首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CO dehydrogenase (CODH) is an environmentally crucial bacterial enzyme that oxidizes CO to CO2 at a Mo–Cu active site. Despite the close to atomic resolution structure (1.1 Å), significant uncertainties have remained with regard to the protonation state of the water-derived equatorial ligand coordinated at the Mo-center, as well as the nature of intermediates formed during the catalytic cycle. To address the protonation state of the equatorial ligand, we have developed a realistic in silico QM model (~179 atoms) containing structurally essential residues surrounding the active site. Using our QM model, we examined each plausible combination of redox states (MoVI–CuI, MoV–CuII, MoV–CuI, and MoIV–CuI) and Mo-coordinated equatorial ligands (O2?, OH?, H2O), as well as the effects of second-sphere residues surrounding the active site. Herein, we present a refined computational model for the Mo(VI) state in which Glu763 acts as an active site base, leading to a MoO2-like core and a protonated Glu763. Calculated structural and spectroscopic data (hyperfine couplings) are in support of a MoO2-like core in agreement with XRD data. The calculated two-electron reduction potential (E = ?467 mV vs. SHE) is in reasonable agreement with the experimental value (E = ?558 mV vs. SHE) for the redox couple comprising an equatorial oxo ligand and protonated Glu763 in the MoVI–CuI state and an equatorial water in the MoIV–CuI state. We also suggest a potential role of second-sphere residues (e.g., Glu763, Phe390) based on geometric changes observed upon exclusion of these residues in the most plausible oxidized states.  相似文献   

2.
The 1.82-Å X-ray crystal structure of the oxidised (Mo(VI)) form of the enzyme dimethylsulfoxide reductase (DMSOR) isolated from Rhodobacter capsulatus is presented. The structure has been determined by building a partial model into a multiple isomorphous replacement map and fitting the crystal structure of DMSOR from Rhodobacter sphaeroides to the partial model. The enzyme structure has been refined, at 1.82-Å resolution, to an R factor of 14.8% (R free?=?18.4%). The molybdenum is coordinated by seven ligands: four dithiolene sulfurs, Oγ of Ser147 and two oxo groups. The four sulfur ligands, at a metal-sulfur distance of 2.4?Å or 2.5?Å, are contributed by the two molybdopterin guanine dinucleotide (MGD) cofactors. The coordination sphere of the molybdenum is different from that in previously reported structures of DMSOR from R. sphaeroides and R. capsulatus. The 2.8-Å structure of DMSOR, reduced by addition of sodium dithionite, is also described and differs from the structure of the oxidised enzyme by the removal of a single oxo ligand from the molybdenum coordination sphere. A structure, at 2.5-Å resolution, has also been obtained from crystals soaked in mother liquor buffered at pH?7.0. No differences are observed in the structure at pH?7 when compared with the native crystal structure at pH?5.5.  相似文献   

3.
Electron paramagnetic resonance (EPR) spectra and X-ray absorption (EXAFS and XANES) data have been recorded for the manganese enzyme aminopeptidase P (AMPP, PepP protein) from Escherichia coli. The biological function of the protein, a tetramer of 50-kDa subunits, is the hydrolysis of N-terminal Xaa-Pro peptide bonds. Activity assays confirm that the enzyme is activated by treatment with Mn2+. The EPR spectrum of Mn2+–activated AMPP at liquid-He temperature is characteristic of an exchange-coupled dinuclear Mn(II) site, the Mn-Mn separation calculated from the zero-field splitting D of the quintet state being 3.5?(±0.1)?Å. In the X-ray absorption spectrum of Mn2+–activated AMPP at the Mn K edge, the near-edge features are consistent with octahedrally coordinated Mn atoms in oxidation state +2. EXAFS data, limited to k≤12?Å–1 by traces of Fe in the protein, are consistent with a single coordination shell occupied predominantly by O donor atoms at an average Mn-ligand distance of 2.15?Å, but the possibility of a mixture of O and N donor atoms is not excluded. The Mn-Mn interaction at 3.5?Å is not detected in the EXAFS, probably due to destructive interference from light outer-shell atoms. The biological function, amino acid sequence and metal-ion dependence of E. coli AMPP are closely related to those of human prolidase, an enzyme that specifically cleaves Xaa-Pro dipeptides. Mutations that lead to human prolidase deficiency and clinical symptoms have been identified. Several known inhibitors of prolidase also inhibit AMPP. When these inhibitors are added to Mn2+–activated AMPP, the EPR spectrum and EXAFS remain unchanged. It can be inferred that the inhibitors either do not bind directly to the Mn centres, or substitute for existing Mn ligands without a significant change in donor atoms or coordination geometry. The conclusions from the spectroscopic measurements on AMPP have been verified by, and complement, a recent crystal structure analysis.  相似文献   

4.
Conditions for heterologous expression of Rhodobacter sphaeroides biotin sulfoxide reductase in Escherichia coli were modified, resulting in a significant improvement in the yield of recombinant enzyme and enabling structural studies of the molybdenum center. Quantitation of the guanine and the molybdenum as compared to that found in R. sphaeroides DMSO reductase demonstrated the presence of the bis(MGD)molybdenum cofactor. UV-visible absorption spectra were obtained for the oxidized, NADPH-reduced, and dithionite-reduced enzyme. EPR spectra were obtained for the Mo(V) state of the enzyme. X-ray absorption spectroscopy at the molybdenum K-edge has been used to probe the molybdenum coordination of the enzyme. The molybdenum site of the oxidized protein possesses a Mo(VI) mono-oxo site (Mo=O at 1.70 A) with additional coordination by approximately four thiolate ligands at 2.41 A and probably one oxygen or nitrogen at 1.95 A. The NADPH- and dithionite-reduced Mo(IV) forms of the enzyme are des-oxo molybdenum sites with approximately four thiolates at 2.33 A and two different Mo-O/N ligands at 2.19 and 1.94 A.  相似文献   

5.
The complexes LMoVIO2X [L?=?hydrotris(3,5-dimethylpyrazol-1-yl)borate; X?=?Cl, Br, NCS, OPh, SPh, SCH2Ph] are converted to air-stable complexes LMoVO(OSiMe3)X by one-electron coupled electron-electrophile transfer (CEET) reactions involving cobaltocene and the electrophilic reagent Me3SiCl. These complexes may also be obtained from LMoVO(OH)X by reaction with Me3SiCl in the presence of base. LMoVO(OSiMe3)(SCH2Ph) crystallises in space group P21/n, with a?=?8.526 (1) Å, b?=?23.141 (3) Å, c?=?16.499 (2) Å, β?=?103.75 (12)° and Z?=?4. The complex exhibits a distorted octahedral structure with a facially tridentate L ligand and mutually cis oxo [Mo=O?=?1.675 (4) Å], silyloxo [Mo–O?=?1.932 (4) Å] and thiolato [Mo–S?=?2.398 (2) Å] ligands. The detailed redox properties of LMoVO(OR)X (R?=?SiMe3, alkyl, aryl) differ from those of LMoVO(OH)X. Centres [MoVO(OR)] are candidates for the stable "inhibited" forms of certain molybdenum enzymes formed under conditions which apparently disfavour the catalytically active [MoVO(OH)] centres. In the coordinating solvent pyridine (py), both LMoVIO2(SPh) and LMoVO(OSiMe3)(SPh) are reduced in one-electron steps to stable LMoIVO(py)(SPh). LMoIVO(py)(SR) complexes are also obtained from LMoVIO2(SR) (R?=?Ph, CH2Ph, CHMe2) via a two-electron oxygen atom transfer reaction with tertiary phosphines in pyridine. Consequently, the Mo(IV) product is accessible via a concerted two-electron step or via two one-electron steps.  相似文献   

6.
Samples of the dithionite-reduced FeFe protein (the dinitrogenase component of the Fe-only nitrogenase) from Rhodobacter capsulatus have been investigated by 57Fe M?ssbauer spectroscopy and by Fe and Zn EXAFS as well as XANES spectroscopy. The analyses were performed on the basis of data known for the FeMo cofactor and the P cluster of Mo nitrogenases. The prominent Fourier transform peaks of the Fe K-edge spectrum are assigned to Fe-S and Fe-Fe interactions at distances of 2.29 A and 2.63 A, respectively. A significant contribution to the Fe EXAFS must be assigned to an Fe backscatterer shell at 3.68 A, which is an unprecedented feature of the trigonal prismatic arrangement of iron atoms found in the FeMo cofactor of nitrogenase MoFe protein crystal structures. Additional Fe...Fe interactions at 2.92 A and 4.05 A clearly indicate that the principal geometry of the P cluster is also conserved. M?ssbauer spectra of 57Fe-enriched FeFe protein preparations were recorded at 77 K (20 mT) and 4.2 K (20 mT, 6.2 T), whereby the 4.2 K high-field spectrum clearly demonstrates that the cofactor of the Fe-only nitrogenase (FeFe cofactor) is diamagnetic in the dithionite-reduced ("as isolated") state. The evaluation of the 77 K spectrum is in agreement with the assumption that this cofactor contains eight Fe atoms. In the literature, several genetic and biochemical lines of evidence are presented pointing to a significant structural similarity of the FeFe, the FeMo and and the FeV cofactors. The data reported here provide the first spectroscopic evidence for a structural homology of the FeFe cofactor to the heterometal-containing cofactors, thus substantiating that the FeFe cofactor is the largest iron-sulfur cluster so far found in nature.  相似文献   

7.
The title compound (pipzH2)2Mo2Cl8·4H2O (pipz = piperazine),was isolated from the solution of (morphH)2Mo2Cl6(H2O)2 in HCl 1:1 by addition of (pipzH2)Cl2. This reaction indicates the reversibility of the substitution of chloride ions in Mo2Cl84? by water molecules. (pipzH2)2Mo2Cl8·4H2O crystallizes in the Pbca space group, with a = 15.154(2), b = 13.170(2), c = 12.208(2) Å and Z = 4. The structure was solved by the Patterson method and refined to the unweighted and weighted residuals of 0.050 and 0.048. The crystal structure is built form Mo2Cl84?, (pipzH2)2+ and H2O. The MoMo distance of 2.129(3) Å is the shortest one found in all structurally-characterised Mo2X84? (X = Cl, Br) anions. Four independent MoCl distances are 2.456(3), 2.445(3), 2.463(4) and 2.455(4) Å. The (pipzH22+ exists in a usual chair conformation. There is a network of hydrogen bonds of the type NH?Cl, NH?O, OH?Cl and OH?O between the ions and water molecules.  相似文献   

8.
《Inorganica chimica acta》1987,133(2):295-300
The compound K4[Mo2(SO4)4]Br·4H2O has been made and its crystal structure determined. Space group P4/mnc; unit cell dimensions, a = 11.903(2), c = 8.021(1) Å, V = 1136(1) Å3. The compound is isomorphous with the analogous chloride whose structure has been reported. The MoMo and MoBr distances are 2.169(2) and 2.926(1) Å, respectively and the [Mo2(SO4)4] 3− ions reside on crystallographic special positions with 4/m symmetry. The Raman spectra of both the bromo and chloro compounds have been measured and the MoMo stretching frequency is 370 ± 1.5 cm−1 in each, for the compounds containing the natural isotopic distribution of molybdenum. The chloro compound has been prepared containing the pure isotope 92Mo as well, and the Raman spectra recorded. The v(MoMo) band is shifted by 6.8 ± 0.5 cm−1. The compound K4[Mo2(SO4)4]·2H2O has also been prepared with Mo at natural abundance and with the pure isotope 100Mo, whereby a shift of 8.5 ± 0.5 cm−1 was found. These and other results will be discussed with regard to the similarity of the Raman spectra of the Mo2(S04)43− and M02(S04)44− species.  相似文献   

9.
The complex of photosystem II (PSII) had been prepared from spinach by treatment with Triton X-100. The PSII, which had been depleted of the extrinsic 17- and 23-kDa polypeptides, was obtained by exposing the solution to a high concentration of NaCl, and the complex of PSII-La3+ was prepared by treatment with LaCl3. The result indicated that La3+ could inhibit the oxygen-evolution activity of PSII by replacing the Ca2+. The local structural environment of La in PSII has been also studied by using extended X-ray absorption fine structure (EXAFS). The primary result of EXAFS indicated that La coordinated with eight oxygen and/or nitrogen atoms, with the distance of the La-O/N bond being 2.5 Å. In addition, La coordinated with four carbon atoms, with a distance of 3.5 Å in the second shell. In the third shell, La coordinated with two manganese atoms, with the distance of La-Mn bond being 4.49 Å, and it was also found that the La-Mn distance (4.49 Å) was longer than that of Ca-Mn (3.3 Å) (1) in PSII.  相似文献   

10.
Formaldehyde ferredoxin oxidoreductase is a tungsten-dependent enzyme that catalyzes the oxidative degradation of formaldehyde to formic acid. The molybdenum ion can be incorporated into the active site to displace the tungsten ion, but is without activity. Density functional calculations have been employed to understand the incapacitation of the enzyme caused by molybdenum substitution. The calculations show that the enzyme with molybdenum (Mo-FOR) has higher redox potential than that with tungsten, which makes the formation of the MoVI=O complex endothermic by 14 kcal/mol. Following our previously suggested mechanism for this enzyme, the formaldehyde substrate oxidation was also investigated for Mo-FOR using the same quantum-mechanics-only model, except for the displacement of tungsten by molybdenum. The calculations demonstrate that formaldehyde oxidation occurs via a sequential two-step mechanism. Similarly to the tungsten-catalyzed reaction, the MoVI=O species performs the nucleophilic attack on the formaldehyde carbon, followed by proton transfer in concert with two-electron reduction of the metal center. The first step is rate-limiting, with a total barrier of 28.2 kcal/mol. The higher barrier is mainly due to the large energy penalty for the formation of the MoVI=O species.  相似文献   

11.
 The individual rate constants for intramolecular electron transfer (IET) between the MoVIFeII and MoVFeIII forms of chicken liver sulfite oxidase (SO) have been determined at a variety of pH values, and at high and low anion concentrations. Large anions such as EDTA do not inhibit IET as dramatically as do small anions such as SO4 2– and Cl, which suggests that specific anion binding at the sterically constrained Mo active site is necessary for IET inhibition to occur.IET may require that SO adopt a conformation in which the Mo and Fe centers are held in close proximity by electrostatic interactions between the predominantly positively charged Mo active site, and the negatively charged heme edge. Thus, small anions which can fit into the Mo active site will weaken this electrostatic attraction and disfavor IET. The rate constant for IET from FeII to MoVI decreases with increasing pH, both in the presence and absence of 50 mM SO4 2–. However, the rate constant for the reverse process exhibits no significant pH dependence in the absence of SO4 2–, and increases with pH in the presence of 50 mM SO4 2–. This behavior is consistent with a mechanism in which IET from MoV to FeIII is coupled to proton transfer from MoV–OH to OH, and the reverse IET process is coupled to proton transfer from H2O to MoVI=O. At high concentrations of small anions, direct access of H2O or OHto the Mo-OH will be blocked, which provides a second possible mechanism for inhibition of IET by such anions. Inhibition by anions is not strictly competitive, however, and Tyr322 may play an important intermediary role in transferring the proton when an anion blocks direct access of H2O or OH to the Mo-OH. Competing H-bonding interactions of the Mo-OH moiety with Tyr322 and with the anion occupying the active site may also be responsible for the well-known equilibrium between two EPR-distinct forms of SO that is observed for the two-electron reduced enzyme. Received: 21 December 1998 / Accepted: 6 April 1999  相似文献   

12.
The three-dimensional structure of the native "putative prismane" protein from Desulfovibrio vulgaris (Hildenborough) has been solved by X-ray crystallography to a resolution of 1.72?Å. The molecule does not contain a [6Fe-6S] prismane cluster, but rather two 4Fe clusters some 12?Å apart and situated close to the interfaces formed by the three domains of the protein. Cluster 1 is a conventional [4Fe-4S] cubane bound, however, near the N-terminus by an unusual, sequential arrangement of four cysteine residues (Cys 3, 6, 15, 21). Cluster 2 is a novel 4Fe structure with two μ2-sulfido bridges, two μ2-oxo bridges, and a partially occupied, unidentified μ2 bridge X. The protein ligands of cluster 2 are widely scattered through the second half of the sequence and include three cysteine residues (Cys 312, 434, 459), one persulfido-cysteine (Cys 406), two glutamates (Glu 268, 494), and one histidine (His 244). With this unusual mixture of bridging and external type of ligands, cluster 2 is named the "hybrid" cluster, and its asymmetric, open structure suggests that it could be the site of a catalytic activity. X-ray absorption spectroscopy at the Fe K-edge is readily interpretable in terms of the crystallographic model when allowance is made for volume contraction at 10?K; no Fe··Fe distances beyond 3.1?Å could be identified. EPR, Mössbauer and MCD spectroscopy have been used to define the oxidation states and the magnetism of the clusters in relation to the crystallographic structure. Reduced cluster 1 is a [4Fe-4S]1+ cubane with S?=?3/2; it is the first biological example of a "spin-admixed" iron-sulfur cluster. The hybrid cluster 2 has four oxidation states from (formally) all FeIII to three FeII plus one FeIII. The four iron ions are exchange coupled resulting in the system spins S?=?0, 9/2, 0 (and 4), 1/2, respectively, for the four redox states. Resonance Raman spectroscopy suggests that the bridging ligand X which could not be identified unambiguously in the crystal structure is a solvent-exchangeable oxygen.  相似文献   

13.
Membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617 can be solubilized in either of two ways that will ultimately determine the presence or absence of the small (Ι) subunit. The enzyme complex (NarGHI) is composed of three subunits with molecular masses of 130, 65, and 20 kDa. This enzyme contains approximately 14 Fe, 0.8 Mo, and 1.3 molybdopterin guanine dinucleotides per enzyme molecule. Curiously, one heme b and 0.4 heme c per enzyme molecule have been detected. These hemes were potentiometrically characterized by optical spectroscopy at pH 7.6 and two noninteracting species were identified with respective midpoint potentials at E m = +197 mV (heme c) and −4.5 mV (heme b). Variable-temperature (4–120 K) X-band electron paramagnetic resonance (EPR) studies performed on both as-isolated and dithionite-reduced nitrate reductase showed, respectively, an EPR signal characteristic of a [3Fe–4S]+ cluster and overlapping signals associated with at least three types of [4Fe–4S]+ centers. EPR of the as-isolated enzyme shows two distinct pH-dependent Mo(V) signals with hyperfine coupling to a solvent-exchangeable proton. These signals, called “low-pH” and “high-pH,” changed to a pH-independent Mo(V) signal upon nitrate or nitrite addition. Nitrate addition to dithionite-reduced samples at pH 6 and 7.6 yields some of the EPR signals described above and a new rhombic signal that has no hyperfine structure. The relationship between the distinct EPR-active Mo(V) species and their plausible structures is discussed on the basis of the structural information available to date for closely related membrane-bound nitrate reductases. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
A set of supramolecular cage-structures—spherophanes—was studied at the density functional B3LYP level. Full geometrical structure optimisations were made with 6–31G and 6–31G(d) basis sets followed by frequency calculations, and electronic energies were evaluated at B3LYP/6–31++G(d,p). Three different symmetries were considered: C1, Ci, and Oh. It was found that the bonds between the benzene rings are very long to allow π-electron delocalisation between them. These spherophanes show portal openings of 2.596 Å in Spher1, 4.000 Å in Meth2, 3.659 Å in Oxa3, and 4.412 Å in Thia4. From the point of view of potential host–guest interaction studies, it should also be noted that the atoms nearest to the centre of the cavities are carbons bonded to X groups. These supramolecules seem to exhibit relatively large gap HOMO?LUMO: 2.89 eV(Spher1), 5.26 eV(Meth2), 5.73 eV(Oxa3), and 4.82 eV(Thia4). The calculated ΔH°f (298.15 K) values at B3LYP/6–31G(d) are (in kcal mol?1) 750.98, 229.78, ?10.97, and 482.49 for Spher1, Meth2, Oxa3, and Thia4, respectively. Using homodesmotic reactions, relative to Spher1, the spherophanes Meth2, Oxa3, and Thia4 are less strained by ?399.13 kcal mol?1, ?390.40 kcal mol?1, and ?411.38 kcal mol?1, respectively. Their infrared and 13C NMR calculated spectra are reported.  相似文献   

15.
Stearoyl-acyl carrier protein (ACP) Δ9-desaturase (Δ9D) from the castor plant is the best characterized soluble acyl-ACP desaturase. This enzyme utilizes a diiron center to catalyze the O2- and NADPH-dependent introduction of a cis double bond between carbons 9 and 10 of stearoyl-ACP, yielding oleoyl-ACP. In the present study, we have used X-ray absorption spectroscopy to provide the first metrical information for the diferric oxidation state. These studies reveal distinct diiron clusters that have Fe-Fe distances of either 3.12 or 3.41?Å. The species having the 3.12?Å Fe-Fe distance also exhibits a 1.8?Å Fe-O bond and is thus proposed to represent Δ9D molecules containing a (μ-oxo)bis(μ-carboxylato)diiron(III) cluster. The species having the 3.41?Å Fe-Fe distance exhibits no short Fe-O bond, and thus likely represents Δ9D molecules containing a (μ-hydroxo)diiron(III) cluster. Mössbauer studies of the extended X-ray absorption fine structure (EXAFS) samples revealed three quadrupole doublets (ΔE Q(1)=1.53?mm/s, 72%;ΔE Q(2)=0.72?mm/s, 21%;ΔE Q(3)=2.20?mm/s, 7%) that originate from three distinct dinuclear clusters. From analysis of spectral intensities and by comparison with previous studies of (μ-oxo)- and (μ-hydroxo)diiron(III) clusters in both model complexes and proteins, doublet 1, the Mössbauer majority species, is likely associated with the EXAFS majority species having a 3.12?Å Fe-Fe separation and a 1.8?Å Fe-μ-oxo bond, while doublet 2 likely results from one iron site (or both) of a cluster associated with the EXAFS species having a 3.41?Å Fe-Fe separation. The presence of multiple diiron center conformations in diferric Δ9D may reflect the necessity for the active site to allow access of the substrate stearoyl-ACP (~9?kDa) during desaturation catalysis.  相似文献   

16.
Corbicula clam shells consist of thin periostracum and calcareous layers made of calcium carbonate (CaCO3). Depending on habitat conditions, the shell exhibits various colorations, such as yellow, brown, and black. The chemical state of the periostracum of the Corbicula species in Lake Biwa was studied by X-ray absorption fine structure (XAFS) and Raman scattering spectroscopies. Fe K-edge X-ray absorption near edge structure (XANES) revealed that the Fe3+ intensity increases as the color of the shell changes from yellow to black. Raman spectra suggested that quinone-based polymers cover the yellow shell, and the black shell is further covered by dihydroxyphenylalanine (DOPA) rings of amino acid derivatives. From Fe K-edge extended X-ray absorption fine structure (EXAFS), it was found that Fe3+ in the periostracum was surrounded by five to six oxygen atoms with an average Fe-O ligand distance of 2.0 Å. Accordingly, a tris-DOPA-Fe3+ complex is formed, which is responsible for the periostracum’s black color.  相似文献   

17.
The crystal and molecular structures of the complexes MoO2((SCH2CH2)2NCH2CH2SCH3), I and MoO2((SCH2CH2)2NCH2CH2N(CH3)2), II, have been determined from X-ray intensity data collected by counter methods. Compound I crystallizes in two forms, Ia and Ib. In form Ia the space group is P21/n with cell parameters a = 7.235(2), b = 7.717(2), c = 24.527(6) Å, β = 119.86(2)°, V = 1188(1) Å3, Z = 4. In form Ib the space group is P21/c with cell parameters a = 14.945(5), b = 11.925(5), c = 14.878(4) Å, β = 114.51(2)°, V = 2413(3) Å3, Z = 8. The molecules of I in Ia and Ib are very similar having an octahedral structure with cis oxo groups, trans thiolates (cis to both oxo groups) and N and thioether sulfur atoms trans to oxo groups. Average ditances are MoO = 1.70, MoS (thiolate) = 2.40, MoN = 2.40 and MoS (thioether) = 2.79 Å. Molecule II crystallizes in space group P212121 with a = 7.188(1), b = 22.708(8), c = 7.746(2) Å, V = 1246(1) Å3 and Z = 4. The coordination about Mo is octahedral with cis oxo groups, trans thiolates and N atoms trans to oxo. Distances in the first coordination sphere are MoO = 1.705(2), 1.699(2), MoS = 2.420(1), 2.409(1) and MoN = 2.372(2), 2.510(2) Å. The conformational features of the complexes are discussed. Complex I displays MoO and MoS distances which are very similar to those found by EXAFS in sulfite oxidase. This similarity is discussed.  相似文献   

18.
The structure of [Ph4As] [MoOCl2(SalphO)], where SalphO is N-2-oxophenylsalicylideniminate dianion, has been determined by X-ray crystallography. The complex crystallizes in the monoclinic space group P21/n with a = 11.829(2), b = 16.149(3), c = 17.410(3) Å, β = 97.485(15)° and Z = 4. The calculated and observed densities and 1.566 and 1.573(10) g cm?3, respectively. Block-diagonal least-squares refinement of the structure using 4722 independent reflections with I ? 3σ(I) converged at R = 0.0345 and Rw = 0.0484. The crystal contains [Ph4As]+ cations and [MoOCl2(SalphO)]? anions. The Mo atom in the anion is in a distorted octahedral coordination environment. A planar terdentate Schiff base ligand occupies meridional positions with the N atom trans to the terminal oxo group (Ot). Two Cl atoms are cis to the Ot atom. The Mo atom is displaced by 0.33 Å from the equatorial plane toward the Ot atom. The MoOt distance is 1.673(3) Å. The MoN bond trans to the Ot atom is 2.298(4) Å. The two MoCl bond lengths are 2.371(1) and 2.408(1) Å. The difference of 0.037 Å is significant (30 σ). Preparations of the title complex and the related complexes are also described.  相似文献   

19.
The preparation and molecular and crystal structure of the complex [(ethylenediamine)bis(7,9,-dimethylhypoxanthine)platinum(II)] hexafluorophosphate, [Pt(C2H8N2)(C7H8N4O)2] (PF6)2, are reported. The complex crystallizes in the monoclinic system, space group C2/c, with a = 12.334(2)Å, b = 10.256(2)Å, c = 22.339(3)Å, β = 101.31(1)°, V = 2771.0Å3, Z = 4, Dmeasd = 2.087(3) g cm?3, Dcalc = 2.094 g cm?3. Intensities for 3992 symmetry-averaged reflections were collected in the θ-2o scan mode on an automated diffractometer employing graphite-monochromatized MoKα radiation. The structure was solved by standard heavy-atom Patterson and Fourier methods. Full matrix least-squares refinement led to a final R value of 0.051. Both the ethylenediamine chelate and the PF6? anion are disordered. The primary coordination sphere about the Pt(II) center is approximately square planar with the bidentate ethylenediamine ligand and the N(1) atoms [Pt(II) ? N(1) = 2.020(5)Å] of two 7,9-dimethylhypoxanthine bases (related by a crystallographic twofold axis of symmetry) occupying the four coordination sites. The exocyclic O(6) carbonyl oxygen atoms of the two 7,9-dimethylhypoxanthine ligands participate in intracomplex hydrogen bonding with the amino groups of the ethylenediamine chelate [N(ethylenediamine) ? O(6) = 2.89( )Å]. The observed Pt ? O(6) intramolecular distances of 3.074(6)Å are similar to those found in other Pt(II) N(1)-bound 6-oxopurine complexes and in several Pt(II) N(3)-bound cytosine systems.  相似文献   

20.
Cu K-edge X-ray absorption spectra have been recorded for the enzyme tyrosinase from Neurospora crassa, in its oxy, resting (met-aquo), and inhibitor-bound (met-mimosine) forms. The K-edges proper resemble those of oxy- and met-hemocyanin, and confirm the presence of CuII. The forbidden 1s----3d transition is noticeably stronger for the 1-mimosine-bound enzyme, implying some distortion of the tetragonal Cu coordination group on inhibitor binding. The extended fine structure (EXAFS) beyond the K-edge has been analyzed. The first shell scattering is consistent with the presence of two N- and two O-ligand atoms, at 2.0 and 1.9 A, for all three forms of the enzyme; there is no evidence for heavy atom (S) scattering in the first shell. As in analogous hemocyanin derivatives, the outer shell scattering contains contributions from distant atoms of imidazole ligands, as well as from an addition scattering atom, at 3.4-3.6 A. For oxy-tyrosinase the additional scatterer is unambiguously a heavy atom (Cu), although a larger Debye-Waller factor suggests a somewhat less rigid binuclear site than in oxy-hemocyanin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号