首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of heparin and other glycosaminoglycans (GAGs) on the mitogenicity and stability of acidic fibroblast growth factor (aFGF) were studied. The mitogenic activity of aFGF was assayed utilizing cultured adult human endothelial cells (AHECs) isolated from iliac arteries and veins as target cells. In most experiments, aFGF purified from bovine brain was employed; in some experiments recombinant bovine aFGF was used and qualitatively similar results were obtained. In the presence of heparin, bovine aFGF at doses between 0.5 and 1.0 ng/ml (30-60 pM) elicited half the maximum AHEC growth over a 4-day period depending on the cell line tested; in the absence of heparin, significant growth was not observed at aFGF concentrations less than 10-20 ng/ml. This effect of heparin was dose-dependent over the range 0.1-10 micrograms/ml (half-maximum dose, 2 micrograms/ml). The mitogenic activity of bovine aFGF for AHECs decreased by 50% after preincubation in culture medium without cells at 37 degrees C for 2 1/2 to 3 hours. In contrast, the mitogenic activity of bovine aFGF preincubated in the presence of heparin-containing culture medium without cells was dramatically stabilized (half-life 24-29 hours). These effects also were observed in serum-free medium. Several GAGs structurally related to heparin such as chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate, and hyaluronic acid neither potentiated nor stabilized aFGF mitogenic activity. However, heparan sulfate from bovine lung was found to be nearly as active as heparin in both these effects. These data suggest that the binding and stabilization of mitogens by extracellular and tissue-associated heparan sulfates might play important roles in the regulation of AHEC growth.  相似文献   

2.
To reduce the number of recovery steps during downstream processing and to overcome the limitations of present fusion-based affinity separations, a controllable self-splicing protein element in the form of a mini-intein was used to optimize the recovery of proteins for both batch and flow purification strategies. The ability to recover purified proteins was demonstrated using a tripartite fusion consisting of a maltose binding domain, a truncated intein as a controllable linker molecule, and a protein of interest. To characterize expression level, solubility, cleavage rates, pH and temperature controllability, and protein activity, recombinant human acidic fibroblast growth factor (aFGF) was used as a model protein. A simple mass transport model, based on cleavage reaction-limited mass transfer and constant dispersion, was successfully used to predict product concentration and peak shape in relation to critical process parameters (with no fitting parameters). Insight into the nature of the cleavage reaction and its regulation was obtained via temperature- and pH-dependent kinetic data.  相似文献   

3.
Amino acid sequence of human acidic fibroblast growth factor   总被引:3,自引:0,他引:3  
The complete amino acid sequence of human brain acidic fibroblast growth factor (aFGF) has been established. Human aFGF consists of 140 amino acids and is highly homologous to bovine aFGF (11 amino acid replacements). Results from experiments involving alkylation of cysteine residues are compatible with the possibilities that in aFGF all three cysteines exist as free sulfhydryls, or alternatively, that a disulfide bridge is present but cannot be identified due to disulfide scrambling caused by the SH group of the remaining cysteine. A potential glycosylation site Asn114-Gly115-Ser116 is present in aFGF but the mitogen does not bind to lectins suggesting that it may not be glycosylated.  相似文献   

4.
Oligomerization of fibroblast growth factors (FGFs) induced on binding to heparin or heparan sulfate proteoglycan is considered to be crucial for receptor activation and initiation of biological responses. To gain insight into the mechanism of activation of the receptor by FGFs, in the present study we investigate the effect(s) of interaction of a heparin analog, sucrose octasulfate (SOS), on the structure, stability, and biological activities of a recombinant acidic FGF from Notophthalmus viridescens (nFGF-1). SOS is found to bind to nFGF-1 and significantly increase the thermodynamic stability of the protein. Using a variety of techniques such as size-exclusion chromatography, sedimentation velocity, and multidimensional nuclear magnetic resonance (NMR) spectroscopy, it is shown that binding of SOS to nFGF-1 retains the protein in its monomeric state. In its monomeric state (complexed to SOS), n-FGF-1 shows significant cell proliferation activity. (15)N and (1)H chemical shift perturbation and the intermolecular nuclear Overhauser effects (NOEs) between SOS and nFGF-1 reveal that the ligand binds to the dense, positively charged cluster located in the groove enclosed by beta-strands 10 and 11. In addition, molecular modeling based on the NOEs observed for the SOS-nFGF-1 complex, indicates that SOS and heparin share a common binding site on the protein. In conclusion, the results of the present study clearly show that heparin-induced oligomerization of nFGF-1 is not mandatory for its cell proliferation activity.  相似文献   

5.
6.
The secondary and tertiary structure of recombinant human acidic fibroblast growth factor (aFGF) has been characterized by a variety of spectroscopic methods. Native aFGF consists of ca. 55% beta-sheet, 20% turn, 10% alpha-helix, and 15% disordered polypeptide as determined by laser Raman, circular dichroism, and Fourier transform infrared spectroscopy; the experimentally determined secondary structure content is in agreement with that calculated by the semi-empirical methods of Chou and Fasman (Chou, P. Y., and Fasman, G. C., 1974, Biochemistry 13, 222-244) and Garnier et al. (Garnier, J. O., et al., 1978, J. Mol. Biol. 120, 97-120). Using the Garnier et al. algorithm, the major secondary structure components of aFGF have been assigned to specific regions of the polypeptide chain. The fluorescence spectrum of native aFGF is unusual in that it is dominated by tyrosine fluorescence despite the presence of a tryptophan residue in the protein. However, tryptophan fluorescence is resolved upon excitation above 295 nm. The degree of tyrosine and tryptophan solvent exposure has been assessed by a combination of ultraviolet absorption, laser Raman, and fluorescence spectroscopy; the results suggest that seven of the eight tyrosine residues are solvent exposed while the single tryptophan is partially inaccessible to solvent in native aFGF, consistent with recent crystallographic data. Denaturation of aFGF by extremes of temperature or pH leads to spectroscopically distinct conformational states in which contributions of tyrosine and tryptophan to the fluorescence spectrum of the protein vary. The protein is unstable at physiological temperatures. Addition of heparin or other sulfated polysaccharides does not affect the spectroscopic characteristics of native aFGF. These polymers do, however, dramatically stabilize the native protein against thermal and acid denaturation as determined by differential scanning calorimetry, circular dichroism, and fluorescence spectroscopy. The interaction of aFGF with such polyanions may play a role in controlling the activity of this growth factor in vivo.  相似文献   

7.
The mitogenic activity of acidic fibroblast growth factor (aFGF) is potentiated by the highly sulfated hexasaccharide [IdoUA,2S-GlcNS,6S]2-[GlcUA-GlcNS,6S] the structural repetitive unit of lung heparin chains. On a mass basis, the effect of both heparin and oligosaccharide are equivalent whereas on a molar basis, heparin, which contains about seven hexasaccharide repeats, is more efficient. On the other hand, a pentasulfated tetrasaccharide or di- and trisulfated disaccharides are much less effective in potentiating aFGF activity than the hexasaccharide. If the growth factor is pre-incubated with the hexasaccharide at pH 7.2 and then exposed to pH 3.5 the 306/345 nm fluoresence ratio is similar to that of native aFGF indicating that the oligosaccharide stabilizes a native conformation of the protein. Heparan sulfates extracted from various mammalian tissues were also able to potentiate aFGF mitogenic activity. On a mass basis they were in general less efficient than heparin; however, heparan sulfate prepared from medium conditioned by 3T3 fibroblasts is more efficient than heparin both on a mass and molar basis. A highly sulfated oligosaccharide isolated after digestion of pancreas heparan sulfate with heparitinase I is more active than the intact molecule, reaching a potentiating effect equivalent to that of lung heparin, whereas an N-acetylated oligosaccharide isolated after nitrous acid degradation is inactive. These data suggest that the mitogenic activity of aFGF is primarily potentiated by interacting with highly sulfated regions of heparan sulfates chains.Abbreviations aFGF,bFGF acidic and basic fibroblast growth factor - DMEM Dulbecco's modified Eagle's medium - FCS fetal calf serum - U,2S-(14)-GlcNS,6S O--L-ido(ene-pyranosyluronic acid 2-O-sulfate)-(14)-2-sulfoamino-2-deoxy-D-glucose-6-O-sulfate - U-(14)-GlcNS,6S O-(ene-pyranosyluronic acid)-(14)-2-sulfoamino-2-deoxy-D-glucose-6-O-sulfate - IdoUA iduronic acid - GlcUA glucuronic acid - GlyUA uronic acid; GlcNAcN-acetylglycosamine - GlcNS N-sulfated glucosamine - GlcNS,6S N,6-disulfated glucosamine - Gal galactose - Xyl xylose - Ser serine - HS heparan Sulfate  相似文献   

8.
The fibroblast growth factor (FGF) receptor of human umbilical vein-derived endothelial (HUE) cells has been identified by affinity labeling. It has an apparent molecular weight of 130,000. It binds both basic and acidic FGF, but not with epidermal growth factor, insulin, or transferrin. The lectin concanavalin-A does not inhibit the binding of 125l-bFGF to HUE cell-surface receptors, whereas it inhibits bFGF binding to BHK-21 cell-surface FGF receptor. This suggests that both types of receptors may differ in their degree of glycosylation. In contrast to other cell types, heparin only slightly inhibits the binding of basic FGF to its receptor. Protamine sulfate, which is anti-angiogenic in vivo, and suramin, a drug used in the therapy of trypanosomiasis and onchocerciasis, also inhibit the binding of basic FGF to the receptor.  相似文献   

9.
Bone regeneration promoted by acidic recombinant human fibroblast growth factor (rhFGF-1), rabbit demineralized bone matrix (rDBM), and a fibrin (f) delivery system was measured in critical-sized defects in rabbits' radii. A unilateral segmental defect 20 mm in length was prepared in radii of 48 skeletally mature New Zealand White rabbits divided equally between 4- and 8-week cohorts. The temporal cohorts were divided equally among four treatment groups: rDBM, rDBM/f, rDBM/rhFGF-1/f, and rhFGF-1/f. Data for the fifth group, untreated critical-sized defects, were exploited from previous published reports from this laboratory. In response to experimental treatments, radiomorphometric and histomorphometric methods were used to derive quantitative outcome data that were tested by analysis of variance and post hoc multiple comparison tests (significance p 相似文献   

10.
The binding of low-molecular-weight heparin to an amino-terminal-truncated, 132-amino-acid, human acidic fibroblast growth factor form has been studied by isothermal titration calorimetry. This technique yields values for the enthalpy change and equilibrium constant, from which the Gibbs energy and entropy change are also calculated. Experiments in different buffers and pH values show that the protonic balance during the reaction is negligible. Experiments made at pH 7.0 with NaCl concentrations ranging from 0.20 to 0.60 M revealed changes in enthalpy and Gibbs energy in the range of -30- -17 and -27- -24 kJ x mol(-1), respectively. Isothermal titration calorimetry was also performed at different temperatures to obtain a value for the heat-capacity change at pH 7.0 and 0.4 M NaCl concentration of -96 J K- x mol(-1). A change in the length of heparin brought about no change in the thermodynamic parameters at 25 degrees C under the same experimental conditions. Changes upon ligand binding in the range of -50- -200 A2 in both polar and non-polar solvent-accessible surface areas were calculated from thermodynamic data by using different parametric equations taken from the literature. These values suggest a negligible overall conformational change in the protein when it binds to heparin and no formation of any protein-protein interface.  相似文献   

11.
Human epithelial cells that had grown out from a maxillary carcinoma were examined for their responsiveness to putative growth-controlling factors in a serum-free medium. Among the factors examined, bovine brain acidic fibroblast growth factor (FGF) at 1 to 10 ng/ml significantly promoted DNA synthesis of the cells in the presence of 5 U/ml heparin, whereas type beta transforming growth factor inhibited it in a dose-dependent manner. Fetal bovine serum at 0.6% inhibited DNA synthesis of the cells by approximately 15%, but no significant influence was observed at higher concentrations up to 10%. Epidermal growth factor, bovine pituitary gland FGF and basic FGF exhibited no significant effect on DNA synthesis of the cells. The present result suggests that acidic FGF, a known mitogen for endothelial cells, is also mitogenic for human epithelial cells derived from maxillary carcinoma.  相似文献   

12.
Endocytic uptake and intracellular transport of acidic FGF was studied in cells transfected with FGF receptor 4 (FGFR4). Acidification of the cytosol to block endocytic uptake from coated pits did not inhibit endocytosis of the growth factor in COS cells transfected with FGFR4, indicating that it is to a large extent taken up by an alternative endocytic pathway. Fractionation of the cells demonstrated that part of the growth factor receptor was present in a low-density, caveolin-containing fraction, but we were unable to demonstrate binding to caveolin in immunoprecipitation studies. Upon treatment of the cells with acidic FGF, the activated receptor, together with the growth factor, moved to a juxtanuclear compartment, which was identified as the recycling endosome compartment. When the cells were lysed with Triton X-100, 3-([3-chloramidopropyl]dimethylammonio)-2-hydroxy-1-propanesulfona te, or 2-octyl glucoside, almost all surface-exposed and endocytosed FGFR4 was solubilized, but only a minor fraction of the total FGFR4 in the cells was found in the soluble fraction. The data indicate that the major part of FGFR4 is anchored to detergent-insoluble structures, presumably cytoskeletal elements associated with the recycling endosome compartment.  相似文献   

13.
14.
To establish peroxynitrite (ONOO(-)) as a mediator of acidic fibroblast growth factor (FGF-1) function, preparations of recombinant human FGF-1 were treated with the pro-oxidant in vitro and identified amino acid modifications were correlated with biologic activity. The sequence of FGF-1 amino acid modifications induced by increasing concentrations of ONOO(-) was from cysteine oxidation to dityrosine formation, and to tyrosine/tryptophan nitration. Low steady-state ONOO(-) concentrations (10-50 microM) induced formation of dityrosine, which involved less than 0.1% of the total tyrosines. Treatment of FGF-1 with ONOO(-) induced a dose-dependent (10-50 microM) loss of sulfhydryl groups that correlated with formation of reducible (dithiothreitol, arsenite) FGF-1 aggregates containing 50% latent biologic activity. Treatment with 0.1-0.5mM ONOO(-) induced increasing formation of non-reducible, inactivated FGF-1 structures. Combination of real-time spectral analysis and electrospray mass spectroscopy revealed that six residues (Y29, Y69, Y108, Y111, Y139, and W121) were nitrated by ONOO(-). ONOO(-) treatment (0.1mM) of an active FGF-1 mutant (cysteines converted to serines) induced dose-dependent, non-reversible inhibition of biologic activity that correlated with nitration of Y108 and Y111, both of which reside within a conserved domain encompassing the putative FGF-1 receptor binding site. Collectively, these observations predict a role for low levels of ONOO(-) during secretion of FGF-1 as an extracellular complex containing latent biologic activity. High steady-state levels of ONOO(-) may induce extensive cysteine oxidation, critical tyrosine nitration, and non-reversible inactivation of FGF-1, a potential inhibitory feedback mechanism restoring cellular homeostatis during the resolution of inflammation and repair.  相似文献   

15.
The human omentum contains a potent, not yet identified angiogenic activity. The omentum is very vascularized. Therefore, we investigated whether human omental microvascular endothelial cells (HOME cells) express the angiogenic peptide basic fibroblast growth factor (bFGF). Cytosol prepared from HOME cells stimulated DNA synthesis in bovine epithelial lens cells (BEL cells). The mitogenic activity could be neutralized by an anti-bFGF antibody. Basic FGF-like material from the HOME cell cytosol was bound onto a heparin-Sepharose column at 0.6 M and was eluted at 3 M NaCl. The 3 M NaCl eluted material reacted with the specific anti-bFGF antibody in an ELISA and stimulated DNA synthesis. It did not react with a specific anti-acidic fibroblast growth factor (aFGF) antibody. Western blotting experiments using the same bFGF antibody showed the presence of a major band of 17 Kd and a doublet of 20-22 Kd. Northern blotting of non-stimulated HOME cells using a specific 1.4 kb bFGF probe showed the presence of 5 molecular species of 6.6, 3.7, 2.2, 2.0, and 1.0 kb. No aFGF mRNA was detected with a specific previously characterized 4.04 kb probe. 12-O-tetradecanoylphorbol 13-acetate (TPA) did not influence significantly the expression of bFGF at the protein and mRNA level in HOME cells. Thus, protein kinase C activation by TPA did not appear to modulate significantly the expression of bFGF for that cell type. Contrastingly, human umbilical vein endothelial cells (HUVE cells), which expressed no bFGF and aFGF mRNA at a basal level, were induced to express bFGF but not aFGF mRNA when stimulated by TPA. These results suggest that the described angiogenic activity could be the bFGF-like mitogen contained in HOME cells and that these cells are different from endothelial cells derived from large vessels (HUVE cells) regarding the expression of bFGF.  相似文献   

16.
Hepatocyte growth factor enhances MMP activity in human endothelial cells   总被引:8,自引:0,他引:8  
Scatter factor (SF) or hepatocyte growth factor (HGF) has been identified as an angiogenic factor. Angiogenesis requires not only tube formation but also invasion of pericytes and extracellular matrix (ECM) remodeling to promote new vessel stabilization. In the current study, the effect of SF/HGF on endothelial cell (EC) production of matrix metalloproteinases (MMPs) was explored. We showed that SF/HGF enhanced MT1-MMP synthesis and induced MMP-2 activation in two human EC lines: dermal microvessel EC and coronary arterial EC. Furthermore, SF/HGF accelerated EC invasion into matrix, an activity that could be inhibited by a MMP inhibitor. We also demonstrated that the MAP kinase cascade is critical in signal transduction pathway from SF/HGF stimulation to MT1-MMP up-regulation. The current study indicates that MMP activation is a novel effect of SF/HGF on ECs.  相似文献   

17.
Human embryonic stem cells (hESCs) are pluripotent stem cells with long-lasting capacity to self-renew and differentiate into various cell types of endodermal, ectodermal or mesodermal origin. Unlike mouse ESCs (mESCs), which can be maintained in an undifferentiated state simply by adding leukemia inhibitory factor (LIF) into the culture medium, hESCs are notorious for the sustained willingness to differentiate and not yet clearly defined signaling pathways that are crucial for their "stemness". Presently, our knowledge involves only limited number of growth factor signaling pathways that appear to be biologically relevant for stem cell functions in vitro. These include BMP, TGFbeta, Wnt, and FGF signaling pathway. The purpose of this review is to summarize recent data on the expression of FGFs and their receptors in hESCs, and critically evaluate the potential effects of FGF signals for their undifferentiated growth and/or differentiation in context with our current understanding of FGF/FGFR biology.  相似文献   

18.
Four kinds of hybridomas secreting monoclonal antibodies (MAbs) against human acidic fibroblast growth factor (haFGF) were established using recombinant haFGF as an immunogen. The recognition sites of four MAbs designated AF1-52, 81, 114 and 1C10 for the haFGF molecule were examined by binding studies with synthetic polypeptides and with amino-terminal truncated forms of haFGF. These experiments suggested that AF1-52, 114, and 1C10 MAbs recognize epitopes within the 1-5, 44-132 and 6-43 amino acid sequences, respectively. However, the epitope recognized by the AF1-81 MAb could not be determined. The sandwich EIA method constructed with these MAbs was sensitive to 1.5 pg/well of haFGF and had no cross-reactivity with human basic FGF, bovine aFGF or the hst-1 gene product.  相似文献   

19.
Y Chi  T K Kumar  H M Wang  M C Ho  I M Chiu  C Yu 《Biochemistry》2001,40(25):7746-7753
The thermodynamic parameters characterizing the conformational stability of the human acidic fibroblast growth factor (hFGF-1) have been determined by isothermal urea denaturation and thermal denaturation at fixed concentrations of urea using fluorescence and far-UV CD circular dichroism (CD) spectroscopy. The equilibrium unfolding transitions at pH 7.0 are adequately described by a two-state (native <--> unfolded state) mechanism. The stability of the protein is pH-dependent, and the protein unfolds completely below pH 3.0 (at 25 degrees C). hFGF-1 is shown to undergo a two-state transition only in a narrow pH range (pH 7.0-8.0). Under acidic (pH <6.0) and basic (pH >8.0) conditions, hFGF-1 is found to unfold noncooperatively, involving the accumulation of intermediates. The average temperature of maximum stability is determined to be 295.2 K. The heat capacity change (DeltaC(p)()) for the unfolding of hFGF-1 is estimated to be 2.1 +/- 0.5 kcal.mol(-1).K(-1). Temperature denaturation experiments in the absence and presence of urea show that hFGF-1 has a tendency to undergo cold denaturation. Two-dimensional (1)H-(15)N HSQC spectra of hFGF-1 acquired at subzero temperatures clearly show that hFGF-1 unfolds under low-temperature conditions. The significance of the noncooperative unfolding under acidic conditions and the cold denaturation process observed in hFGF-1 are discussed in detail.  相似文献   

20.
Synthetic cDNA coding for human acidic fibroblast growth factor (haFGF) was expressed in E. coli under the control of the T7 promoter. The haFGF produced was purified extensively using heparin-Sepharose and phenyl-Sepharose columns. The mitogenic activity of haFGF on 3T3 and endothelial cells was significantly potentiated in the presence of heparin (10-50 micrograms/ml), while angiogenic activity was observed on chick embryo chorioallantoic membrane without exogenously added heparin. This significant potentiation of mitogenic activity was observed specifically with haFGF, not human basic fibroblast growth factor (hbFGF). Circular dichroism spectra of haFGF was not affected by the presence of heparin. The affinity of haFGF for heparin was examined using heparin affinity HPLC and was precisely confirmed to be relatively lower than that of hbFGF. These results implied that haFGF was potentiated by heparin and that this potentiation did not involve a significant change in the conformation of the haFGF molecule. The affinity of haFGF for copper was also confirmed to be higher than that of hbFGF using a copper affinity HPLC column. In addition, under acidic conditions, haFGF appeared more stable than hbFGF and was further stabilized in the presence of heparin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号