. Notably, membrane intercalation of temporin L, the most surface active of the above peptides could be into PoxnoPC containing monolayers was strongly attenuated by methoxyamine, suggesting the importance of Schiff base formation between peptide amino groups and the lipid aldehyde function. PoxnoPC and similar aldehyde bearing oxidatively modified phospholipids could represent novel molecular targets for AMPs.  相似文献   

5.
For cationic antimicrobial peptides to become useful therapeutic agents, it is important to understand their mechanism of action. To obtain high resolution data, this involves studying the structure and membrane interaction of these peptides in tractable model bacterial membranes rather than directly utilizing more complex bacterial surfaces. A number of lipid mixtures have been used as bacterial mimetics, including a range of lipid headgroups, and different ratios of neutral to negatively charged headgroups. Here we examine how the structure and membrane interaction of aurein 2.2 and some of its variants depend on the choice of lipids, and how these models correlate with activity data in intact bacteria (MICs, membrane depolarization). Specifically, we investigated the structure and membrane interaction of aurein 2.2 and aurein 2.3 in 1:1 cardiolipin/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (CL/POPG) (mol/mol), as an alternative to 1:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC)/POPG and a potential model for Gram positive bacteria such as S. aureus. The structure and membrane interaction of aurein 2.2, aurein 2.3, and five variants of aurein 2.2 were also investigated in 1:1 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE)/POPG (mol/mol) lipids as a possible model for other Gram positive bacteria, such as Bacillus cereus. Solution circular dichroism (CD) results demonstrated that the aurein peptides adopted α-helical structure in all lipid membranes examined, but demonstrated a greater helical content in the presence of POPE/POPG membranes. Oriented CD and 31P NMR results showed that the aurein peptides had similar membrane insertion profiles and headgroup disordering effects on POPC/POPG and CL/POPG bilayers, but demonstrated reduced membrane insertion and decreased headgroup disordering on mixing with POPE/POPG bilayers at low peptide concentrations. Since the aurein peptides behaved very differently in POPE/POPG membrane, minimal inhibitory concentrations (MICs) of the aurein peptides in B. cereus strain C737 were determined. The MIC results indicated that all aurein peptides are significantly less active against B. cereus than against S. aureus and S. epidermidis. Overall, the data suggest that it is important to use a relevant model for bacterial membranes to gain insight into the mode of action of a given antimicrobial peptide in specific bacteria.  相似文献   

6.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

7.
The binding of the positively charged antimicrobial peptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK4) to various lipid bilayer model membranes was investigated using isothermal titration calorimetry. GS14dK4 is a diastereomeric lysine ring-size analogue of the naturally occurring antimicrobial peptide gramicidin S which exhibits enhanced antimicrobial and markedly reduced hemolytic activities compared with GS itself. Large unilamellar vesicles composed of various zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine [POPC]) and anionic phospholipids {1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(glycerol)] [POPG] and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phosphoserine] [POPS]}, with or without cholesterol, were used as model membrane systems. Dynamic light scattering results indicate the absence of any peptide-induced major alteration in vesicle size or vesicle fusion under our experimental conditions. The binding of GS14dK4 is significantly influenced by the surface charge density of the phospholipid bilayer and by the presence of cholesterol. Specifically, a significant reduction in the degree of binding occurs when three-fourths of the anionic lipid molecules are replaced with zwitterionic POPC molecules. No measurable binding occurs to cholesterol-containing zwitterionic vesicles, and a dramatic drop in binding is observed in the cholesterol-containing anionic POPG and POPS membranes, indicating that the presence of cholesterol markedly reduces the affinity of this peptide for phospholipid bilayers. The binding isotherms can be described quantitatively by a one-site binding model. The measured endothermic binding enthalpy (DeltaH) varies dramatically (+6.3 to +26.5 kcal/mol) and appears to be inversely related to the order of the phospholipid bilayer system. However, the negative free energy (DeltaG) of binding remains relatively constant (-8.5 to -11.5 kcal/mol) for all lipid membranes examined. The relatively small variation of negative free energy of peptide binding together with a pronounced variation of positive enthalpy produces an equally strong variation of TDeltaS (+16.2 to +35.0 kcal/mol), indicating that GS14dK4 binding to phospholipids bilayers is primarily entropy driven.  相似文献   

8.
Sphingomyelin is an abundant component of eukaryotic membranes. A specific enzyme, sphingomyelinase can convert this lipid to ceramide, a central second messenger in cellular signaling for apoptosis (programmed cell death), differentiation, and senescence. We used microinjection and either Hoffman modulation contrast or fluorescence microscopy of giant liposomes composed of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), N-palmitoyl-sphingomyelin (C16:0-SM), and Bodipy-sphingomyelin as a fluorescent tracer (molar ratio 0.75:0.20:0.05, respectively) to observe changes in lipid lateral distribution and membrane morphology upon formation of ceramide. Notably, in addition to rapid domain formation (capping), vectorial budding of vesicles, i.e., endocytosis and shedding, can be induced by the asymmetrical sphingomyelinase-catalyzed generation of ceramide in either the outer or the inner leaflet, respectively, of giant phosphatidylcholine/sphingomyelin liposomes. These results are readily explained by 1) the lateral phase separation of ceramide enriched domains, 2) the area difference between the adjacent monolayers, 3) the negative spontaneous curvature, and 4) the augmented bending rigidity of the ceramide-containing domains, leading to membrane invagination and vesiculation of the bilayer.  相似文献   

9.
Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes   总被引:16,自引:0,他引:16  
The binding of bee venom melittin to negatively charged unilamellar vesicles and planar lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) was studied with circular dichroism and deuterium NMR spectroscopy. The melittin binding isotherm was measured for small unilamellar vesicles containing 10 or 20 mol % POPG. Due to electrostatic attraction, binding of the positively charged melittin was much enhanced as compared to the binding to neutral lipid vesicles. However, after correction for electrostatic effects by means of the Gouy-Chapman theory, all melittin binding isotherms could be described by a partition Kp = (4.5 +/- 0.6) x 10(4) M-1. It was estimated that about 50% of the total melittin surface was embedded in a hydrophobic environment. The melittin partition constant for small unilamellar vesicles was by a factor of 20 larger than that of planar bilayers and attests to the tighter lipid packing in the nonsonicated bilayers. Deuterium NMR studies were performed with coarse lipid dispersions. Binding of melittin to POPC/POPG (80/20 mol/mol) membranes caused systematic changes in the conformation of the phosphocholine and phosphoglycerol head groups which were ascribed to the influence of electrostatic charge on the choline dipole. While the negative charge of phosphatidylglycerol moved the N+ end of the choline -P-N+ dipole toward the bilayer interior, the binding of melittin reversed this effect and rotated the N+ end toward the aqueous phase. No specific melittin-POPG complexes could be detected. The phosphoglycerol head group was less affected by melittin binding than its choline counterpart.  相似文献   

10.
The acetylated and amidated hexapeptide FRWWHR (combi-2), previously identified by combinatorial chemistry methods, shows strong antimicrobial activity. The binding of the peptide to 1-palmitoyl-2-oleoyl-sn-glycero-3-[(phospho-rac-(1-glycerol)] (POPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles was studied using fluorescence spectroscopy and isothermal titration calorimetry (ITC). Differential scanning calorimetry (DSC) with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) multilamellar vesicles was performed to determine changes in the lipid phase behaviour upon binding the peptide. Two-dimensional proton nuclear magnetic resonance (NMR) spectroscopy, to solve the bound peptide structure, was performed in the presence of dodecylphosphatidylcholine (DPC) and sodium dodecyl sulphate (SDS) micelles. The fluorescence, ITC and DSC studies indicate that the peptide interacts preferentially with lipid vesicles containing negatively charged head groups. Conformational information determined using NMR indicate that the combi-2 peptide adopts a coiled amphipathic conformation when bound to SDS and DPC micelles. Leakage assays indicate that the peptide is not very efficient at causing leakage from calcein-filled large unilamellar vesicles comprised of POPG/POPC (1 : 1). The rapid passage of either the fluorescent-tagged peptides combi-2 or the previously studied peptide Ac-RRWWRF-NH(2) (combi-1) into Escherichia coli and Staphylococcus aureus suggests that instead of membrane disruption, the main bactericidal site of action of these peptides might be located inside bacteria.  相似文献   

11.
Accurately predicting the structural properties of phospholipid with a fully atomistic molecular model is critical for the study of pure phospholipid bilayers, mixed bilayer systems and bilayers containing proteins. The general amber force field (GAFF) has traditionally required the presence of a surface tension parameter to correctly model phospholipid bilayer properties such as area per lipid and order parameters. In this work, the GAFF partial charges for 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphochiline (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) were re-parameterised utilising high-level ab initio calculations and the restrained electrostatic potential method. Simulations of pure POPA, POPC and POPG bilayers using the charge-modified GAFF and no applied surface tension are compared with available experimental data, the original GAFF model and the recent Lipid14 variant. The results indicate a significant improvement in the accuracy of the lipid model for reproducing experimental observables without the need for a surface tension parameter. The successful application of modifying the lipid charge distributions represents an alternative to the use of a surface tension parameter within GAFF, and highlights the importance of the partial charge calculations when modelling lipid bilayers.  相似文献   

12.
The association of Ca2+ ions with phospholipid bilayers was investigated using isothermal titration calorimetry. The study reveals that the binding enthalpy of these cations to bilayers formed with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) depends strongly on the method of preparation of the unilamellar vesicles. Extruded vesicles lead to an exothermic association, whereas sonicated ones lead to an endothermic association. In the later case, the calorimetric signal is sensitive to the length of the sonication period. It is proposed that a reorganization of the lipid bilayers under stress, obtained with sonicated small unilamellar vesicles, contributes to the calorimetric signal upon the titration with Ca2+. The analysis of the titrations indicates that, as expected, the nature of the association of Ca2+ with negatively charged phospholipid bilayers is essentially of electrostatic nature. Using a Scatchard approach, it is found that bilayers become saturated in Ca2+ approximately when the electroneutrality of the bilayer interface is reached. Moreover, the affinity constant was reduced by the increase of the ionic strength of the aqueous buffer. It was found that the intrinsic binding constant of Ca2+ to membranes containing 30 and 50 mol% of POPG was about 11 mM-1, in a MES buffer containing 10 mM NaCl, at pH 5.6.  相似文献   

13.
Enterovirus 2B viroporin has been involved in membrane permeabilization processes occurring late during cell infection. Even though 2B lacks an obvious signal sequence for translocation, the presence of a Lys-based amphipathic domain suggests that this product bears the intrinsic capacity for partitioning into negatively charged cytofacial membrane surfaces. Pore formation by poliovirus 2B attached to a maltose-binding protein (MBP) has been indeed demonstrated in pure lipid vesicles, a fact supporting spontaneous insertion into and direct permeabilization of membranes. Here, biochemical evidence is presented indicating that both processes are modulated by phosphatidylinositol and phosphatidylserine, the main anionic phospholipids existing in membranes of target organelles. Insertion into lipid monolayers and partitioning into phospholipid bilayers were sustained by both phospholipids. However, MBP-2B inserted into phosphatidylserine bilayers did not promote membrane permeabilization and addition of this lipid inhibited the leakage observed in phosphatidylinositol vesicles. Mathematical modelling of pore formation in membranes containing increasing phosphatidylserine percentages was consistent with its inhibitory effect arising from a higher reversibility of MBP-2B surface aggregation. These results support that 2B insertion and pore-opening are mechanistically distinguishable events modulated by the target membrane anionic phospholipids.  相似文献   

14.
Tacrolimus (FK506) is a hydrophobic immunosuppressive agent that rapidly penetrates the plasmatic membrane and inhibits the signal transduction cascade of T lymphocytes. The objective of this study was the characterization of liposomal FK506 with surfactant-like phospholipids to be administered intratracheally after lung transplantation or in inflammatory lung diseases. We evaluated the optimal incorporation of FK506 in dipalmitoylphosphatidylcholine (DPPC) and DPPC/1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) monolayers and bilayers and the effects of FK506 on the physical properties of DPPC and DPPC/POPG (8:2 w/w) vesicles. In addition, we assessed the immunosuppressive effects of surfactant-like phospholipid vesicles containing different amounts of FK506 on T-cell proliferation and interleukin 2 production. From surface pressure measurements of FK506/DPPC and FK506/DPPC/POPG mixed monolayers, we determined that FK506 was embedded into these monolayers up to an FK506 concentration of about 0.4 mol %. Beyond this concentration, FK506 was not quantitatively incorporated into the monolayer, suggesting possible concentration-dependent aggregation of tacrolimus. The incorporation of FK506 into DPPC monolayers, at concentrations 相似文献   

15.
Temporins, antimicrobial peptides of 10-13 residues, were isolated from secretions of Rana temporaria [Simmaco, M., Mignogna, G., Canofeni, S., Miele, R., Mangoni, M.L. & Barra, D. (1996) Eur. J. Biochem. 242, 788-792]. These molecules are specific to this amphibian species, which is also able to secrete on its skin other antimicrobial peptides similar to those found in different Rana species. The effect of temporins A, B and D (13 residues, net charge +2), and H (10 residues, net charge +1 and +2, respectively) against both artificial membranes of differing lipid composition and bacteria has been investigated in order to gain insight into their mechanisms of action. The results indicate that: the lytic activity of temporins is not greatly affected by the membrane composition; temporins A and B allow the leakage of large-size molecules from the bacterial cells; temporin H renders both the outer and inner membrane of bacteria permeable to hydrophobic substances of low molecular mass; and temporin D, although devoid of antibacterial activity, has a cytotoxic effect on erythrocytes. The results allow important conclusions to be drawn about the minimal structural requirements for lytic efficiency and specificity of temporins.  相似文献   

16.
Model compounds of modified hydrophobicity (Eta), hydrophobic moment (mu) and angle subtended by charged residues (Phi) were synthesized to define the general roles of structural motifs of cationic helical peptides for membrane activity and selectivity. The peptide sets were based on a highly hydrophobic, non-selective KLA model peptide with high antimicrobial and hemolytic activity. Variation of the investigated parameters was found to be a suitable method for modifying peptide selectivity towards either neutral or highly negatively charged lipid bilayers. Eta and mu influenced selectivity preferentially via modification of activity on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) bilayers, while the size of the polar/hydrophobic angle affected the activity against 1-palmitoyl-2-oleoylphosphatidyl-DL-glycerol (POPG). The influence of the parameters on the activity determining step was modest in both lipid systems and the activity profiles were the result of the parameters' influence on the second less pronounced permeabilization step. Thus, the activity towards POPC vesicles was determined by the high permeabilizing efficiency, however, changes in the structural parameters preferentially influenced the relatively moderate affinity. In contrast, intensive peptide accumulation via electrostatic interactions was sufficient for the destabilization of highly negatively charged POPG lipid membranes, but changes in the activity profile, as revealed by the modification of Phi, seem to be preferentially caused by variation of the low permeabilizing efficiency. The parameters proved very effective also in modifying antimicrobial and hemolytic activity. However, their influence on cell selectivity was limited. A threshold value of hydrophobicity seems to exist which restricted the activity modifying potential of mu and Phi on both lipid bilayers and cell membranes.  相似文献   

17.
Li P  Sun M  Wohland T  Yang D  Ho B  Ding JL 《Biochemistry》2006,45(35):10554-10562
Factor C-derived Sushi peptides (S1 and S3) have been shown to bind lipopolysaccharide (LPS) and inhibit the growth of Gram-negative bacteria but do not affect mammalian cells. On the premise that the composition of membrane phospholipids differs between the microbial and human cells, we studied the modes of interaction between S1 and S3 and the bacterial membrane phospholipids, POPG, in comparison to that with the mammalian cell membrane phospholipids, POPC and POPE. S1 exhibits specificity against POPG, suggesting its preference for bacterial anionic phospholipids, regardless of whether the phospholipids form vesicles in a solution or a monolayer on a solid surface. The specificity of the Sushi peptides for POPG is a consequence of the electrostatic and hydrophobic forces. The unsaturated nature of POPG confers fluidity to the lipid layer, and being in the proximity of LPS in the microenvironmental milieu, POPG probably enhances the insertion of the peptide-LPS complex into the bacterial inner membrane. Furthermore, during its interaction with POPG, the S1 peptide underwent a transition from random to alpha-helical coil, while S3 became a mixture of beta-sheet and alpha-helical structures. This differential structural change in the peptides could be responsible for their different modes of disruption of POPG vesicles. Conceivably, the selectivity for POPG spares the mammalian membranes from undesirable effects of antimicrobial peptides, which could be helpful in designing and developing a new generation of antibiotics and in offering some clues about the specific function of Factor C, a LPS biosensor.  相似文献   

18.
Lipopolysaccharide (LPS), which constitutes the outermost layer of Gram-negative bacterial cells as a typical component essential for their life, induces the first line defense system of innate immunity of higher animals. To understand the basic mode of interaction between bacterial LPS and phospholipid cell membranes, distribution patterns were studied by various physical methods of deep rough mutant LPS (ReLPS) of Escherichia coli incorporated in phospholipid bilayers as simple models of cell membranes. Solid-state 31P-NMR spectroscopic analysis suggested that a substantial part of ReLPS is incorporated into 1,2-dimyristoyl-sn-glycero-3-phosphocholine lipid bilayers when multilamellar vesicles were prepared from mixtures of these. In egg L-α-phosphatidylcholine (egg-PC)-rich membranes, ReLPS undergoes micellization. In phosphatidylethanolamine-rich membranes, however, micellization was not observed. We studied by microscopic techniques the location of ReLPS in membranes of ReLPS/egg-PC (1:10 M/M) and ReLPS/egg-PC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (1:9:1 M/M/M). The influence of ReLPS on the physicochemical properties of the membranes was studied as well. Microscopic images of both giant unilamellar vesicles and supported planar lipid bilayers showed that LPS was uniformly incorporated in the egg-PC lipid bilayers. In the egg-PC/POPG (9:1 M/M) lipid bilayers, however, ReLPS is only partially incorporated and becomes a part of the membrane in a form of aggregates (or as mixed aggregates with the lipids) on the bilayer surface. The lipid lateral diffusion coefficient measurements at various molar ratios of ReLPS/egg-PC/POPG indicated that the incorporated ReLPS reduces the diffusion coefficients of the phospholipids in the membrane. The retardation of diffusion became more significant with increasing POPG concentrations in the membrane at high ReLPS/phospholipid ratios. This work demonstrated that the phospholipid composition has critical influence on the distribution of added ReLPS in the respective lipid membranes and also on the morphology and physicochemical property of the resulting membranes. A putative major factor causing these phenomena is reasoned to be the miscibility between ReLPS and individual phospholipid compositions.  相似文献   

19.
Lu JX  Damodaran K  Blazyk J  Lorigan GA 《Biochemistry》2005,44(30):10208-10217
An 18-residue peptide, KWGAKIKIGAKIKIGAKI-NH(2) was designed to form amphiphilic beta-sheet structures when bound to lipid bilayers. The peptide possesses high antimicrobial activity when compared to naturally occurring linear antimicrobial peptides, most of which adopt an amphipathic alpha-helical conformation upon binding to the lipids. The perturbation of the bilayer by the peptide was studied by static (31)P and (2)H solid-state NMR spectroscopy using POPC and POPG/POPC (3/1) bilayer membranes with sn-1 chain perdeuterated POPC and POPG as the isotopic labels. (31)P NMR powder spectra exhibited two components for POPG/POPC bilayers upon addition of the peptide but only a slight change in the line shape for POPC bilayers, indicating that the peptide selectively disrupted the membrane structure consisting of POPG lipids. (2)H NMR powder spectra indicated a reduction in the lipid chain order for POPC bilayers and no significant change in the ordering for POPG/POPC bilayers upon association of the peptide with the bilayers, suggesting that the peptide acts as a surface peptide in POPG/POPC bilayers. Relaxation rates are more sensitive to the motions of the membranes over a large range of time scales. Longer (31)P longitudinal relaxation times for both POPG and POPC in the presence of the peptide indicated a direct interaction between the peptide and the POPG/POPC bilayer membranes. (31)P longitudinal relaxation studies also suggested that the peptide prefers to interact with the POPG phospholipids. However, inversion-recovery (2)H NMR spectroscopic experiments demonstrated a change in the relaxation rate of the lipid acyl chains for both the POPC membranes and the POPG/POPC membranes upon interaction with the peptide. Transverse relaxation studies indicated an increase in the spectral density of the collective membrane motion caused by the interaction between the peptide and the POPG/POPC membrane. The experimental results demonstrate significant dynamic changes in the membrane in the presence of the antimicrobial peptide and support a carpet mechanism for the disruption of the membranes by the antimicrobial peptide.  相似文献   

20.
The well-characterized integral membrane protein lactose (lac) permease from Escherichia coli was reconstituted together with trace amounts (molar fraction X = 0.005 of the total phospholipid) of different pyrene-labeled phospholipid analogs into 1-palmitoyl-2-oleoyl-sn-glycero-3-sn-glycero-3-phospho-rac'-glycerol (POPG) liposomes. Effects of lac permease on bilayer lipid dynamics were investigated by measuring the excimer-to-monomer fluorescence intensity ratio IE/IM. Compared to control vesicles, the presence of lac permease (at a protein:phospholipid stoichiometry P/L of 1:4.000) increased the rate of excimer formation by 1-palmitoyl-2[6-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) by approximately fivefold. Decreasing P/L from approximately 1:4.000 to 1:7.600 decreased the IE/IM for PPDPC from 0.16 to 0.05, respectively. An increase in bilayer fluidity due to permease is unlikely, thus implying that the augmented IE/IM should arise from partial lateral segregation of PPDPC in the vesicles. This notion is supported by the further 38% increase in IE/IM observed for the pyrene-labeled Cys-148 lac permease reconstituted into POPG vesicles at P/L 1:4000. The importance of the length of the lipid-protein boundary is implicated by the reduction in IE/IM resulting from the aggregation of the lac permease in vesicles by a monoclonal antibody. Interestingly, excimer formation by 1-palmitoyl-2[6-(pyren-1-yl)hexanoyl-sn-glycero-3-phosphocholine (PPHPC) was enhanced only fourfold in the presence of lac permease. Results obtained with the corresponding pyrenyl phosphatidylglycerols and -methanols were qualitatively similar to those above, thus indicating that lipid headgroup-protein interactions are not involved. Inclusion of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamino-N-(5-fluoresce inthio- carbamoyl) (DPPF, X = 0.005) into reconstituted lactose permease vesicles containing PPDPC caused a nearly 90% decrease in excimer fluorescence, whereas in control vesicles lacking the reconstituted protein only 40% quenching was evident. The addition of 1,2-dipalmitoyl-sn-glycero-3-phospho-rac'-glycerol (DPPG) decreased IE/IM for PPDPC, revealing the driving force for the lateral segregation of this probe to become attenuated. More specifically for protein-free bilayers at XDPPG = 0.10 the rate of lateral diffusion of PPDPC in POPG is diminished, as evidenced by the 24% decrement in IE/IM, under these conditions the increase in IE/IM due to lac permease was strongly reduced, by approximately 84%. The present data are interpreted in terms of the hydrophobic mismatch theory, which predicts that integral membrane proteins will draw lipids of similar hydrophobic thickness into their vicinity. In brief, the approximate lengths of most of the predicted 12 hydrophobic, membrane-spanning alpha-helical segments of lactose permease range between 28.5 and 37.5 A and thus exceed the hydrophobic thickness of POPG of approximately 25.8 A. Therefore, to reduce the free energy of the assembly, longer lipids such as PPDPC and DPPF are accumulated in the immediate vicinity of lactose permease in fluid, liquid crystalline POPG bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号