首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calpactins I and II are proteins that bind Ca2+, phospholipids, actin and spectrin; they are also major substrates of oncogene and growth-factor-receptor tyrosine kinases. Since calpactins have been proposed to provide a link between membrane lipids and the cytoskeleton, we examined in detail the interactions between purified calpactin I and phospholipid liposomes. We focused on the Ca2+-dependence, the effects of phosphorylation of calpactin I by p60v-src (the protein kinase coded for by the Rous-sarcoma-virus oncogene), and the effects of the binding of calpactin I light chain to calpactin I heavy chain. Binding of the light chain to the heavy chain increased the affinity of calpactin I for phosphatidylserine (PS) liposomes. The opposite effect was observed for phosphorylation by p60v-src; phosphorylation decreased the affinity of calpactin I for PS liposomes. These two opposite effects appeared to be independent, since phosphorylation did not prevent light-chain binding to the heavy chain. Calpactin I was found, by the use of three different techniques, to bind to phospholipid liposomes at less than 10(-8) M free Ca2+. This result is in contrast with those of previous studies, which indicated that greater than 10(-6) M free Ca2+ was required. Our findings suggest that calpactin I may be bound to phospholipids in vivo at Ca2+ concentrations of about 1.5 x 10(-7) M, typical of resting unstimulated cells, and that this interaction may be modulated by light-chain binding and phosphorylation by p60v-src.  相似文献   

2.
Calpactin I, a Ca2+- and phospholipid-binding cytoskeletal protein, which serves as a major substrate of protein-tyrosine kinases, was isolated from bovine intestine and lung as a species containing two 36-kDa heavy chains and two 10-kDa light chains. The heavy chain is comprised of two distinct domains which can be identified by limited proteolysis: a COOH-terminal 33-kDa core, which contains the Ca2+- and phospholipid-binding sites, and an NH2-terminal tail, which contains the major site of phosphorylation by pp60v-src. To determine the site of association of the light chain on the heavy chain, we analyzed the association states of the light chain, core, and tail by sucrose gradient centrifugation after limited chymotryptic digestion. The core was not detected in higher Mr complexes with the light chain, and the tail cosedimented with a light chain dimer. The tail, isolated from chymotryptic digests and radiolabeled with 125I, was found to form a specific complex with the light chain, but not the core. The authentic tail and a synthetic peptide corresponding to residues 1-29 of the calpactin I heavy chain were both able to specifically inhibit the reassociation between heavy and light chain, whereas a synthetic peptide corresponding to residues 15-33 was inactive. These results suggest that the tail may serve as a site of regulation by light chain or phosphorylation.  相似文献   

3.
J Glenney  L Zokas 《Biochemistry》1988,27(6):2069-2076
Calpactins I and II are related 39-kilodalton (kDa) proteins that interact with phospholipids and actin in a calcium-dependent manner and are substrates of tyrosine protein kinases. They contain a short amino-terminal tail attached to a 36-kDa core domain. Monoclonal antibodies (Mabs) were raised to bovine calpactin II and used as site-specific probes of its structure and function. All of the antibodies reacted with native calpactin II and gave rise to a single band of 39 kDa among total cell protein displayed on Western blots. Most of the antibodies (9/14) reacted with determinants on the tail as shown by Western blots and competition with a synthetic tail peptide. Four antibodies reacted with determinants on the core and a 10-kDa tryptic fragment. Antibody-calpactin II complexes were tested for their ability to interact with lipid, actin, and Ca2+ and to serve as substrates of the epidermal growth factor (EGF) receptor tyrosine protein kinase. Whereas none of the antibodies had a detectable effect on actin binding, two anticore antibodies reduced calpactin's affinity for phospholipid. Ca2+-binding sites are known to reside within the core region, yet most antitail antibodies markedly increased the affinity of calpactin II for Ca2+, with four Ca2+-binding sites observed. Antitail antibodies either (i) abolished or (ii) greatly stimulated (10-fold) the phosphorylation of calpactin II by the EGF receptor. These results suggest that the interactions between calpactin II and Ca2+, phospholipid, or the EGF receptor are more complex than previously thought and can be modulated by interactions occurring in the tail.  相似文献   

4.
Calcimedin is a group of proteins which has a binding ability to several hydrophobic matrices or cellular membrane fractions in the presence of Ca2+. Although the molecular properties were partially clarified, the physiological functions of calcimedins have not been clearly defined. In this study, we describe the isolation and characterization of 32-kDa calcimedin from chicken gizzard. Both structural and functional studies establish that 32-kDa calcimedin is a member of the calpactin/lipocortin family. The 32-kDa calcimedin displays phospholipase A2 inhibitory activity, Ca2(+)-dependent F-actin binding activity, and phospholipid binding activity similar to those of calpactins/lipocortins. Antiendonexin II antibody recognized 32-kDa calcimedin. However, antibodies against calpactin I (lipocortin II), calpactin II (lipocortin I), 35-kDa calcimedin, and 67-kDa calcimedin did not cross-react with 32-kDa calcimedin. One-dimensional peptide maps of the 32-kDa calcimedin and the 35-kDa calcimedin are different, confirming that they are distinct proteins. By comparing the sequence of 32-kDa calcimedin with the predicted sequence of endonexin II, we concluded that the primary structure of the 32-kDa protein is highly conserved. In particular, the sequences AMKGMGTDDEXEIXL, GMGTDEEEIL, VLTEILASR, and ILTSR conform to the endonexin consensus sequence, which is characteristic of the calpactin/lipocortin family.  相似文献   

5.
Interactions of annexins with membrane phospholipids.   总被引:2,自引:0,他引:2  
The annexins are proteins that bind to membranes and can aggregate vesicles and modulate fusion rates in a Ca2(+)-dependent manner. In this study, experiments are presented that utilize a pyrene derivative of phosphatidylcholine to examine the Ca2(+)-dependent membrane binding of soluble human annexin V and other annexins. When annexin V and other annexins were bound to liposomes containing 5 mol % acyl chain labeled 3-palmitoyl-2-(1-pyrenedecanoyl)-L-alpha-phosphatidylcholine, a decrease in the excimer-to-monomer fluorescence ratio was observed, indicating that annexin binding may decrease the lateral mobility of membrane phospholipids without inducing phase separation. The observed increases of monomer fluorescence occurred only with annexins and not with other proteins such as parvalbumin or bovine serum albumin. The extent of the increase of monomer fluorescence was dependent on the protein concentration and was completely and rapidly reversible by EDTA. Annexin V binding to phosphatidylserine liposomes was consistent with a binding surface area of 59 phospholipid molecules per protein. Binding required Ca2+ concentrations ranging between approximately 10 and 100 microM, where there was no significant aggregation or fusion of liposomes on the time scale of the experiments. The polycation spermine also displaced bound annexins, suggesting that binding is largely ionic in nature under these conditions.  相似文献   

6.
Uptake of mineral ions by isolated matrix vesicles (MV) incubated in synthetic cartilage lymph follows a consistent pattern. After an initial lag period, MV rapidly accumulate large amounts of Ca2+ and Pi before the appearance of crystalline mineral. The ability of MV to accumulate Ca2+ is readily destroyed by proteases, indicating that proteins are important in Ca2+ accumulation. Since MV contain significant amounts of phosphatidylserine (PS), an acidic phospholipid with affinity for Ca2+, it seemed probable that this lipid might also contribute to Ca2+ binding. The development of methods for reproducible isolation of pure active MV enabled us to search for factors responsible for the rapid accumulation of Ca2+. Reported here are studies which reveal that a set of intensely staining MV proteins, extractable with EGTA, selectively bind to Ca2+, but only in the presence of acidic phospholipids. These 30-36-kDa proteins form readily sedimentable insoluble ternary complexes of protein, Ca2+, and lipid in the presence of low levels of Ca2+. With liposomes composed of PS, alone or in combination with phosphatidylethanolamine, submicromolar levels of Ca2+ or certain other divalent cations, but not Mg2+, are sufficient to form the complexes. The physical and chemical properties of these MV proteins appear to be like those of the calpactin family of membrane-associated proteins. In fact, these MV proteins were found to cross-react with antibodies to calpactin II. Thus, calpactins appear to be important protein constituents of avian growth plate MV. This finding helps explain the enrichment in PS previously noted in MV and may also point to the mechanism by which MV rapidly accumulate Ca2+.  相似文献   

7.
Dictyostelium discoideum MyoB is a single-headed class I myosin. Analysis of purified MyoB by SDS-PAGE indicated the presence of an approximately 9-kDa light chain. A tryptic digest of MyoB yielded a partial sequence for the light chain that exactly matched a sequence in a 73-amino acid, 8,296-Da protein (dictyBase number DDB0188713). This protein, termed MlcB, contains two EF-hand motifs and shares approximately 30% sequence identity with the N- and C-terminal lobes of calmodulin. FLAG-MlcB expressed in Dictyostelium co-immunoprecipitated with MyoB but not with the related class myosins and MyoD. Recombinant MlcB bound Ca2+ with a Kd value of 0.2 microm and underwent a Ca2+-induced change in conformation that increased alpha-helical content and surface hydrophobicity. Mutational analysis showed that the first EF-hand was responsible for Ca2+ binding. In the presence and absence of Ca2+ MlcB was a monomer in solution and bound to a MyoB IQ motif peptide with a Kd value of approximately 0.5 microm. A MyoB head-neck construct with a Ser to Glu mutation at the TEDS site bound MlcB and displayed an actin-activated Mg2+ ATPase activity that was insensitive to Ca2+. We conclude that MlcB represents a novel type of small myosin light chain that binds to IQ motifs in a manner comparable with a single lobe of a typical four-EF-hand protein.  相似文献   

8.
Calcimedin is a group of proteins, originally isolated from chicken gizzard, which are able to bind to several hydrophobic matrices in the presence of Ca2+. Although the molecular properties have been partially discovered, the physiological functions of calcimedins have not yet been clearly defined. In this study, we describe the isolation and characterization of 67-kDa calcimedin and its 34-kDa fragment from chicken gizzard. Both structural and functional studies establish that 67-kDa calcimedin is a member of the calpactin/lipocortin family: it displays phospholipase A2 inhibitory activity, Ca2(+)-dependent F-actin binding and phospholipid binding activity similar to those of calpactins (lipocortins). By comparing the sequence of 67-kDa calcimedin with the predicted sequence of 67-kDa calelectrin, we concluded that the primary structure of these 67-kDa proteins is highly conserved. In particular, the sequences GLGTDEGAIIXVLTQR and EGAGTDESTLIEIMATR conform with the annexin consensus sequence which is characteristic of the calpactin/lipocortin family. A 34-kDa fragment of 67-kDa calcimedin was also purified and their relatedness has been confirmed by antibody cross-reactivity. The sequence data further support that the 34-kDa fragment is derived from the C-terminal portion of 67-kDa calcimedin by limited proteolysis. The 34-kDa fragment, which contains the annexin consensus sequence, preserves the phospholipase A2 inhibitory activity, and binds F-actin and phospholipids.  相似文献   

9.
Human placental anticoagulant protein-I (PAP-I) is a member of the lipocortin/calpactin/annexin family of Ca2+-dependent phospholipid binding proteins. PAP-I was labeled with fluorescein 5-isothiocyanate (1 mol/mol); this derivative had anticoagulant activity identical to the unlabeled protein and could be used to measure Ca2+-dependent binding to phospholipid vesicles through changes in fluorescence quenching. At 1.2 mM Ca2+, 0.50 M ionic strength, pH 7.4, 25 degrees C, fluorescein-labeled PAP-I bound to phospholipid vesicles containing 80% phosphatidylcholine, 20% phosphatidylserine with a Kd of 1.2 +/- 0.2 nM (mean +/- S.D.). At an ionic strength of 0.15 M, the Kd decreased to less than 0.1 nM. Prothrombin and factor Xa both competed with fluorescein-labeled PAP-I for binding to anionic phospholipid vesicles, but with affinities at least 1000-fold weaker than PAP-I. PAP-I bound only weakly (Kd greater than 2 x 10(-5) M) to neutral or anionic phospholipid monomers, and this binding was not calcium-dependent. These results show that the affinity of PAP-I for anionic phospholipid surfaces is sufficient to explain its potency as an in vitro anticoagulant.  相似文献   

10.
Brush border myosin I from chicken intestine is phosphorylated in vitro by chicken intestinal epithelial cell protein kinase C. Phosphorylation on serine and threonine to a maximum of 0.93 mol of P/mol of myosin I occurs within an approximately 20 kDa region at the end of the COOH-terminal tail of the 119-kDa heavy chain. The effects of Ca2+ on myosin I phosphorylation by protein kinase C are complex, with up to 4-fold stimulation occurring at 0.5-3 microM Ca2+, and up to 80% inhibition occurring at 3-320 microM Ca2+. Phosphorylation required that brush border myosin I be in its phosphatidylserine vesicle-bound state. Previously unknown Ca2+ stimulation of brush border myosin I binding to phosphatidylserine vesicles was found to coincide with Ca2+ stimulation of phosphorylation. A myosin I proteolytic fragment lacking approximately 20 kDa of its tail retained Ca(2+)-stimulated binding, but showed reduced Ca(2+)-independent binding. Ca(2+)-dependent phosphatidylserine binding is apparently due to the concomitant phosphatidylserine-promoted, Ca(2+)-induced dissociation of up to three of the four calmodulin light chains from myosin I. Four highly basic putative calmodulin-binding sites in the Ca(2+)-dependent phosphatidylserine binding region of the heavy chain were identified based on the similarity in their sequence to the calmodulin- and phosphatidylserine-binding site of neuromodulin. Calmodulin dissociation is now shown to occur in the low micromolar Ca2+ concentration range and may regulate the association of brush border myosin I with membranes and its phosphorylation by protein kinase C.  相似文献   

11.
Two-dimensional crystals of p68, a Ca2+ -binding protein that has homology with members of the lipocortin/calpactin family, were obtained by interaction with a phospholipid monolayer. By measuring surface pressure at constant surface area, p68 was found to interact in a Ca2+ -dependent manner specifically with phosphatidylethanolamine, less so with phosphatidylserine and not at all with phosphatidylcholine. With dimyristoyl-phosphatidylethanolamine, two-dimensional crystalline arrays were formed. Image analysis of electron micrographs of these crystals, which diffracted to about 50 A, revealed p3 symmetry with a unit cell of about 178 A by 178 A; the protein densities showed a two-domain structure giving a cylindrical molecule of about 100 A by 35 A diameter packed as trimers. Three-dimensional microcrystals obtained without lipid or Ca2+ were suitable for electron microscopy and gave a tetragonal unit cell of about 256 A by 68 A. The implications of these observations on the structure and lipid specificity of p68 binding are discussed.  相似文献   

12.
Monoclonal antibodies (8/1, 10/10, and 25/3) against rat brain type II protein kinase C were used for the immunochemical characterization of this kinase. These antibodies immunoprecipitated the type II protein kinase C in a dose-dependent manner but did neither to the type I nor III isozyme. Immunoblot analysis of the tryptic fragments from protein kinase C revealed that all three antibodies recognized the 27-38-kDa fragments, the phospholipid/phorbol ester-binding domain, but not the 45-48-kDa fragments, the kinase catalytic domain. The immune complexes of the kinase and the antibodies retained 70-80% of the kinase activity which was dependent on Ca2+ and phosphatidylserine and further activated by diacylglycerol or tumor-promoting phorbol ester. With antibody 8/1, the kinetic parameters with respect to Km for ATP and histone and K alpha for phosphatidylserine and phorbol 12,13-dibutyrate were not significantly influenced. However, the antibody causes variable effects on the K alpha for Ca2+ under different assay conditions. When determined in the presence of phosphatidylserine, the K alpha for Ca2+ was reduced by an order of magnitude (37 +/- 8 to 2.0 +/- 1.8 microM); in the presence of phosphatidylserine and phorbol 12,13-dibutyrate, the K alpha for Ca2+ was not significantly altered; and in the presence of phosphatidylserine and dioleoylglycerol, the kinase became an apparently Ca2+-independent enzyme. The effects of antibody 8/1 on the kinetic parameters of the enzyme for phorbol ester binding were different from those for kinase activity. This antibody causes a 20-30% reduction in phorbol ester binding and a 2-fold increase (1.9 +/- 0.2 to 3.9 +/- 0.3 micrograms/ml) in the concentration of phosphatidylserine required for half-maximal binding, but is without significant influence on those parameters for Ca2+ and phorbol 12,13-dibutyrate. The differential effects of antibody 8/1 on kinase activity and phorbol ester binding with respect to the kinetic parameter of phosphatidylserine suggest that the roles of this phospholipid in supporting phorbol ester binding and kinase activation are different. In the presence of the antibody, the autophosphorylations of the phospholipid/phorbol ester-binding domain and the kinase domain were reduced; the reduction was more pronounced for the former than for the latter. These results suggest that the epitope for antibody 8/1 is localized within the phospholipid/phorbol ester-binding domain at the region adjacent to the kinase domain so that the autophosphorylations of both domains are affected.  相似文献   

13.
Protein I from intestinal epithelium is biochemically and immunologically related to the fibroblast 36-kDa substrate of the Rous sarcoma virus-encoded tyrosine protein kinase (Gerke and Weber (1984) EMBO J. 3, 227-233). Protein I is a Ca2+-binding protein containing two copies each of a 36- and 10-kDa subunit. Denaturation/renaturation experiments show that the 36-kDa subunit is a monomer, whereas the 10-kDa subunit forms a dimer. Mixing of the subunits leads to reconstituted protein I. Physicochemical properties of protein I and its isolated subunits reveal a Ca2+-dependent conformational change in the 36-kDa subunit which involves the exposure of 1 or more tyrosine residues to a more aqueous environment. This change points to a Ca2+ binding constant of about 10(4) M-1 in the presence of 2 mM Mg2+ and induces the ability of protein I and the 36-kDa subunit to bind in vitro to F-actin and nonerythroid spectrin. The same high Ca2+ requirement has been reported for the in vitro tyrosine phosphorylation of a 35-kDa protein from A-431 carcinoma cells by the epidermal growth factor receptor kinase (Fava and Cohen (1984) J. Biol. Chem. 259, 2636-2645). Here we show that this 35-kDa substrate is biochemically and immunologically related to the 36-kDa subunit of protein I, which in turn corresponds to the substrate of the Rous sarcoma virus kinase. The protein of A-431 cells exists not only as a monomer but also as a dimer. The latter fraction contains a 10-kDa polypeptide immunologically related to the corresponding subunit of protein I. Given past results on the A-431 system, we speculate that the monomer rather than the dimer is the preferred in vitro substrate for the epidermal growth factor receptor kinase. Thus, the 10-kDa subunit, which induces dimerization of the phosphorylatable large subunit, may act as an inhibitor.  相似文献   

14.
Electrophoretic light scattering (ELS) and depolarization of fluorescence have been used to determine the effect of membrane fluidity on the binding of Ca2+ to liposomes. ELS was used to measure the electrophoretic mobilities of the liposomes. Fluorescence depolarization was used to determine membrane fluidity. Zero to 30 mol% phosphatidylserine (PS) was incorporated into liposomes containing, as bulk phospholipids, one of the following: dimyristoyl-phosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), egg phosphatidylcholine (PC), or hydrogenated egg phosphatidylcholine (H egg PC). The binding of Ca2+ to the liposomes appears to be influenced by membrane fluidity. Liposomes containing bulk phospholipids whose phase transition temperature is higher than the experimental temperature exhibit enhanced binding of CA2+.  相似文献   

15.
Three forms of calpactin, the 36,000 Mr Ca++-binding cytoskeletal protein, were isolated in large amounts from bovine lung and human placenta using cycles of calcium-dependent precipitation followed by solubilization with EGTA-containing buffers. Calpactin-I as a tetramer of heavy (36 kD) and light (11 kD) chains was the predominant form of calpactin isolated, however milligram amounts of the calpactin-I heavy chain monomer and calpactin-II, a related but distinct molecule, were also isolated by this method. Calpactin-II was characterized in some detail and found to bind two Ca++ ions with Kd's of 10 microM in the presence of phosphatidylserine. Both calpactin-I and -II were found to aggregate liposomes at micromolar Ca++ concentrations, suggesting that at least two phospholipid-binding sites are present on these molecules. Both calpactin monomers bind to and bundle actin filament at high (1 mM) but not low (less than 1 microM) Ca++ concentrations. Amino-terminal sequence analysis of a lower molecular mass variant of calpactin-II revealed that this protein was the previously identified human "lipocortin" molecule. Antibodies were elicited to calpactin-I and -II and the cell and subcellular distribution of each was compared. Calpactin-II was only present at high levels in tissues (lung, placenta) which contained high levels of calpactin-I. Other tissues (intestine) contained high calpactin-I and undetectable levels of calpactin-II. Double-label immunofluorescence microscopy on human fibroblasts revealed that, like calpactin-I, calpactin-II is present in a submembraneous reticular network, although the distribution of the two calpactins is not identical.  相似文献   

16.
Endonexin II is a member of the family of Ca2+-dependent phospholipid binding proteins known as annexins. We cloned human endonexin II cDNA and expressed it in Escherichia coli. The apparent size and Ca2+-dependent phospholipid binding properties of purified recombinant endonexin II were indistinguishable from those of the placental protein. A single mRNA of approximately 1.6 kilobase pairs was found to be expressed in human cell lines and placenta and was in close agreement with the length of the cDNA clone (1.59 kilobase pairs). The cDNA predicted a 320-amino acid protein with a sequence that was in agreement with the previously determined partial amino acid sequence of endonexin II isolated from placenta. Endonexin II contained 58, 46, and 43% sequence identity to protein II, calpactin I (p36, protein I), and lipocortin I (p35), respectively. The partial sequence of bovine endonexin I was aligned with the sequence of endonexin II to give 63% sequence identity. Like these other proteins, endonexin II had a 4-fold internal repeat of approximately 70 residues preceded by an amino-terminal domain lacking similarity to the repeated region. It also had significant sequence identity with 67-kDa calelectrin (p68), a protein with an 8-fold internal repeat. Comparing the amino-terminal domains of these four proteins of known sequence revealed that, in general, only endonexin II and protein II had significant sequence identity (29%). Endonexin II was not phosphorylated by Ca2+/phospholipid-dependent enzyme (protein kinase C) even though it contained a threonine at a position analogous to the protein kinase C phosphorylation sites of lipocortin I, calpactin I, and protein II.  相似文献   

17.
A fluorescence study of the calpactin I complex, a heterotetramer composed of two molecules of p36 and two molecules of p11, and its subunits, was performed to clarify their conformation. The analysis of the fluorescence characteristics of the single Trp of p36, in the absence of Ca(2+), shows that: (i) in the complex, Trp is buried within the protein matrix and subjected to static quenching from nearby groups; (ii) for p36 the results are similar, but Trp seems even more shielded than in the complex. Adding Ca(2+) to the calpactin I complex, or to p36, shifts the Trp emission maximum wavelengths, and increases the quantum yields which reflect a conformational change, burying the Trp in a more hydrophobic environment. In the presence and even in the absence of Ca(2+), the binding of phosphatidylserine liposomes induces a conformational change, detected by fluorescence measurements. The Ca(2+) dissociation constants, as determined by fluorescence titrations, are similar for the complex and p36 (KD approximately 0.5 x 10(-3) M). The affinity is enhanced a 1000-times in the presence of negatively charged phospholipids. In p11, both Try residues are located in a hydrophobic environment and the protein fluorescence does not change upon Ca(2+) addition.  相似文献   

18.
Two monomeric 32-kDa proteins, termed 32K-I (pI 5.8) and 32K-II (pI 5.1), were isolated from human placenta, which was solubilized by a Ca2+-chelator. Only 32K-I was associated with PLA2-inhibitory activity. CNBr peptide mapping indicated that 32K-I was distinct from 32K-II and two 36-kDa proteins, called calpactin I and II or lipocortin II and I, which have been shown to possess PLA2-inhibitory activity. 32K-I bound to PS in a Ca2+-dependent manner. 32K-I was detected in many tissues except brain, cardiac and skeletal muscle.  相似文献   

19.
K Hong  V D Vacquier 《Biochemistry》1986,25(3):543-549
Lysin, a protein of Mr 16 000 from the acrosome granule of the abalone, is responsible for the dissolution of the egg vitelline layer. The primary structure of this cationic protein projects some hydrophobic domains in the secondary structure. Lysin was found to associate nonselectively with phospholipid bilayers and cause a spontaneous release of encapsulated carboxyfluorescein in liposomes. The association of lysin with phosphatidylcholine liposomes suggests that there is a hydrophobic interaction between lysin and lipid bilayers. Binding of lysin to phospholipid resulted in the aggregation of phosphatidylserine-containing liposomes, but aggregation was not observed in neutral phosphatidylcholine liposomes. Resonance energy transfer and dequenching of fluorescent 1-palmitoyl-2-cis-parinaroylphosphatidylcholine were both used to determine the fusogenic activity of lysin in aggregated liposomes. Results from both assays are consistent. Lysin-induced fusion was observed in all the phosphatidylserine-containing liposomes, and the general trend of fusion susceptibility was phosphatidylserine/phosphatidylcholine (1:2) approximately equal to phosphatidylserine/phosphatidylcholine/phosphatidylethanolamine (1:1:1) greater than phosphatidylserine/phosphatidylethanolamine (1:2). Cholesterol up to 30% did not affect the intrinsic fusion susceptibility. A hydrophobic penetration by protein molecules and the packing of phospholipid bilayers are used to interpret the fusion susceptibility. Lysin-induced liposome aggregation was highly independent of the state of self-association of lysin in ionic medium. However, the fusogenic activity of self-associated lysin was found to be much less than the monodispersed one. Liposomes preincubated with Ca2+ did not fuse initially as readily as those without Ca2+ treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A 74-kDa protein (adseverin) derived from adrenal medulla severs actin filaments and nucleates actin polymerization in a Ca2(+)-dependent manner but does not form an EGTA-resistant complex with actin monomers, which is different from the gelsolin-actin interaction. The dissociation of gelsolin-actin complexes by phosphatidylinositol 4,5-bisphosphate (PIP2) and the inhibitory effect on actin filament severing by gelsolin was recently reported. This study shows that the activity of adseverin is inhibited not only by PIP2 but also by some common phospholipids including phosphatidylinositol (PI) and phosphatidylserine (PS). Other phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) showed no effect. The addition of PC or PE to PI diminished the inhibitory effect of PI. Triton X-100 and neomycin were also found effective in suppressing the effect of PI, suggesting that the arrangement of polar head groups is important in exerting the inhibitory effect. Ca2(+)-dependent binding of adseverin to PS liposomes but not to PC or PE liposomes was observed by a centrifugation assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号