首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Anoxic soils, such as flooded rice fields, are major sources of the greenhouse gas CH(4) while oxic upland soils are major sinks of atmospheric CH(4). Nevertheless, CH(4) is also consumed in rice fields where up to 90% of the produced CH(4) is oxidized in a narrow oxic zone around the rice roots and in the soil surface layer before it escapes into the atmosphere. After 1 day drainage of rice field soil, CH(4) oxidation was detected in the top 2-mm soil layers, but after 8 days drainage the zone of CH(4) oxidation extended to 8 mm depth. Simultaneously, the potential for CH(4) production decreased, but some production was still detectable after 8 days drainage throughout the soil profile. The vertical distribution of the methanotrophic community was also monitored after 1 and 8 days drainage using denaturing gradient gel electrophoresis after PCR amplification with primer sets targeting two regions on the 16S rRNA gene that are relatively specific for methylotrophic alpha- and gamma-Proteobacteria, and targeting two functional genes encoding subunits of key enzymes in all methanotrophs, i.e. the genes for the particulate methane monooxygenase (pmoA) and the methanol dehydrogenase (mxaF). Drainage stimulated the methanotrophic community. Eight days after drainage, new methanotrophic populations appeared and a distinct methanotrophic community developed. The population structure of type I and II methanotrophs was differently affected by drainage. Type II methanotrophs (alpha-Proteobacteria) were present throughout the soil core directly after drainage (1 day), and the community composition remained largely unchanged with depth. Only two new type II populations appeared after 8 days of drainage. Drainage had a more pronounced impact on the type I methanotrophic community (gamma-Proteobacteria). Type I populations were not or only weakly detected 1 day after drainage. However, after 8 days of drainage, a large diversity of type I methanotrophs were detected, altough they were not evenly distributed throughout the soil core but dominated at different depths. A distinct type I community structure had developed within each soil section between 0 and 20 mm soil depth, indicating the widening of suitable habitats for methanotrophs in the rice field soil within 1 week of drainage.  相似文献   

3.
Knowledge about methanotrophs and their activities is important to understand the microbial mediation of the greenhouse gas CH4 under climate change and human activities in terrestrial ecosystems. The effects of simulated warming and sheep grazing on methanotrophic abundance, community composition, and activity were studied in an alpine meadow soil on the Tibetan Plateau. There was high abundance of methanotrophs (1.2–3.4 × 108 pmoA gene copies per gram of dry weight soil) assessed by real-time PCR, and warming significantly increased the abundance regardless of grazing. A total of 64 methanotrophic operational taxonomic units (OTUs) were obtained from 1,439 clone sequences, of these OTUs; 63 OTUs (98.4%) belonged to type I methanotrophs, and only one OTU was Methylocystis of type II methanotrophs. The methanotroph community composition and diversity were not apparently affected by the treatments. Warming and grazing significantly enhanced the potential CH4 oxidation activity. There were significantly negative correlations between methanotrophic abundance and soil moisture and between methanotrophic abundance and NH4–N content. The study suggests that type I methanotrophs, as the dominance, may play a key role in CH4 oxidation, and the alpine meadow has great potential to consume more CH4 under future warmer and grazing conditions on the Tibetan Plateau.  相似文献   

4.
5.
We addressed how restoration of forestry-drained peatlands affects CH(4)-cycling microbes. Despite similar community compositions, the abundance of methanogens and methanotrophs was lower in restored than in natural sites and correlated with CH(4) emission. Poor establishment of methanogens may thus explain low CH(4) emissions on restored peatlands even 10 to 12 years after restoration.  相似文献   

6.
Patterns of aerobic methane (CH4) oxidation and associated methanotroph community composition were investigated during the development of seasonal stratification in Mono Lake, California (USA). CH4 oxidation rates were measured using a tritiated CH4 radiotracer technique. Fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequence analysis were used to characterize methanotroph community composition. A temporally shifting zone of elevated CH4 oxidation (59-123 nM day(-1)) was consistently associated with a suboxycline, microaerophilic zone that migrated upwards in the water column as stratification progressed. FISH analysis revealed stable numbers of type I (4.1-9.3 x 10(5) cells ml(-1)) and type II (1.4-3.4 x 10(5) cells ml(-1)) methanotrophs over depth and over time. Denaturing gradient gel electrophoresis and sequence analysis indicated slight shifts in methanotroph community composition despite stable absolute cell numbers. Variable CH4 oxidation rates in the presence of a relatively stable methanotroph population suggested that zones of high CH4 oxidation resulted from an increase in activity of a subset of the existing methanotroph population. These results challenge existing paradigms suggesting that zones of elevated CH4 oxidation activity result from the accumulation of methanotrophic biomass and illustrate that type II methanotrophs may be an important component of the methanotroph population in saline and/or alkaline pelagic environments.  相似文献   

7.
Methanotrophic bacteria play a crucial role in regulating the emission of CH4 from rice fields into the atmosphere. We investigated the CH4 oxidation activity together with the diversity of methanotrophic bacteria in ten rice field soils from different geographic locations. Upon incubation of aerated soil slurries under 7% CH4, rates of CH4 oxidation increased after a lag phase of 1-4 days and reached values of 3-10 micromol d(-1) g-dw(-1) soil. The methanotrophic community was assayed by retrieval of the pmoA gene which encodes the a subunit of the particulate methane monooxygenase. After extraction of DNA from actively CH4-oxidizing soil samples and PCR-amplification of the pmoA, the community was analyzed by Denaturant Gradient Gel Electrophoresis (DGGE) and Terminal Restriction Fragment Length Polymorphism (T-RFLP). DGGE bands were excised, the pmoA re-amplified, sequenced and the encoded amino acid sequence comparatively analyzed by phylogenetic treeing. The analyses allowed the detection of pmoA sequences related to the following methanotrophic genera: the type-I methanotrophs Methylobacter, Methylomicrobium, Methylococcus and Methylocaldum, and the type-II methanotrophs Methylocystis and Methylosinus. T-RFLP analysis detected a similar diversity, but type-II pmoA more frequently than DGGE. All soils but one contained type-II in addition to type-I methanotrophs. Type-I Methylomonas was not detected at all. Different combinations of methanotrophic genera were detected in the different soils. However, there was no obvious geographic pattern of the distribution of methanotrophs.  相似文献   

8.
9.
Temperature change affects methane consumption in soil. However, there is no information on possible temperature control of methanotrophic bacterial populations. Therefore, we studied CH(4) consumption and populations of methanotrophs in an upland forest soil and a rice field soil incubated at different temperatures between 5 and 45 degrees C for up to 40 days. Potential methane consumption was measured at 4% CH(4). The temporal progress of CH(4) consumption indicated growth of methanotrophs. Both soils showed maximum CH(4) consumption at 25-35 degrees C, but no activity at >40 degrees C. In forest soil CH(4) was also consumed at 5 degrees C, but in rice soil only at 15 degrees C. Methanotroph populations were assessed by terminal restriction fragment length polymorphism (T-RFLP) targeting particulate methane monooxygenase (pmoA) genes. Eight T-RFs with relative abundance >1% were retrieved from both forest and rice soil. The individual T-RFs were tentatively assigned to different methanotrophic populations (e.g. Methylococcus/Methylocaldum, Methylomicrobium, Methylobacter, Methylocystis/Methylosinus) according to published sequence data. Two T-RFs were assigned to ammonium monooxygenase (amoA) gene sequences. Statistical tests showed that temperature affected the relative abundance of most T-RFs. Furthermore, the relative abundance of individual T-RFs differed between the two soils, and also exhibited different temperature dependence. We conclude that temperature can be an important factor regulating the community composition of methanotrophs in soil.  相似文献   

10.
The activity and distribution of methanotrophs in soil depend on the availability of CH4 and O2. Therefore, we investigated the activity and structure of the methanotrophic community in rice field soil under four factorial combinations of high and low CH4 and O2 concentrations. The methanotrophic population structure was resolved by denaturant gradient gel electrophoresis (DGGE) with different PCR primer sets targeting the 16S rRNA gene, and two functional genes coding for key enzymes in methanotrophs, i.e. the particulate methane monooxygenase (pmoA) and the methanol dehydrogenase (mxaF). Changes in the biomass of type I and II methanotrophic bacteria in the rice soil were determined by analysis of phospholipid-ester-linked fatty acid (PLFA) biomarkers. The relative contribution of type I and II methanotrophs to the measured methane oxidation activity was determined by labelling of soil samples with 14CH4 followed by analysis of [14C]-PLFAs. CH4 oxidation was repressed by high O2 (20.5%), and enhanced by low O2 (1%). Depending on the CH4 and O2 mixing ratios, different methanotrophic communities developed with a higher diversity at low than at high CH4 concentration as revealed by PCR-DGGE. However, a prevalence of type I or II populations was not detected. The [14C]-PLFA fingerprints, on the other hand, revealed that CH4 oxidation activity was dominated by type I methanotrophs in incubations with low CH4 mixing ratios (1000 p.p.m.v.) and during initiation of CH4 consumption regardless of O2 or CH4 mixing ratio. At high methane mixing ratios (10 000 p.p.m.v.), type I and II methanotrophs contributed equally to the measured CH4 metabolism. Collectively, type I methanotrophs responded fast and with pronounced shifts in population structure and dominated the activity under all four gas mixtures. Type II methanotrophs, on the other hand, although apparently more abundant, always present and showing a largely stable population structure, became active later and contributed to CH4 oxidation activity mainly under high CH4 mixing ratios.  相似文献   

11.
不同水分管理下稻田土壤CH4和N2O排放与微生物菌群的关系   总被引:10,自引:2,他引:8  
采用MPN计数法对黑土(海伦)和草甸棕壤(沈阳)稻田生长季4种微生物菌群数量进行了测定,同时采用封闭式箱法对CH4和N2O通量进行观测,以深入了解稻田生物源温室气体排放的微生物学过程,两地试验田均采用长期淹灌与间歇灌溉两种不同水分管理,对实验结果多元回归分析,结果表明,海伦与沈阳两地稻田两种水分管理条件下CH4通量季节变化与产甲烷菌数季节变化存在极显著正相关关系沈阳稻田生长季CH4通量季节变化与甲烷氧化菌数季节变化具有显著正相关性,间歇灌溉条件下黑土稻田N2O通量与反硝化菌数呈显著性正相关关系,两种水分管理条件下沈阳稻田N2O通量与硝化菌数具有显著正相关关系,间歇灌溉条件下沈阳稻田N2O通量与反硝化菌数呈显著性正相关关系。  相似文献   

12.
The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the alpha subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA.  相似文献   

13.
Forest and other upland soils are important sinks for atmospheric CH(4), consuming 20 to 60 Tg of CH(4) per year. Consumption of atmospheric CH(4) by soil is a microbiological process. However, little is known about the methanotrophic bacterial community in forest soils. We measured vertical profiles of atmospheric CH(4) oxidation rates in a German forest soil and characterized the methanotrophic populations by PCR and denaturing gradient gel electrophoresis (DGGE) with primer sets targeting the pmoA gene, coding for the alpha subunit of the particulate methane monooxygenase, and the small-subunit rRNA gene (SSU rDNA) of all life. The forest soil was a sink for atmospheric CH(4) in situ and in vitro at all times. In winter, atmospheric CH(4) was oxidized in a well-defined subsurface soil layer (6 to 14 cm deep), whereas in summer, the complete soil core was active (0 cm to 26 cm deep). The content of total extractable DNA was about 10-fold higher in summer than in winter. It decreased with soil depth (0 to 28 cm deep) from about 40 to 1 microg DNA per g (dry weight) of soil. The PCR product concentration of SSU rDNA of all life was constant both in winter and in summer. However, the PCR product concentration of pmoA changed with depth and season. pmoA was detected only in soil layers with active CH(4) oxidation, i.e., 6 to 16 cm deep in winter and throughout the soil core in summer. The same methanotrophic populations were present in winter and summer. Layers with high CH(4) consumption rates also exhibited more bands of pmoA in DGGE, indicating that high CH(4) oxidation activity was positively correlated with the number of methanotrophic populations present. The pmoA sequences derived from excised DGGE bands were only distantly related to those of known methanotrophs, indicating the existence of unknown methanotrophs involved in atmospheric CH(4) consumption.  相似文献   

14.
He R  Ruan A  Jiang C  Shen DS 《Bioresource technology》2008,99(15):7192-7199
CH4 oxidation capacities and microbial community structures developed in response to the presence of CH4 were investigated in two types of landfill cover soil microcosms, waste soil (fine material in stabilized waste) and clay soil. CH4 emission fluxes were lower in the waste soil cover over the course of the experiment. After exposure to CH4 flow for 120 days, the waste soil developed CH4 oxidation capacity from 0.53 to 11.25-13.48micromol CH4gd.w.(-1)h(-1), which was ten times higher than the clay soil. The topsoils of the two soil covers were observed dried and inhibited CH4 oxidation. The maximum CH4 oxidation rate occurred at the depth of 10-20cm in the waste soil cover (the middle layer), whereas it took place mainly at the depth of 20-30cm in the clay soil cover (the bottom layer). The amounts of the phospholipid fatty acid (PLFA) biomarks 16:1omega8c and 18:1omega8c for type I and II methanotrophs, respectively, showed that type I methanotrophic bacteria predominated in the clay soil, while the type II methanotrophic bacteria were abundant in the waste soil, and the highest population in the middle layer. The results also indicated that a greater active methanotrophic community was developed in the waste soil relative to the clay soil.  相似文献   

15.
Rice roots select for type I methanotrophs in rice field soil   总被引:1,自引:0,他引:1  
Methanotrophs are an important regulator for reducing methane (CH4) emissions from rice field soils. The type I group of the proteobacterial methanotrophs are generally favored at low CH4 concentration and high O2 availability, while the type II group lives better under high CH4 and limiting O2 conditions. Such physiological differences are possibly reflected in their ecological preferences. In the present study, methanotrophic compositions were compared between rice-planted soil and non-planted soil and between the rhizosphere and rice roots by using terminal restriction fragment length polymorphism (T-RFLP) analysis of particulate methane monooxygenase (pmoA) genes. In addition, the effects of rice variety and nitrogen fertilizer were evaluated. The results showed that the terminal restriction fragments (T-RFs), which were characteristic for type I methanotrophs, substantially increased in the rhizosphere and on the roots compared with non-planted soils. Furthermore, the relative abundances of the type I methanotroph T-RFs were greater on roots than in the rhizosphere. Of type I methanotrophs, the 79 bp T-RF, which was characteristic for an unknown group or Methylococcus/Methylocaldum, markedly increased in field samples, while the 437 bp, which possibly represented Methylomonas, dominated in microcosm samples. These results suggested that type I methanotrophs were enriched or selected for by rice roots compared to type II methanotrophs. However, the members of type I methanotrophs are dynamic and sensitive to environmental change. Rice planting appeared to increase the copy number of pmoA genes relative to the non-planted soils. However, neither the rice variety nor the N fertilizer significantly influenced the dynamics of the methanotrophic community.  相似文献   

16.
Biofilters operated for the microbial oxidation of landfill methane at two sites in Northern Germany were analysed for the composition of their methanotrophic community by means of diagnostic microarray targeting the pmoA gene of methanotrophs. The gas emitted from site Francop (FR) contained the typical principal components (CH4, CO2, N2) only, while the gas at the second site Müggenburger Strasse (MU) was additionally charged with non-methane volatile organic compounds (NMVOCs). Methane oxidation activity measured at 22 degrees C varied between 7 and 103 microg CH4 (g dw)(-1) h(-1) at site FR and between 0.9 and 21 microg CH4 (g dw)(-1) h(-1) at site MU, depending on the depth considered. The calculated size of the active methanotrophic population varied between 3 x 10(9) and 5 x 10(11) cells (g dw)(-1) for biofilter FR and 4 x 10(8) to 1 x 10(10) cells (g dw)(-1) for biofilter MU. The methanotrophic community in both biofilters as well as the methanotrophs present in the landfill gas at site FR was strongly dominated by type II organisms, presumably as a result of high methane loads, low copper concentration and low nitrogen availability. Within each biofilter, community composition differed markedly with depth, reflecting either the different conditions of diffusive oxygen supply or the properties of the two layers of materials used in the filters or both. The two biofilter communities differed significantly. Type I methanotrophs were detected in biofilter FR but not in biofilter MU. The type II community in biofilter FR was dominated by Methylocystis species, whereas the biofilter at site MU hosted a high abundance of Methylosinus species while showing less overall methanotroph diversity. It is speculated that the differing composition of the type II population at site MU is driven by the presence of NMVOCs in the landfill gas fed to the biofilter, selecting for organisms capable of co-oxidative degradation of these compounds.  相似文献   

17.
Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population.  相似文献   

18.
Methane (CH4) oxidation and the methanotrophic community structure of a pristine New Zealand beech forest were investigated using biochemical and molecular methods. Phospholipid-fatty acid-stable-isotope probing (PLFA-SIP) was used to identify the active population of methanotrophs in soil beneath the forest floor, while terminal-restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of the pmoA gene were used to characterize the methanotrophic community. PLFA-SIP suggested that type II methanotrophs were the predominant active group. T-RFLP and cloning and sequencing of the pmoA genes revealed that the methanotrophic community was diverse, and a slightly higher number of type II methanotrophs were detected in the clone library. Most of the clones from type II methanotrophs were related to uncultured pmoA genes obtained directly from environmental samples, while clones from type I were distantly related to Methylococcus capsulatus. A combined data analysis suggested that the type II methanotrophs may be mainly responsible for atmospheric CH4 consumption. Further sequence analysis suggested that most of the methanotrophs detected shared their phylogeny with methanotrophs reported from soils in the Northern Hemisphere. However, some of the pmoA sequences obtained from this forest had comparatively low similarity (<97%) to known sequences available in public databases, suggesting that they may belong to novel groups of methanotrophic bacteria. Different methods of methanotrophic community analysis were also compared, and it is suggested that a combination of molecular methods with PLFA-SIP can address several shortcomings of stable isotope probing.  相似文献   

19.
The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the α subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号