首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivity and responsiveness of glucose uptake and glycogen synthesis to insulin are 3-4-fold greater in red than in white skeletal muscle (James, D. E., Jenkins, A. B., and Kraegen, E. W. (1985) Am. J. Physiol. 248, E567-E574). In the present study, the insulin receptor tyrosine kinase activity has been examined in red and white muscle of rats. Partially purified insulin receptors were obtained from muscle following solubilization in detergent, ultracentrifugation, and lectin affinity chromatography. Total insulin receptor number per gram of tissue was slightly higher in red (30%) than in white muscle. In contrast, basal and insulin-stimulated autophosphorylation, normalized for receptor number, were 2.3-fold higher in red muscle. A similar difference was observed in the ability of partially purified receptors to phosphorylate the exogenous substrate polyglutamate/tyrosine. The integrity of the insulin receptor preparation in the two fiber types was identical as determined by affinity cross-linking of [125I-TyrB26]insulin to the receptor. Mixing partially purified receptors from red and white muscle resulted in an additive response for exogenous substrate phosphorylation, suggesting that the difference in tyrosine kinase activity was not due to the presence of an inhibitor or activator. The results suggest that there are differences in the insulin receptors of red and white muscles that lead to discordance in their basal and insulin-stimulated intrinsic tyrosine kinase activity. The correlation between these differences and insulin action in red and white muscle supports the concept that the insulin receptor tyrosine kinase activity is involved in the initiation of insulin action.  相似文献   

2.
The high activity of the insulin-signaling pathway contributes to the enhanced feeding-induced stimulation of translation initiation in skeletal muscle of neonatal pigs. Protein-tyrosine-phosphatase 1B (PTP1B) is a negative regulator of the tyrosine phosphorylation of the insulin receptor (IR) and insulin receptor substrate 1 (IRS-1). The activity of PTP1B is determined mainly by its association with IR and Grb2. We examined the level of PTP1B activity, PTP1B protein abundance, PTP1B tyrosine phosphorylation, and the association of PTP1B with IR and Grb2 in skeletal muscle and liver of fasted and fed 7- and 26-day-old pigs. PTP1B activity in skeletal muscle was lower (P < 0.05) in 7- compared with 26-day-old pigs but in liver was similar in the two age groups. PTP1B abundances were similar in muscle but lower (P < 0.05) in liver of 7- compared with 26-day-old pigs. PTP1B tyrosine phosphorylation in muscle was lower (P < 0.05) in 7- than in 26-day-old pigs. The associations of PTP1B with IR and with Grb2 were lower (P < 0.05) at 7 than at 26 days of age in muscle, but there were no age effects in liver. Finally, in both age groups, fasting did not have any effect on these parameters. These results indicate that basal PTP1B activation is developmentally regulated in skeletal muscle of neonatal pigs, consistent with the developmental changes in the activation of the insulin-signaling pathway reported previously. Reduced PTP1B activation in neonatal muscle likely contributes to the enhanced insulin sensitivity of skeletal muscle in neonatal pigs.  相似文献   

3.
The structure of insulin receptors, solubilized from rat skeletal muscle and liver, was studied. The alpha subunit was identified by specific cross-linking to A14 125I-insulin with disuccinimidyl suberate. Muscle- and liver-derived alpha subunits migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a Mr of 131,000 and 135,000, respectively. There was no significant difference in insulin binding affinity. Treatment of cross-linked, immunoprecipitated receptors with either neuraminidase or endoglycosidase H decreased the Mr of muscle- and liver-derived alpha subunits but did not affect the difference in Mr. Autophosphorylated beta subunits migrated with a Mr of 98,000 for muscle and 101,000 for liver. After partial V8 digestion of autophosphorylated, immunoprecipitated receptors the major phosphopeptide fragment migrated on SDS-PAGE at Mr 57,000 from muscle and 60,000 from liver. Glycosidase digestion of autophosphorylated receptors suggested that Mr heterogeneity was due in part to differences in the sialic acid content of beta subunits. Muscle and liver are the major target organs of insulin; the apparent heterogeneity of insulin receptor structure may be relevant to tissue-specific differences in insulin action.  相似文献   

4.
Insulin and IGF-I receptors were solubilized from fused L-6 myocytes, a rat skeletal muscle derived cell line, and compared to rat skeletal muscle receptors. In skeletal muscle, 125I-insulin binding was competed by insulin greater than IGF-I greater than MSA, whereas in L-6 cells IGF-I greater than insulin greater than MSA. 125I-IGF-I binding was competed by IGF-I greater than insulin = MSA in both tissues. On electrophoresis, differences in Mr were observed between skeletal muscle and L-6 derived receptors both in the alpha- and beta-subunits. Six antibodies directed against the human insulin receptor beta-subunit recognized the rat skeletal muscle insulin receptor, while only two reacted strongly with L-6 derived receptors. Skeletal muscle has receptors with relative specificity for insulin and IGF-I respectively; L-6 cells also have two classes of receptors, one is kinetically similar to the IGF-I receptor from skeletal muscle; the other, which binds insulin with relatively high affinity has even greater affinity for IGF-I. This unusual receptor may represent a developmental stage in muscle or the transformed nature of L-6 cells.  相似文献   

5.
Alterations in the high and low affinity insulin receptor concentrations in developing rat liver were investigated. The number of high affinity receptors in partially purified plasma membranes from fetal rats increased from Days 19 through 22 of gestation, with no further increase in binding during the postnatal period. Fetuses of diabetic rats had approximately three times as many high affinity insulin receptors as age-matched fetuses of normal rats; however, by 1 day after birth the receptor number decreased to the normal level. Neither the number of low affinity receptors nor the affinity of insulin binding to high or low affinity receptors changed during development or between offspring of normal and diabetic rats. These changes in the number of high affinity hepatic insulin receptors from prenatal animals did not correlate with the concentration of plasma insulin. When suckling pups were rendered diabetic the changes in the number of high affinity insulin receptors correlated with alterations in plasma insulin concentrations. The number of high affinity sites/microgram DNA in hepatocytes from Day 18 fetal rats was not altered when cells were cultured for 48 h in medium containing 0, 250, or 5000 μU/ml of added insulin. When cultured hepatocytes derived from 1-day-old and adult rats were maintained in medium with added insulin concentrations of 250 or 5000 μU/ml the number of high affinity receptors/microgram DNA decreased as compared to the number of high affinity receptors in hepatocytes cultured in medium with no added insulin. This decrease in receptor number was accompanied by an increase in the affinity of insulin binding to its high affinity receptors. The data show that (i) only the high affinity insulin receptor number increases in rat liver during the prenatal period, (ii) fetuses of diabetic rats show a greater increase in high affinity receptors than do fetuses of normal animals, and (iii) the phenomenon of down regulation for high affinity insulin receptors is not observed in fetal rat liver, but is acquired in the immediate postnatal period.  相似文献   

6.
Fasting causes insulin resistance in liver and fat, and increases insulin sensitivity in muscle. We studied the response in vitro and in vivo to insulin of the insulin receptor tyrosine kinase in muscle and liver from 72 h fasted and control rats. Insulin was injected intraperitoneally together with glucose, and blood and tissue samples were obtained 0, 5, 15 and 30 min later. Basal serum glucose and insulin levels were significantly higher in control than in fasting rats. Serum glucose rose to approximately 300 mg/dl at 5 min and then progressively declined without hypoglycaemia. Receptors were prepared from whole tissue by wheat germ lectin affinity chromatography. 125I-insulin binding to purified receptors was increased by fasting in both muscle (18%) and liver (50%). In untreated fasting and control animals, muscle and liver insulin receptor tyrosine kinase activity was stimulated to similar levels by insulin added in vitro. With only insulin treatment in vivo, muscle receptor tyrosine kinase behaved similarly in fasting and control animals with maximal activation at 15 min post injection. In liver, insulin in vivo stimulated receptor tyrosine kinase activity maximally at 5 min post injection in both fasting and control, but in fasting animals the treatment in vivo caused a significantly larger and more prolonged activation of the enzymic activity, possibly due to a decrease in the rate of dephosphorylation and deactivation of the beta subunits.  相似文献   

7.
IGF-I receptors were partially purified from red and white skeletal muscle by lectin-affinity chromatography and the resultant fraction was depleted of insulin receptors by insulin affinity chromatography. Equilibrium binding of 125I-IGF-I to receptor preparations from red and white muscle yielded identical Scatchard plots. The integrity of the IGF-I receptor preparation in the two fiber types was identical as determined by affinity cross-linking. The tyrosine kinase activity of the receptor from red muscle was 2-3-fold more active towards exogenous substrates in both the basal and ligand-activated states as compared to white muscle. These data show that there is IGF-I-dependent kinase activity intrinsic to IGF-I receptors from skeletal muscle, and suggest that identical cellular factors may regulate the kinase activity of insulin and IGF-I receptors in a parallel manner in vivo.  相似文献   

8.
Gene targeting was used to characterize the physiological role of growth factor receptor-bound (Grb)14, an adapter-type signalling protein that associates with the insulin receptor (IR). Adult male Grb14(-/-) mice displayed improved glucose tolerance, lower circulating insulin levels, and increased incorporation of glucose into glycogen in the liver and skeletal muscle. In ex vivo studies, insulin-induced 2-deoxyglucose uptake was enhanced in soleus muscle, but not in epididymal adipose tissue. These metabolic effects correlated with tissue-specific alterations in insulin signalling. In the liver, despite lower IR autophosphorylation, enhanced insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and activation of protein kinase B (PKB) was observed. In skeletal muscle, IR tyrosine phosphorylation was normal, but signalling via IRS-1 and PKB was increased. Finally, no effect of Grb14 ablation was observed on insulin signalling in white adipose tissue. These findings demonstrate that Grb14 functions in vivo as a tissue-specific modulator of insulin action, most likely via repression of IR-mediated IRS-1 tyrosine phosphorylation, and highlight this protein as a potential target for therapeutic intervention.  相似文献   

9.
Receptor-binding kinetics and degradation of tyrosine A-14 and A-19 125I-labelled insulin was studied using cultured human lymphocytes. Receptor-binding ability of A-14 insulin was 1.5-times as high as that of A-19 insulin. Dissociation from receptors on lymphocytes showed no difference between these two labelled insulins. In association studies percent bound of A-14 insulin was 1.5-times as high as that of A-19 insulin at any time after incubation. These results suggested that lower binding affinity of A-19 insulin was due to decreased association rate, but not due to increased dissociation rate. Degradation of A-14 insulin by incubation media of lymphocytes was also 1.5-times as high as that of A-19 insulin.  相似文献   

10.
The interaction between insulin and insulin-like growth factor I (IGF I) receptors was examined by determining the ability of each receptor type to phosphorylate tyrosine residues on the other receptor in intact L6 skeletal muscle cells. This was made possible through a sequential immunoprecipitation method with two different antibodies that effectively separated the phosphorylated insulin and IGF I receptors. After incubation of intact L6 cells with various concentrations of insulin or IGF I in the presence of [32P]orthophosphate, insulin receptors were precipitated with one of two human polyclonal anti-insulin receptor antibodies (B2 or B9). Phosphorylated IGF I receptors remained in solution and were subsequently precipitated by anti-phosphotyrosine antibodies. The identities of the insulin and IGF I receptor beta-subunits in the two immunoprecipitates were confirmed by binding affinity, by phosphopeptide mapping after trypsin digestion, and by the distinct patterns of expression of the two receptors during differentiation. Stimulated phosphorylation of the beta-subunit of the insulin receptor correlated with occupancy of the beta-subunit of the insulin receptor by either insulin or IGF I as determined by affinity cross-linking. Similarly, stimulation of phosphorylation of the beta-subunit of the IGF I receptor by IGF I correlated with IGF I receptor occupancy. In contrast, insulin stimulated phosphorylation of the beta-subunit of the IGF I receptor at hormone concentrations that were associated with significant occupancy of the insulin receptor but negligible IGF I receptor occupancy. These findings indicate that the IGF I receptor can be a substrate for the hormone-activated insulin receptor tyrosine kinase activity in intact L6 skeletal muscle cells.  相似文献   

11.
Tumor necrosis factor alpha (TNFalpha) was found to be significantly increased in skeletal muscles and retroperitoneal fat of obese insulin-resistant Koletsky rats as compared to control Wistar rats. This increase was accompanied by a depression of insulin receptor protein tyrosine kinase (PTK) activity. Neither the insulin-binding capacity nor insulin receptor affinity were related to this TNFalpha increase in these tissues. In the liver, no significant changes of TNFalpha content and only a lowering of insulin-binding capacity were found. It is concluded that an increased TNFalpha content in muscles and fat (but not in the liver) contributes to insulin resistance by lowering insulin receptor protein tyrosine kinase activity, while other insulin receptor characteristics (insulin-binding capacity and affinity of insulin receptors to the hormone) do not seem to be influenced by this factor.  相似文献   

12.
Nitration of insulin using tetranitromethane causes polymerisation involving cross-linked tyrosyl residues. By performing this reaction with insulin crystals, in which it is known that B16 tyrosine of one monomer is closely associated with B26 of the neighbouring monomer within the dimer, it has been possible to isolate a covalent dimer of insulin cross-linked between these two tyrosines. It was, however, first necessary to block the reactive A14 tyrosine. Both rhombohedral (hexameric) and cubic (dimeric) pig insulin crystals were used, the latter proving successful in yielding a pure dimeric product as shown by oxidative sulphitolysis and HPLC. The purified nitrated dimer was biologically active (ca. 10% potency compared to monomeric insulin in a lipogenesis assay) suggesting that the residues responsible for insulin's action are present on the surface of the dimer and not buried in the interface.  相似文献   

13.
Insulin and insulin-like growth factor (IGF) I receptors from fetal and adult rat skeletal muscle were compared in order to gain insight into the evolving functions of the hormones during development. Basal, insulin-stimulated, and IGF I-stimulated receptor phosphorylation and tyrosine kinase activity are severalfold higher in partially purified receptor preparations from fetal muscle in comparison with equal numbers of receptors from adult muscle. There are distinct insulin and IGF I receptors with Mr 95,000 beta subunits in adult muscle, as evidenced by hormone dose-response curves, immunoprecipitation with specific antibodies, binding to insulin and IGF I affinity columns, and analysis of tryptic phosphopeptides. In addition to these two receptor species, fetal muscle contains a receptor with a Mr 105,000 beta subunit. The fetal receptor is structurally more closely related to the IGF-I receptor than the insulin receptor on the basis of its precipitation with specific antibodies, binding to an IGF I affinity column, and tryptic phosphopeptide map. The fetal receptor does not appear to bind insulin but, unlike the IGF-I receptor, its phosphorylation is stimulated by low physiological concentrations of both insulin and IGF I. This could be explained by the cross-phosphorylation of fetal receptors by activated insulin receptors. Expression of the fetal receptor is highest in the fetus and decreases markedly during the first 2 weeks of postnatal life. The fetal receptor appears to account for the high tyrosine kinase activity of fetal muscle and may be an important mediator of responses to both insulin and IGF I early in development.  相似文献   

14.
A study was made of the action of various concentrations of ATP on insulin ability to bind to the receptors of the liver and muscle membranes in control and streptozocin-induced diabetes animals. Specific binding of 125I-insulin to the receptors of the liver and muscle membranes was shown to rise in animals with streptozocin-induced diabetes as compared to control. This effect was most pronounced in the muscle membranes. Preincubation of the membranes with ATP did not affect insulin binding to the liver and muscle receptors of control animals. However, hormone binding to the liver receptors of diabetic rats was drastically suppressed by ATP (10(-3) M). Less ATP concentrations (10(12) M) produced an additional inhibitory action which was not marked. ATP led to decreased insulin binding to the muscle receptors of diabetic rats only at extremely low concentrations (10(-12) M). The data obtained may be of importance for regulation of membrane phosphorylation in the states characteristic of insulin resistance.  相似文献   

15.
When insulin receptors of rat skeletal muscle sarcolemmal vesicles were solubilized with Triton X-100, the specific binding of 125I-labeled insulin increased by more than 10-fold over that seen in the intact vesicles. Partial purification of the skeletal muscle insulin receptors on wheat germ agglutinin affinity columns increased the total insulin binding activity by 7-fold and reduced the Kd for insulin binding from 1.92 to 0.20 nM, suggesting that an inhibitor of insulin binding was removed by this purification step. This was confirmed when the unbound fractions of the affinity column were dialyzed and reconstituted with the insulin receptors. The inhibitory activity in the sarcolemmal extract could not be accounted for by the presence of Triton X-100. The skeletal muscle inhibitor was more potent in inhibiting insulin binding to skeletal muscle insulin receptors than to liver or adipose receptors. The inhibitor was very effective in inhibiting insulin binding to wheat germ agglutinin-purified IM-9 receptors, but had negligible effects on insulin binding to intact IM-9 cells. The properties of the alpha and beta subunits of the skeletal muscle insulin receptors appear to be the same as those of insulin receptors of other tissues: cross-linking of 125I-labeled insulin to the receptor revealed a band of 130,000 daltons, and insulin stimulated the phosphorylation of bands of 90,000 and 95,000 daltons in the receptor preparation. The skeletal muscle insulin binding inhibitor elutes from molecular sieves in a major 160,000-dalton peak and minor 75,000-dalton peak. The binding inhibitor is not inactivated by heat, by mercaptoethanol, or by trypsin, pepsin, or proteinase K. Collectively, these data suggest that the inhibitor may be a small molecule that aggregates with itself, with larger proteins, or with detergent micelles.  相似文献   

16.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

17.
We studied the binding of mutant insulins to both the normal human insulin receptor and an insulin receptor in which the sequence 240-250 of the receptor alpha subunit was mutated to provide an additional net positive charge. One mutant insulin (AspB10), which has an additional negative charge, bound to both types of receptors with a higher affinity than native insulin. Moreover, this mutant insulin was more effective in activating the tyrosine kinase activity of both types of receptors. This study suggests, therefore, that charge interactions between insulin and its receptor may play a role in insulin receptor binding and action.  相似文献   

18.
We have studied insulin receptor-mediated signaling in Chinese hamster ovary (CHO) cell transfectants that expressed either of two naturally occurring mutant human insulin receptors: Trp1200----Ser1200 and Ala1134----Thr1134. Compared with overexpressed normal human insulin receptors, both mutant receptors displayed normal processing and normal binding affinity; however, neither was capable of detectable insulin-stimulated autophosphorylation or tyrosine kinase activity toward endogenous (pp185) or exogenous substrates. Several biologic actions of insulin were evaluated in transfected cells. Compared with neomycin-only transfected CHO cells (CHO-NEO), cells expressing normal receptors demonstrated increased insulin sensitivity for 2-deoxyglucose uptake, [14C]glucose incorporation into glycogen, [3H]thymidine incorporation into DNA, and specific gene expression (accumulation of glucose transporter GLUT-1 mRNA). Cells expressing either Ser1200 or Thr1134 receptors showed no increase in insulin-stimulated thymidine incorporation or GLUT-1 mRNA accumulation compared with CHO-NEO. Surprisingly, cells expressing Ser1200 receptors showed increased insulin stimulation of 2-deoxyglucose uptake and glucose incorporation into glycogen compared with CHO-NEO, whereas Thr1134 receptors failed to signal these metabolic responses. We conclude that 1) transfected kinase-deficient insulin receptor mutants derived from insulin-resistant patients have distinct defects in the ability to mediate insulin action in vitro; 2) divergence of insulin signaling pathways may occur at the level of the receptor; and 3) normal activation of the receptor tyrosine kinase by insulin is not necessarily required for signaling of certain important biologic actions.  相似文献   

19.
Tyrosine kinase activity of brain insulin and IGF-1 receptors   总被引:3,自引:0,他引:3  
Lectin-purified rat brain preparations demonstrate specific [125I]insulin and [125I]-IGF-1 binding. Insulin-stimulable tyrosine kinase activity as measured by exogenous substrate phosphorylation was present in brain and liver lectin purified preparations with the delta kinase activity/B/F of brain approximately 2.5 fold greater than that of liver. Insulin-stimulable tyrosine kinase activity was abolished in liver but decreased by only approximately 50 percent in brain after immuno-depletion with antiserum which recognizes insulin but not IGF-1 receptors. Insulin and IGF-1 dose responses for phosphorylation of the immunodepleted brain preparations suggested that the remaining tyrosine kinase activity was IGF-1 receptor mediated. Thus, functional IGF-1 receptors are present in rat brain, and the doses of insulin typically used to evaluate insulin receptor tyrosine kinase activity will stimulate IGF-1 receptor tyrosine kinase activity as well.  相似文献   

20.
Heterogeneity of human liver, muscle, and adipose tissue insulin receptor   总被引:2,自引:0,他引:2  
We have studied the structure and function of the human insulin receptor in liver, skeletal muscle and adipose tissue. The alpha-subunit of the insulin receptor for liver, muscle and adipose tissue migrated on SDS-PAGE with Mrs 137632 +/- 216, 134034 +/- 1080, and 133575 +/- 165, respectively (p less than 0.05). Treatment of these receptors with neuraminidase decreased their molecule sizes and eliminated the relative size differences between the receptors. Three monoclonal antibodies (5A1, 10D9, and 20H3), directed towards different epitopes of the human insulin receptor alpha-subunit were used to probe immunological differences among the receptors. Antibodies 5A1 and 20H3 recognized all the receptors, whereas 10D9 recognized muscle and adipose tissue receptors but not liver receptors. The mobility of insulin receptor beta-subunit in the absence of insulin was the same in all tissues with a similar phosphorylation-induced decrease in mobility in SDS-PAGE in the presence of insulin. However, insulin stimulated autophosphorylation per receptor was different being greatest (p less than 0.05) in muscle (334 +/- 104 32P cpm) and similar in adipose tissue (114 +/- 10) and liver (183 +/- 68). These studies indicate, therefore, that the human insulin receptor is heterogeneous among the major target tissues for insulin, and raise the possibility that this heterogeneity may account for tissues' specific differences in insulin's biological messages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号