首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The biological effects of thyroid hormone (T3) are mediated by the thyroid hormone receptor (TR). Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3. T3 regulates a series of orchestrated developmental changes, which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog. T3 is presumed to bind to TRs, which in turn recruit coactivators, leading to gene activation. The best-studied coactivators belong to the p160 or SRC family. Members of this family include SRC1/ NCoA-1, SRC2/TIF2/GRIP1, and SRC3/pCIP/ACTR/AIB-l/RAC-3/TRAM-1. These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP. Here, we studied the expression patterns of these coactivators during various stages of development. Amongst the coactivators cloned in Xenopus laevis, SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis, and SRC2 and p300 are express  相似文献   

4.
Paul BD  Shi YB 《Cell research》2003,13(6):459-464
The biological effects of thyroid hormone (T3) are mediated by the thyroid hormone receptor (TR). Amphibian metamorphosis is one of the most dramatic processes that are dependent on T3. T3 regulates a series of orchestrated developmental changes, which ultimately result in the conversion of an aquatic herbivorous tadpole to a terrestrial carnivorous frog. T3 is presumed to bind to TRs, which in turn recruit coactivators, leading to gene activation. The best-studied coactivators belong to the p160 or SRC family. Members of this family include SRC1/NCoA-1, SRC2/TIF2/GRIP1, and SRC3/pCIP/ACTR/AIB-1/RAC-3/TRAM-1. These SRCs interact directly with liganded TR and function as adapter molecules to recruit other coactivators such as p300/CBP. Here, we studied the expression patterns of these coactivators during various stages of development. Amongst the coactivators cloned in Xenopus laevis, SRC3 was found to be dramatically upregulated during natural and T3-induced metamorphosis, and SRC2 and p300 are expressed throughout postembryonic development with little change in their expression levels. These results support the view that these coactivators participate in gene regulation by TR during metamorphosis.  相似文献   

5.
D. P. Chopra    Louie  Hamilton 《Journal of Zoology》1972,166(2):159-162
A histological study of irradiated thyroid and pituitary glands of metamorphosing Xenopus tadpoles was made. Both glands shrink, reaching a minimum nine hours after irradiation and recover by 24 hours. It is suggested that sudden release of hormones may explain a reported hastening of metamorphosis in irradiated tadpoles.  

Summary:


Xenopus larvae received 2500 rads of whole body X-rays.
Nine hours after irradiation both pituitary and thyroid volumes were significantly less than the controls. From 24 hours after, the volumes had returned to control levels.
The mitotic incidence in irradiated thyroids fell within five hours to one tenth of the control value and remained suppressed for at least three days.  相似文献   

6.
7.
The distribution of E-cadherin during Xenopus laevis development   总被引:4,自引:0,他引:4  
A vast amount of experimental evidence suggests that cell surface molecules involved in cell-to-cell and/or cell-to-substrate interactions participate in the control of basic events in morphogenesis. E-cadherin is a cell adhesion molecule directly implicated in the control of Ca2(+)-dependent interactions between epithelial cells. We report here the patterns of expression of E-cadherin in developmental stages of Xenopus laevis ranging from early embryo to adult using immunofluorescence microscopy. Although its distribution shares some similarities with those of L-CAM in the chicken and E-cadherin/Uvomorulin in the mouse, the distribution of E-cadherin in Xenopus presents several peculiar and unique features. In early stages of Xenopus development, E-cadherin is not expressed. The molecule is first detectable in the ectoderm of late gastrulas (stage 13-13.5 NF). At this time both the external and the sensory layer of the nonneural ectoderm accumulate high levels of E-cadherin while the ectoderm overlying the neural plate and regions of the involuting marginal zone (IMZ) not yet internalized by the movements of gastrulation are E-cadherin-negative. Unlike most other species, endodermal cells express no or very low levels of E-cadherin up to stage 20 NF. Endodermal cells become strongly E-cadherin-positive only when a well-differentiated epithelium forms in the gut. No mesodermal structures are stained during early development. In the placodes, in contrast to other species, E-cadherin disappears very rapidly after placode thickening. During further embryonic development E-cadherin is present in the skin, the gut epithelium, the pancreas, many monostratified epithelia and most glands. Hepatocytes are stained weakly while most other tissues, including the pronephros, are negative. In the mesonephros, the Wolffian duct and some tubules are positive. During metamorphosis a profound restructuring of the body plan takes place under the control of thyroid hormones, which involves the degeneration and subsequent regeneration of several tissues such as the skin and the gut. All newly formed epithelia express high levels of E-cadherin. Surprisingly, degenerating epithelia of both skin and intestine maintain high levels of the protein even after starting to become disorganized and to degenerate. In the adult, staining is strong in the skin, the glands, the lungs, the gut epithelium and the pancreas, weak in the liver and absent from most other tissues. Our results show that the expression of E-cadherin in Xenopus is strongly correlated with the appearance of differentiated epithelia.  相似文献   

8.
Summary Normal and propylthiouracil (PTU) treated Xenopus laevis tadpoles were fixed during all stages of metamorphosis and sagittal sections were stained with aldehyde fuchsin (AF) or pseudoisocyanine (PIC). Whereas AF positive neurosecretory material could only be demonstrated in the preoptic nucleus from late prometamorphosis, increasing amounts of PIC positive material were found in cells of the dorsal part of the preoptic region from early premetamorphosis. The development of these cells correlated with that of the thyrotropic cells and the thyroids. Likewise, signs of hyperactivity in thyroids and thyrotropic cells of PTU treated larvae were accompanied by a depletion of the dorsal PIC positive cells. In the ventral preoptic region PIC positive cells developed from late prometamorphosis in control larvae, but failed to do so in PTU treated animals. It is argued that the differentiation of the PIC positive cells is largely dependent on thyroid hormones; that the dorsal PIC positive cells may produce a thyrotropin releasing factor; and that the function of these dorsal cells is inhibited by thyroid hormones.The authors thank Dr. P. G. W. J. van Oordt for his active interest and helpful advices, Miss Tineke Aafjes for technical assistance and Mr. H. van Kooten for making the photographs.  相似文献   

9.
Summary Tadpoles of Xenopus laevis were treated with propylthiouracil from the second half of prometamorphosis. Sagittal sections of the head region were stained a.o. with pseudoisocyanine. The goitrogen caused a degranulation of neurosecretory cells in the dorsal part of the preoptic region of the hypothalamus, suppressed the development of ventral neurosecretory cells and of the outer zone of the median eminence, stimulated the thyrotropic cells in the adenohypophysis, caused a hypertrophy of the thyroids, and impaired metamorphosis. Returning the animals to tap water had reciprocal effects and restored the normal activity of the hypothalamus, adenohypophysis and thyroid glands. It is concluded that thyroid hormones exert a morphogenetic influence upon hypothalamic centres and the outer zone of the median eminence and that a negative feed back relation exists between the thyroids on the one hand and the dorsal neurosecretory cells and the thyrotropic cells on the other.The author thanks Prof. Dr. P. G. W. J. van Oordt for his active interest and helpful advice, and Miss Tineke Aafjes for technical assistance.  相似文献   

10.
11.
12.
BACKGROUND: The principal Aflatoxin B(1) (AFB(1)) hydroxylated metabolite excreted in milk is Aflatoxin M(1) (AFM(1)) classified in group 2B by the International Agency for Research on Cancer (IARC). Human exposure to AFM(1) is due to the consumption of contaminated dairy products and partly to endogenous production through AFB(1) liver metabolism. METHODS: Since no data are available on AFM(1) embryotoxicity, its lethal and teratogenic potential was investigated using the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Stage-8 blastulae were exposed to AFM(1) at 1, 4, 16, 64, and 256 microg/L concentrations until stage 47, free-swimming larva. RESULTS: A slight increase of mortality and malformed larva percents was found in AFM(1)-exposed groups but these differences were not statistically significant in comparison with the controls. CONCLUSIONS: Therefore, AFM(1) is a non-embryotoxic compound when evaluated with a FETAX model at concentrations under the conditions tested. However, AFM(1) merits further studies using mammals as experimental models to identify a possible risk during human pregnancy.  相似文献   

13.
14.
During the metamorphosis of the Xenopus laevis retina, thyroid hormone (TH) preferentially induces ventral ciliary marginal zone (CMZ) cells to both increase their proliferation and give rise to ipsilaterally projecting ganglion cells. Here we show that dorsal CMZ cells express type III deiodinase (D3), an enzyme that inactivates TH. The dorsal CMZ cells can be induced to proliferate if deiodinase activity is inhibited. D3 or dominant-negative thyroid hormone receptor transgenes inhibit both TH-induced proliferation of the ventral CMZ cells and the formation of the ipsilateral projection. Thus, the localized expression of D3 in the dorsal CMZ cells accounts for the asymmetric growth of the frog retina.  相似文献   

15.
Biogenesis of mitochondria during Xenopus laevis development   总被引:11,自引:0,他引:11  
  相似文献   

16.
Ultrastructural changes in the intestinal connective tissue of Xenopus laevis during metamorphosis have been studied. Throughout the larval period to stage 60, the connective tissue consists of a few immature fibroblasts surrounded by a sparse extracellular matrix: few collagen fibrils are visible except close to the thin basal lamina. At the beginning of the transition from larval to adult epithelial form around stage 60, extensive changes are observed in connective tissue. The cells become more numerous and different types appear as the collagen fibrils increase in number and density. Through gaps in the thickened and extensively folded basal lamina, frequent contacts between epithelial and connective tissue cells are established. Thereafter, with the progression of fold formation, the connective tissue cells become oriented according to their position relative to the fold structure. The basal lamina beneath the adult epithelium becomes thin after stage 62, while that beneath the larval epithelium remains thick. Upon the completion of metamorphosis, the connective tissue consists mainly of typical fibroblasts with definite orientation and numerous collagen fibrils. These observations indicate that developmental changes in the connective tissue, especially in the region close to the epithelium, are closely related spatiotemporarily to the transition from the larval to the adult epithelial form. This suggests that tissue interactions between the connective tissue and the epithelium play important roles in controlling the epithelial degeneration, proliferation, and differentiation during metamorphic climax.  相似文献   

17.
Several in vitro systems exist for the induction of animal caps using growth factors such as activin. In this paper, we compared the competence of activin-treated animal cap cells dissected from the late blastulae of Xenopus tropicalis and Xenopus laevis. The resultant tissue explants from both species differentiated into mesodermal and endodermal tissues in a dose-dependent manner. In addition, RT-PCR analysis revealed that organizer and mesoderm markers were expressed in a similar temporal and dose-dependent manner in tissues from both organisms. These results indicate that animal cap cells from Xenopus tropicalis have the same competence in response to activin as those from Xenopus laevis.  相似文献   

18.
The binding of corticosteroids has been studied by equilibrium dialysis at 4 degrees C and electrophoresis on polyacrylamide gel. Aldosterone was not bound specifically. Large amounts of corticosterone (B) were bound. A high affinity (Ka = 2.8 X 10(8) M-1) low capacity (70.1 nM) component was found in tadpoles. Its affinity and its electrophoretic mobility were not significantly modified during metamorphosis and growth until adult. It differs from mammalian CBG with respect to affinity, electrophoretic mobility and specificity. During growth, the capacity of the high affinity component increased significantly (173 nM in adults) and a low affinity (Ka = 2.0 X 10(5) M-1) high capacity (18.26 microM) component was detected. This last component has the same electrophoretic mobility as bovine serum albumin. These modifications can be related to the large increase in the level of plasma proteins (especially albumins). The concentrations of bound and free B deduced from our data indicate that in tadpoles the increase in the total concentration in the climax is not a good reflection of modifications of these two fractions since the change of free B is larger than that of bound B. This information is an important consideration in interpreting the physiological role of interrenal secretion during metamorphosis.  相似文献   

19.
  • 1.1. Serum urea, ammonia concentrations in the blood and excretion were measured in tadpoles of different stages and juveniles of Xenopus laevis.
  • 2.2. The urea excretion rate was determined with the help of injected 14C-urea.
  • 3.3. Urea concentrations are higher during metamorphic climax and at the end of metamorphosis than during prometamorphosis.
  • 4.4. Blood ammonia levels remain rather constant throughout metamorphosis.
  • 5.5. Coincidentally, the relative amount of urea in the blood increases.
  • 6.6. The 14C-urea excretion rates slow down from very high values (48%/hr) at the beginning of prometamorphosis to low rates (5%/hr) in newly metamorphosed animals.
  • 7.7. This means that during metamorphosis not only is the possibility of urea production established. but there is a capacity to retard and store urea to some extent.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号