首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu C  Zhao L  Pan X  Samaj J 《PloS one》2011,6(8):e22992

Background

The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development.

Methodology/Principal Findings

Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment.

Conclusions/Significance

These data suggest that both low- and highly-methyl-esterified HG epitopes are developmentally regulated in diverse embryogenic stages during somatic embryogenesis. This study provides new information about pectin composition, HG methyl-esterification and developmental localization of pectin epitopes during somatic embryogenesis of banana.  相似文献   

2.
To better understand micromorphological and structural changes, histological sections provide additional insight into cellular process and developmental pathways occurring in oat somatic embryogenesis. Environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM) were also used to follow the ultrastructural modifications during this system. Histological observations allowed following the events leading to the development of mature somatic embryos. The scheme includes the following steps: cell reactivation, the first organized cell division in diads, triads, tetrads as well as octant stages, the observation of an extracellular matrix (ECM) as a fibrillar material that bounded the surface of individualized proembryos. The transition from proembryo stage to an early globular somatic embryo was noted, where the embryogenic cortex is surrounded by the protoderm. The late globular stage was marked by bipolarity. The early and late transitional stages, the coleoptilar, mature and germinated stages were also described. The ESEM allowed us to follow some rearrangements, related to the morphology and surfaces involved in somatic embryos development. These events are proembryo formation, transition from proembryo to globular stage, marked by protoderm formation, scutellum and coleoptile development and finally somatic embryos germination. The TEM showed that embryogenic cells were very rich in organelles; mitochondria, rough endoplasmic reticulum, Golgi apparatus and ribosomes. Cells of proembryos, globular and late somatic embryos showed more vacuoles and differentiated organelles. The ECM was also detected by TEM as fibrillar material coating the cell walls. These results on structural and ultrastructural changes provided new insights and findings on oat somatic embryogenesis.  相似文献   

3.
Somatic embryogenesis in plantain banana   总被引:8,自引:0,他引:8  
Summary A cell suspension of French Sombre plantain banana (Musa spp. AAB genome) was initiated from callus obtained from young male flowers. Histological examination enabled us to describe and follow the evolution of the suspension consisting of: embryogenic aggregates, proembryos, nodules, and isolated cells. It demonstrated the unicellular origin of somatic embryos, either during maintenance of the suspension or after plating on a semisolid medium. The cells from which the embryos originated had no starch but only protein reserves. Plating 1 ml of packed cells from the suspension led to the formation of 105 embryos of which 10 to 40% could be converted into plantlets.  相似文献   

4.
Plant regeneration by somatic embryogenesis was attempted with diploid (Musa acuminata ssp. malaccensis) and triploid ('Grand Nain') bananas. Explants inoculated in vitro were, respectively, immature zygotic embryos and male flower bud primordia. An histological study showed that the embryogenic process involves a sequence of similar events for both species. A yellow-green compact callus was initiated, which consisted of an actively dividing meristematic zone surrounded by several layers of starchy cells. A white and friable callus, characterized by the presence of proembryonic cells, bicellular proembryos and proembryonal masses in its periphery gradually appeared, which finally gave rise to somatic embryos from which plants were recovered. Induction media contained 2,4-D (and also NAA and IAA for the triploid); zeatin and kinetin were necessary for embryo maturation and 6-BA and IAA were used for germination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Somatic embryogenesis has been described in peach palm as a reliable method for its in vitro multiplication and conservation. In this study, we evaluated the possible role of arabinogalactan proteins (AGPs) during this morphogenetic pathway. The presence of Yariv reagent, a synthesized chemical antibody that specifically binds AGP molecules, affected somatic embryos and callus development rate, but no effect was observed on fresh weight increment. This substance also had profound effects on embryo morphology: somatic embryos presented loose cells in the protoderm and no signs of polarization could be observed. To better evaluate the role of AGPs, analyses of specific monoclonal antibodies (MAbs) against different AGP epitopes revealed a specific pattern of distribution for each epitope. MAb JIM13 had differential expression and showed intense signal on the embryogenic sector and some immediately adjacent layers. MAb JIM7 against pectin recognized cell walls and a specific layer over the developing somatic embryo, as well as over the shoot meristem region of mature somatic embryos. This corresponds to an extracellular matrix surface network (ECMSN) associated with the development of somatic embryos and closely related to the expression of MAb JIM13. Scanning electron microscopy confirmed the presence of an ECMSN covering a specific group of cells and ultra-structural analyses revealed that the ECMSN had lipophilic substances.  相似文献   

6.
Summary In oak species, there is paucity of information on the anatomical changes underlying differentiation of somatic embryos from explants of mature trees. A histological study was undertaken to ascertain the cellular origin and ontogenesis of somatic embryos in leaf cultures from a 100-yr-old Quercus robur tree. Somatic embryogenesis was induced in expanding leaves excised from shoots forced from branch segments, following culture on three successive media containing different concentrations of α-naphthaleneacetic acid and 6-benzylaminopurine. The somatic embryogenesis followed an indirect pathway from a callus tissue formed in the leaf lamina. After 4–6 wk of culture, meristematic cells originated in superficial layers of callus protuberances, but these cells evolved into differentiated vacuolated cells rather than embryos. A subsequent dedifferentiation into embryogenic cells occurred later (9–12 wk of culture) within a dissociating callus. Embryogenic cells exhibited dense protein-rich protoplasm, high nucleoplasmic ratio, and contained small starch grains. Successive divisions of these cells led to the formation of a few-celled proembryos and embryogenic cell clumps within a thick common cell wall, which seemed to have originated unicellularly. However, a multicellular origin of larger embryogenic clumps could not be dismissed; these gave rise to embryonic nodular structures that developed somatic embryos of both uni- and multicellular origin. Somatic embryos at successive stages of development, including cotyledonary-stage embryos with shoot and root meristems, were apparent.  相似文献   

7.
Arabinogalactan proteins (AGPs) are important proteoglycans regulating somatic embryogenesis in diverse plant species. Embryogenic cells of somatic embryos are covered by special extracellular cell wall layer called extracellular surface matrix network (ECMSN) at their early developmental stages. Here we show that highly embryogenic cell line AC78 of hybrid fir (Abies alba × Abies cephalonica) differs from very low-embryogenic cell line AC77 in the abundance, subcellular localization and deposition of subset of secreted AGPs. A specific AGP epitope containing Gal residues and reacting to Gal4 antibody is secreted and deposited into ECMSN, which covers the surface of the embryogenic cells showing high embryogenic and regeneration capacity in the cell line AC78. On the other hand, this Gal4 AGP epitope was not secreted and/or found on the surface of meristematic cells showing low embryogenic and regeneration capacity in the cell line AC77, as well as on the surface of non-embryogenic suspensor cells and callus cells in both cell lines AC77 and AC78. As a positive control, we have used another AGP epitope LM2 (containing glucuronic acid) showing no significant differences in these two Abies hybrid lines. This study defines specific AGPs containing β-(1→6)-galactotetraosyl group as a first molecular component of ECMSN covering embryogenic cells in gymnosperms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.

Background and Aims

Secondary somatic embryogenesis has been postulated to occur during induction of peach palm somatic embryogenesis. In the present study this morphogenetic pathway is described and a protocol for the establishment of cycling cultures using a temporary immersion system (TIS) is presented.

Methods

Zygotic embryos were used as explants, and induction of somatic embryogenesis and plantlet growth were compared in TIS and solid culture medium. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to describe in vitro morphogenesis and accompany morpho-histological alterations during culture.

Key Results

The development of secondary somatic embryos occurs early during the induction of primary somatic embryos. Secondary somatic embryos were observed to develop continually in culture, resulting in non-synchronized development of these somatic embryos. Using these somatic embryos as explants allowed development of cycling cultures. Somatic embryos had high embryogenic potential (65·8 ± 3·0 to 86·2 ± 5·0 %) over the period tested. The use of a TIS greatly improved the number of somatic embryos obtained, as well as subsequent plantlet growth. Histological analyses showed that starch accumulation precedes the development of somatic embryos, and that these cells presented high nucleus/cytoplasm ratios and high mitotic indices, as evidenced by DAPI staining. Morphological and SEM observations revealed clusters of somatic embryos on one part of the explants, while other parts grew further, resulting in callus tissue. A multicellular origin of the secondary somatic embryos is hypothesized. Cells in the vicinity of callus accumulated large amounts of phenolic substances in their vacuoles. TEM revealed that these cells are metabolically very active, with the presence of numerous mitochondria and Golgi apparatuses. Light microscopy and TEM of the embryogenic sector revealed cells with numerous amyloplasts, large nuclei and nucleoli, and numerous plasmodesmata. Plantlets were obtained and after 3 months in culture their growth was significantly better in TIS than on solid culture medium. However, during acclimatization the survival rate of TIS-grown plantlets was lower.

Conclusions

The present study confirms the occurrence of secondary somatic embryos in peach palm and describes a feasible protocol for regeneration of peach palm in vitro. Further optimizations include the use of explants obtained from adult palms and improvement of somatic embryo conversion rates.  相似文献   

9.
The formation of an extracellular matrix surface network (ECMSN), and associated changes in the distribution of arabinogalactan-protein and pectin epitopes, have been studied during somatic embryogenesis (SE) and callogenesis of Trifolium nigrescens Viv. Scanning electron microscopy observations revealed the occurrence of an ECMSN on the surface of cotyledonary-staged somatic embryos as well as on the peripheral, non-regenerating callus cells. The occurrence of six AGP (JIM4, JIM8, JIM13, JIM16, LM2, MAC207) and four pectin (JIM5, JIM7, LM5, LM6) epitopes was analysed during early stages of SE, in cotyledonary-staged somatic embryos and in non-embryogenic callus using monoclonal antibodies. The JIM5 low methyl-esterified homogalacturonan (HG) epitope localized to ECMSN on the callus surface but none of the epitopes studied were found to localize to ECMSN over mature somatic embryos. The LM2 AGP epitope was detected during the development of somatic embryos and was also observed in the cell walls of meristematic cells from which SE was initiated. The pectic epitopes JIM5, JIM7, LM5 and LM6 were temporally regulated during SE. The LM6 arabinan epitope, carried by side chains of rhamnogalacturonan-I (RG-I), was detected predominantly in cells of embryogenic swellings, whilst the LM5 galactan epitope of RG-I was uniformly distributed throughout the ground tissue of cotyledonary-staged embryoids but not detected at the early stages of SE. Differences in the distribution patterns of low and high methyl-esterified HG were detected: low ester HG (JIM5 epitope) was most abundant during the early steps of embryo formation and highly methyl-esterified form of HG (JIM7 epitope) became prevalent during embryoid maturation.  相似文献   

10.
Summary Cell suspensions ofMusa acuminata sspburmannicoides andMusa acuminata sspmalaccensis were obtained by culturing embryogenic callus initiated from immature zygotic embryos in liquid medium. Plant regeneration was then achieved through somatic embryogenesis. Germination of these embryos occurred in a modified MS medium containing auxin and cytokinin. Plant recovery frequencies were 20 to 36%. This method may allow a better utilization of biotechnologies in genetic improvement of theMusa diploid species, essential for banana and plantain breeding.  相似文献   

11.
Understanding the fate and dynamics of cells during callus formation is essential to understanding totipotency and the somatic embryogenesis (SE) mechanisms. In the present study, the histodifferentiation events involved during the acquisition and development of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.) was investigated. Zygotic embryos were inoculated on SE induction medium, and at 14 days the first divisions of the procambial and perivascular cells were observed. This region progressed to the formation of meristematic masses at 21 days, indicating their procambial and perivascular origin. Primary calli emerged at 45 days of culture, followed by progression to embryogenic calli at 90 days. The formation of proembryos (PE) from the meristematic cells occurred at 135 days of cultivation. The PE were isolated from the tissue of origin by the slight thickening of the cell wall, indicating their unicellular origin. When transferred to the maturation phase, differentiation of the somatic embryos at different developmental stages (globular and torpedo) was observed. The differentiated somatic embryos presented protoderm, procambial strands and plumules. Afterwards, they were transferred to culture medium without growth regulators in which conversion of the somatic embryos from torpedo stage into plants was observed. These results enable a greater understanding of the SE process and plantlet formation in E. guineensis.  相似文献   

12.
Somatic embryogenesis was induced in Siberian larch by in vitro culturing zygotic embryos at different developmental stages. Cultures were grown in modified Murashige and Skoog medium supplemented with hormones 2,4-dichlorophenoxyacetic acid (2 mg/l) and 6-benzylaminopurine (0.5-1 mg/l). The success of somatic embryogenesis in this species depended on the tree genotype and developmental stage of embryos used for culturing. Somatic embryogenesis from immature zygotic embryos at the stage of cotyledon initiation was most active. After 5-10 days, such embryos formed the embryogenic tissue including two cell types--elongated highly vacuolated embryonic tubes and small embryonic cells. Somatic embryos were isolated from proliferating embryogenic tissues after 2 months of culture.  相似文献   

13.
14.
Somatic embryogenesis was induced in Siberian larch by in vitro culturing zygotic embryos at different developmental stages. Cultures were grown in modified Murashige and Skoog medium supplemented with hormones 2,4-dichlorophenoxyacetic acid (2 mg/l) and 6-benzylaminopurine (0.5–1 mg/l). The success of somatic embryogenesis in this species depended on the tree genotype and developmental stage of embryos used for culturing. Somatic embryogenesis from immature zygotic embryos at the stage of cotyledon initiation was most active. After 5–10 days, such embryos formed the embryogenic tissue including two cell types—elongated highly vacuolated embryonic tubes and small embryonic cells. Somatic embryos were isolated from proliferating embryogenic tissues after 2 months of culture.  相似文献   

15.
The Arabidopsis thaliana primordia timing (pt) mutant was transformed with an AtSERK1::GUS construct. Liquid cultures of this line were used to study the relationship between somatic embryogenesis and the expression of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (AtSERK1) as a marker for cells competent to form embryos. In order to search for the expression of AtSERK1::GUS during early stages of somatic embryogenesis, histochemical as well as immunochemical approaches were used for the detection of beta-glucuronidase (GUS). Four sites of AtSERK1 expression were found in the embryogenic cultures: in embryogenic callus, where primary somatic embryos developed; in the basal parts of primary somatic embryos; in the outer layers of cotyledons of primary somatic embryos where secondary embryos were formed; and in provascular and vascular strands of developing somatic embryos. The in vitro expression of AtSERK1::GUS coincides with embryogenic development up to the heart-shaped stage. Prior to the expression in embryos, AtSERK1 was expressed in single cells and small cell clusters, indicating that AtSERK1 indeed marks embryogenic competence. Its expression in (pro)vascular strands, suggests that embryogenic cells in tissue culture retain at least in part their original identity.  相似文献   

16.
Electron microscopic observation of somatic embryogenesis from cultured immature wheat embryos revealed the presence of a lot of small vacuoles, a large nucleus, clear nucleolus and polynucleoli. The electron density of cytoplasm was strengthened during somatic embryogenesis. Quantity and type of organelles—plastid, ribosome and mitochondrion were increased; thickened cell wall, disappeared plasmodesmata, increased organelles andstarch accumulation in the embryogenic cells. Nucleolus vacuoles, autophagic vacuoles and secretory vesicles were present in the embryogenic cells with thickened cell walls. The multicellular proembryos, globular embryoid and pear-shaped embryoid were surrounded by an envelop, but plasmodesmata existed extensively between cells of somatic embryoid. The membranous structures appeared in the plastid which underwent transformation into chloroplast in the cells of growing point in almost mature embryoid. The relation of the above-mentioned structureal changes to somatic embryogenesis is also discussed.  相似文献   

17.
The origin of somatic embryos derived from rhizome explants of triploid Musa cv. Grand Nain was the subject of histological studies during different phases of ontogenetic development. The investigation revealed that the majority of somatic embryos showed normal root formation and consisted of highly vacuolated cells in the poorly structured shoot apex. The embryogenic mass and somatic embryos were mostly derived from several morphologically competent cells. Single cell origin depended on the presence of organogenetically functional vascular cells of rhizome explants and occurred infrequently. The implications of these findings for genetic improvement of banana and plantain by in vitro mutation breeding and gene technology are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
从香蕉胚性细胞悬浮系获得再生植株   总被引:5,自引:0,他引:5  
2个主栽香蕉品种的未成熟雄花诱导产生的胚性愈伤组织接种至液体培养基中,经3~4个月的继代培养后长成质地均匀的胚性细胞悬浮系(ECS),悬浮系中60%~80%是胚性细胞团.ECS接种至体胚再生培养基上约4~5周后开始出现再生体胚,萌发的体胚以MS培养基培养后可获得再生植株.  相似文献   

19.
Excised zygotic embryos, mericarps ("seeds") and hypocotyls of seedlings of cultivated carrot Daucus carota cv. Scarlet Nantes were evaluated for their ability to generate somatic embryos on a semisolid hormone-free nutrient medium. Neither intact zygotic embryos nor hypocotyls ever produced somatic embryos. However, mericarps and broken zygotic embryos were excellent sources for somatic embryo production (response levels as high as 86%). Somatic embryo formation was highest from cotyledons, but was also observed on isolated hypocotyls and root tips of mature zygotic embryos. On media containing unreduced nitrogen, somatic embryo formation led to the generation of vigorous cultures comprised entirely of somatic embryos at various stages of development which in turn proliferated still other somatic embryos. However, a medium was devised which when 1-5 mM NH4+ was the sole nitrogen source, led only to a proliferation of globular proembryos. Sustained subculturing of these proembryos at 2-3 week intervals enabled establishment of highly uniform cultures in which no further development into more mature stages of embryonic development occurred. These have been maintained, without decline, as morphogenetically competent proembryonic globules for over ten months. A basal medium containing from 1-5 mM NH4+ as the sole nitrogen source appears not to be inductive to somatic proembryo formation. Instead, such a medium is best thought of as permissive to the expression of embryogenically determined cells within zygotic embryos. By excising and breaking or wounding zygotic embryos, constituent cells are probably released from positional or chemical restraints and thus are able to express their innate embryogenic potential. Once a proembryonic culture is established, this medium containing 1-5 mM NH4+ as the sole nitrogen source provides a nonpermissive environment to the development and growth of later embryonic stages, but it does allow the continued formation and multiplication of globular somatic proembryos. The sequence of events leading from excised broken zygotic embryos to the formation of somatic embryos and the maintenance of somatic proembryos are demonstrated by scanning electron microscopy and histological preparations. Germination levels from intact zygotic embryos on media with varying levels and ratios of unreduced vs. reduced inorganic nitrogen were determined as well and provided baseline or control data on the type of response obtained from nonwounded material.  相似文献   

20.
The ontogenetic developmental stages of saffron somatic embryogenesis have been studied and characterized using light microscopy and the biochemical determination of the antioxidant enzymatic system. The embryogenic callus underwent internal segmented divisions with the formation of globular embryos that were attached to the callus surface by a broad multicellular structure. Further development of the embryoids was characterized by the emergence of a shoot apical meristem and cotyledon (monopolar stage) with the subsequent differentiation of a minicorm at the basal part of the somatic embryo (dipolar stage). During the morphological differentiation of the somatic embryos changes in the antioxidant enzymatic system with increased superoxide dismutase (SOD) and catalase (CAT) activities were detected at the initial stages of somatic embryogenesis. The isoforms of SOD, including two Mn-SODs and four Cu, Zn-SODs, were also detected. Although all the isoforms were expressed during the successive stages of somatic embryogenesis, an increase in Mn-SODs and a decrease in Cu, Zn-SODs during the last two stages was observed. Significant changes were also detected in the antioxidant activities ascorbate peroxidase, dehydroascorbic acid reductase and glutathione reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号