首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptides with the Arg-Gly-Asp (RGD) motif induce vasoconstriction in rat afferent arterioles by increasing the intracellular Ca(2+) concentration ([Ca(2+)](i)) in vascular smooth muscle cells (VSMC). This finding suggests that occupancy of integrins on the plasma membrane of VSMC might affect vascular tone. The purpose of this study was to determine whether occupancy of integrins by exogenous RGD peptides initiates intracellular Ca(2+) signaling in cultured renal VSMC. When smooth muscle cells were exposed to 0.1 mM hexapeptide GRGDSP, [Ca(2+)](i) rapidly increased from 91 +/- 4 to 287 +/- 37 nM and then returned to the baseline within 20 s (P < 0.05, 34 cells/5 coverslips). In controls, the hexapeptide GRGESP did not trigger Ca(2+) mobilization. Local application of the GRGDSP induced a regional increase of cytoplasmic [Ca(2+)](i), which propagated as Ca(2+) waves traveling across the cell and induced a rapid elevation of nuclear [Ca(2+)](i). Spontaneous recurrence of smaller-amplitude Ca(2+) waves were found in 20% of cells examined after the initial response to RGD-containing peptides. Blocking dihydropyridine-sensitive Ca(2+) channels with nifedipine or removal of extracellular Ca(2+) did not inhibit the RGD-induced Ca(2+) mobilization. However, pretreatment of 20 microM ryanodine completely eliminated the RGD-induced Ca(2+) mobilization. Anti-beta(1) and anti-beta(3)-integrin antibodies with functional blocking capability simulate the effects of GRGDSP in [Ca(2+)](i). Incubation with anti-beta(1)- or beta(3)-integrin antibodies inhibited the increase in [Ca(2+)](i) induced by GRGDSP. We conclude that exogenous RGD-containing peptides induce release of Ca(2+) from ryanodine-sensitive Ca(2+) stores in renal VSMC via integrins, which can trigger cytoplasmic Ca(2+) waves propagating throughout the cell.  相似文献   

2.
3.
4.
5.
6.
Xu YJ  Saini HK  Cheema SK  Dhalla NS 《Cell calcium》2005,38(6):569-579
Although lysophosphatidic acid (LPA) is known to cause an increase in intracellular Ca2+ concentration ([Ca2+]i) in vascular smooth muscle cells (VSMCs), the mechanisms of [Ca2+]i mobilization by LPA are not fully understood. In the present study, the effect of LPA on [Ca2+]i mobilization in cultured A10 VSMCs was examined by Fura-2 fluorescence technique. The expression of LPA receptors was studied by immunostaining. LPA was observed to increase [Ca2+]i in a concentration-dependent manner; this increase was dependent on the concentration of extracellular Ca2+. Both sarcolemmal (SL) Na(+)-Ca2+ exchange inhibitors (amiloride, Ni2+ and KB-R7943) and Na(+)-H+ exchange inhibitor (MIA) as well as SL store-operated Ca2+ channel (SOC) antagonists (SK&F 96365, tyrphostin A9 and gadolinium), unlike SL Ca2+ channel antagonists (verapamil and diltiazem), inhibited the LPA-induced increase in [Ca2+]i. In addition, sarcoplasmic reticulum (SR) Ca2+ channel blocker (ryanodine), SR Ca2+ channel opener (caffeine), SR Ca2+ pump ATPase inhibitor (thapsigargin) and inositol 1,4,5-trisphosphate (InsP3) receptor antagonists (xestospongin and 2-aminoethoxydiphenyl borate) were found to inhibit the LPA-induced Ca2+ mobilization. Furthermore, phospholipase C (PLC) inhibitor (U 73122) and protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) attenuated the LPA-induced increase in [Ca2+]i. These results indicate that Ca2+ mobilization by LPA involves extracellular Ca2+ entry through SL Na(+)-Ca2+ exchanger, Na(+)-H+ exchanger and SL SOCs. In addition, ryanodine-sensitive and InsP(3)-sensitive intracellular Ca2+ pools may be associated with the LPA-induced increase in [Ca2+]i. Furthermore, the LPA-induced [Ca2+]i mobilization in VSMCs seems to be due to the activation of both PLC and PKC.  相似文献   

7.
Conflicting evidence has been reported regarding the role of endothelin-1, a potent vasconstrictor peptide, in stimulating extracellular calcium influx in rabbit vascular smooth muscle. The objective of this study was to elucidate the effects of endothelin-1 on transmembrane 45Ca2+ influx and intracellular calcium mobilization in cultured rabbit aortic smooth muscle cells. In calcium containing buffer, endothelin-1 induced a concentration-dependent 45Ca2+ efflux response over the range of 10 pM to 100 nM with an EC50 of approximately 60 pM. Maximum endothelin-stimulated 45Ca2+ efflux was not affected by the absence of extracellular calcium or the presence of 1 microM verapamil. Endothelin-1 did not induce transplasmalemmal 45Ca2+ uptake at times up to 30 min. These findings suggest that an alteration in intracellular calcium handling, rather than extracellular calcium influx, is responsible for the endothelin-stimulated increase in intracellular calcium concentration in rabbit aortic smooth muscle cells.  相似文献   

8.
Intracellular free Ca2+ concentrations were monitored in vascular smooth muscle cells (VSMC) using the Ca2+-sensitive dye fura II. Superfusion of VSMC with platelet-activating factor (S-PAF; 1-100 nM) increased cytosolic Ca2+ in a dose-dependent manner. The response was transient and returned to base line even though the agonist was still present. A second, higher dose of PAF did not elicit a response. The inactive optical isomer, R-PAF, was ineffective suggesting that the S-PAF response is specific and receptor-mediated. Pretreatment of VSMC with PAF attenuated angiotensin II-stimulated Ca2+ mobilization but not vasopressin-stimulated Ca2+ mobilization. Treatment of VSMC with PAF (10 nM) stimulated inositol trisphosphate and inositol tetrakisphosphate formation above control by 260 +/- 15% and 195 +/- 11%, respectively. Diacylglycerol levels also rose during PAF stimulation and remained increased over 15 min. Pretreatment of VSMCs with phorbol-12,13-myristate acetate (10 nM) for 30 min abolished both the PAF- and angiotensin II-induced increases in cytosolic Ca2+, but not the vasopressin-induced increase. Pretreatment of VSMC with dioctanoylglycerol (10 microM) abolished the S-PAF-, angiotensin II-, and vasopressin-induced elevation in cytosolic Ca2+. We propose that this desensitization is possibly mediated by diacylglycerol formed in response to PAF.  相似文献   

9.
10.
The effect of parathyroid hormone on intracellular calcium concentration in vascular smooth muscle cells in culture was studied. Human PTH 1-34 (hPTH (1-34)) caused a transient rise in intracellular calcium in a dose-dependent manner at physiological concentrations. The effect of PTH was mimicked by dibutyryl cyclic AMP and inhibited by a PTH receptor antagonist. The effect of PTH was increased in parallel with extracellular calcium concentration and a sustained response was observed when extracellular calcium was 2 mM or higher. The PTH action was blocked by nisoldipin, a calcium antagonist, but not by ouabain, a Na, K-ATPase inhibitor. These data indicate that PTH increases intracellular calcium through its receptor via opening calcium channels. A possible role of this effect in the regulation of vascular tone is also discussed.  相似文献   

11.
Using an intracellularly trapped dye, quin 2, effects of adenosine on intracellular free calcium concentrations ([Ca2+]i) were recorded, microfluorometrically, using rat aortic medial vascular smooth muscle cells (VSMCs) in primary culture. Regardless of whether cells were at rest (in 5 mM K+), at K+-depolarization (in 55 mM K+) or at Ca2+ depletion (in Ca2+-free media), adenosine induced a rapid reduction of [Ca2+]i, following which there was a gradual increase to pre-exposure levels, in cells at rest and in the case of Ca2+ depletion. Only when the cells were depolarized (55 mM K+) did adenosine induce a new steady [Ca2+]i level, lower than the pre-exposure value. These findings indicate that decrease in [Ca2+]i by adenosine is one possible mechanism involved in the adenosine-mediated vasodilatation, and that adenosine decreases [Ca2+]i by direct extrusion, by sequestration, or by inhibiting the influx of Ca2+ into VSMCs.  相似文献   

12.
13.
Pretreatment of rat vascular smooth muscle cells with the immunosuppressive drug cyclosporin A caused concentration- and time-dependent increases in both the amplitude and duration of the angiotensin II-induced rise in cytosolic free calcium, as measured with quin 2. Cyclosporin A had no significant effect on basal quin 2 fluorescence. However, cyclosporin A increased the basal 45Ca2+ influx. This stimulation of 45Ca2+ influx was not blocked by nifedipine (10(-6) M). Cyclosporin A also augmented the angiotensin II-stimulated influx and efflux of 45Ca2+. These results demonstrate that cyclosporin A increases the permeability of the plasma membrane for Ca2+ and also augments the angiotensin II-induced increases in cytosolic free calcium.  相似文献   

14.
Regulatory effects of extracellular magnesium ions ([Mg2+]o) on intracellular free ionized calcium ([Ca2+]i) were studied in cultured vascular smooth muscle cells (VSMCs) from rat aorta by use of the fluorescent indicator fura-2 and digital imaging microscopy. With normal Mg2+ (1.2 mM)-containing incubation media, [Ca2+]i in VSMCs was 93.6 +/- 7.93 nM with a heterogeneous cellular distribution. Lowering [Mg2+]o to 0 mM or 0.3 mM (the lowest physiological range) resulted in 5.8-fold (579.5 +/- 39.99 nM) and 3.5-fold (348.0 +/- 31.52 nM) increments of [Ca2+]i, respectively, without influencing the cellular distribution of [Ca2+]i. Surprisingly, [Mg2+]o withdrawal induced changes of cell geometry in many VSMCs, i.e., the cells rounded up. However, elevation of [Mg2+]o up to 4.8 mM only induced slight decrements of [Ca2+]i (mean = 72.0 +/- 4.55 nM). The large increment of [Ca2+]i induced by [Mg2+]o withdrawal was totally inhibited when [Ca2+]o was removed. The data suggest that: (1) [Mg2+]o regulates the level of [Ca2+]i in rat aortic smooth muscle cells, and (2) [Mg2+] acts as an important regulatory ion by modulating cell shapes in cultured VSMc and their metabolism to control vascular contractile activities.  相似文献   

15.
The known action of uridine triphosphate (UTP) to contract some types of vascular smooth muscle, and the present finding that it is more potent than adenosine triphosphate in eliciting an increase in cytosolic Ca2+ concentration in aortic smooth muscle, led us to investigate the mode of action of this nucleotide. With this aim, cultured bovine aorta cells were subjected to patch-clamp methodologies under various conditions. Nucleotide-induced variations in cytosolic Ca2+ were monitored by using single channel recordings of the high conductance Ca2+-activated K+ (Maxi-K) channel within on-cell patches as a reporter, and whole-cell currents were measured following perforation of the patch. In cells bathed in Na+-saline, UTP (>30 nm) induced an inward current, and both Maxi-K channel activity and unitary current amplitude of the Maxi-K channel transiently increased. Repetitive exposures elicited similar responses when 5 to 10 min wash intervals were allowed between challenges of nucleotide. Oscillations in channel activity, but not oscillation in current amplitude were frequently observed with UTP levels > 0.1 m. Cells bathed in K+ saline (150 m) were less sensitive to UTP (5-fold), and did not show an increase in unitary Maxi-K current amplitude. Since the increase in amplitude occurs due to depolarization of the cell membrane, a change in amplitude was not observed in cells previously depolarized with K+ saline. The enhancement of Maxi-K channel activity in the presence of UTP was not diminished by Ca2+ entry blockers or by removal of extracellular Ca2+. However, in the latter case, repetitive responses progressively declined. These observations, as well as data comparing the action of low concentrations of Ca2+ ionophores (<5 m) to that of UTP indicate that both agents elevate cytosolic Ca2+ by mobilization of this ion from intracellular pools. However, the Ca2+ ionophore did not cause membrane depolarization, and thus did not change unitary current amplitude. The effect of UTP on Maxi-K channel activity and current amplitude was blocked by pertussis toxin and by phorbol 12-myristate 13-acetate (PMA), but was not modified by okadaic acid, or by inhibitors of protein kinase C (PKC). Our data support a model in which a pyrimidinergic receptor is coupled to a G protein, and this interaction mediates release of Ca2+ from intracellular pools, presumably via the phosphatidyl inositol pathway. This also results in activation of membrane channels that give rise to an inward current and depolarization. Ultimately, smooth muscle contraction ensues. PKC does not appear to be directly involved, even though the UTP response is blocked by low nm levels of PMA. While the latter data implicate PKC in diminishing the UTP response, agents that inhibit either PKC or phosphatase activity did not prevent abolition of UTP responses by PMA, nor did they modify basal channel activity.  相似文献   

16.
17.
Extracellular calcium (Ca(2+)(o)) can act as a first messenger in many cell types through a G protein-coupled receptor, calcium-sensing receptor (CaR). It is still debated whether the CaR is expressed in vascular smooth muscle cells (VSMCs). Here, we report the expression of CaR mRNA and protein in rat aortic VSMCs and show that Ca(2+)(o) stimulates proliferation of the cells. The effects of Ca(2+)(o) were attenuated by pre-treatment with MAPK kinase 1 (MEK1) inhibitor, as well as an allosteric modulator, NPS 2390. Furthermore, stimulation of the VSMCs with Ca(2+)(o)-induced phosphorylation of ERK1/2, but surprisingly did not cause inositol phosphate accumulation. We were not able to conclusively state that the CaR mediates Ca(2+)(o)-induced cell proliferation. Rather, an additional calcium-sensing mechanism may exist. Our findings may be of importance with regard to atherosclerosis, an inflammatory disease characterized by abnormal proliferation of VSMCs and high local levels of calcium.  相似文献   

18.
19.
The present study was designed to investigate whether arsenic trioxide induced the apoptosis in rat mesenteric arterial smooth muscle cells (SMCs), which provides new insights into mechanisms of arsenic-related vascular diseases. Here, we found that arsenic trioxide significantly decreased the viability of SMCs in a dose-dependent manner. In addition, higher level of arsenic trioxide directly caused cellular necrosis. The Hoechst and AO/EB staining demonstrated that apoptotic morphological change was presented in SMCs exposed to arsenic trioxide. The TUNEL assay displayed that more positive apoptotic signal appeared in SMCs treated with arsenic trioxide. The following result showed that ROS formation was markedly increased in arsenic trioxide-treated SMCs. Pretreatment with N-acetylcysteine, an anti-oxidant reagent, obviously attenuated the enhancement of ROS production and the reduction of cell viability induced by arsenic trioxide in SMCs. Arsenic trioxide also enhanced free intracellular Ca2+ level in SMCs. BAPTA also significantly prevented the increased intracellular Ca2+ and decreased cell viability induced by arsenic trioxide in SMCs. These results suggested that arsenic trioxide obviously induced apoptosis in SMCs, and its mechanism was partially associated with intracellular ROS formation and free Ca2+ increasing.  相似文献   

20.
Cytosolic Ca(2+) signaling dynamics are important to pulmonary arterial reactivity, and alterations are implicated in pulmonary vascular disorders. Yet, adaptations in cellular Ca(2+) homeostasis and receptor-mediated Ca(2+) signaling with maturation from fetal to adult life in pulmonary arterial smooth muscle cells (PASMCs) are not known. The present study tested the hypothesis that cytosolic Ca(2+) homeostasis and receptor-generated Ca(2+) signaling adapt with maturation in sheep PASMCs. Digitalized fluorescence microscopy was performed using isolated PASMCs from fetal and adult sheep that were loaded with the Ca(2+) indicator fura 2. The results show that basal cytosolic and sarcoplasmic reticulum Ca(2+) levels are attained before birth. Similarly, Ca(2+) efflux pathways from the cytosol and basal as well as capacitative Ca(2+) entry (CCE) are also developed before birth. However, receptor-mediated Ca(2+) signaling adapts with maturation. Prominently, serotonin stimulation elicited Ca(2+) elevations in very few fetal compared with adult PASMCs; in contrast, phenylephrine elevated Ca(2+) in a similar percentage of fetal and adult PASMCs. Serotonin and phenylephrine elicited Ca(2+) increases of a similar magnitude in reactive cells of fetus and adult, supporting the assertion that inositol trisphosphate signaling is intact. Caffeine and ATP elevated Ca(2+) in equivalent numbers of fetal and adult PASMCs. However, the caffeine-induced cytosolic Ca(2+) increase was significantly greater in fetal PASMCs, whereas the ATP-elicited increase was greater in adult cells. Overall, the results of this study demonstrate selective adaptations in receptor-mediated Ca(2+) signaling, but not in cellular Ca(2+) homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号