首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Song SY  Jung JE  Jeon YR  Tark KC  Lew DH 《Cytotherapy》2011,13(3):378-384
Background aimsAdipose-derived stem cells (ASC) are known to be able to restore injured tissue via differentiation and paracrine effects. In this study, we investigated the effect of ASC on photo-aged human dermal fibroblasts (HDF) based on paracrine function. In particular, we wanted to determine a more effective method of ASC application and the fate of the photo-aged fibroblasts.MethodsWe compared two application methods of ASC: transwell and conditioned medium culture with photo-aged fibroblasts. Proliferation rate, collagen synthesis, matrix metalloproteinase (MMP) production and expression of p16 were measured by real-time polymerase chain reaction (PCR) after culture. Flow cytometry for apoptosis assay was also conducted to determine the fate of the photo-aged fibroblasts.ResultsASC induced proliferation of photo-aged HDF and type I collagen production and decreased MMP-1 production and expression of p16. In an apoptosis assay, ASC converted necrotic or late apoptotic cells to early apoptotic cells. These results were similar in both experimental groups.ConclusionsThe results indicate that the paracrine effects of ASC may have a role that is as important as cell-to-cell communication between ASC and fibroblasts. We believe that conditioned medium may be a useful material for anti-aging skin therapy instead of cell therapy. Also, ASC might have an anti-aging effect on photo-aged fibroblasts even at a genetic level.  相似文献   

2.
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Early stage DR involves inflammation, vascular leakage, apoptosis of vascular cells and neurodegeneration. In this study, we hypothesized that cells derived from the stromal fraction of adipose tissue (ASC) could therapeutically rescue early stage DR features. Streptozotocin (STZ) induced diabetic athymic nude rats received single intravitreal injection of human ASC into one eye and saline into the other eye. Two months post onset of diabetes, administration of ASC significantly improved “b” wave amplitude (as measured by electroretinogram) within 1–3 weeks of injection compared to saline treated diabetic eyes. Subsequently, retinal histopathological evaluation revealed a significant decrease in vascular leakage and apoptotic cells around the retinal vessels in the diabetic eyes that received ASC compared to the eyes that received saline injection. In addition, molecular analyses have shown down-regulation in inflammatory gene expression in diabetic retina that received ASC compared to eyes that received saline. Interestingly, ASC were found to be localized near retinal vessels at higher densities than seen in age matched non-diabetic retina that received ASC. In vitro, ASC displayed sustained proliferation and decreased apoptosis under hyperglycemic stress. In addition, ASC in co-culture with retinal endothelial cells enhance endothelial survival and collaborate to form vascular networks. Taken together, our findings suggest that ASC are able to rescue the neural retina from hyperglycemia-induced degeneration, resulting in importantly improved visual function. Our pre-clinical studies support the translational development of adipose stem cell-based therapy for DR to address both retinal capillary and neurodegeneration.  相似文献   

3.
4.
In several laboratory animals and humans, adipose tissue‐derived mesenchymal stem cells (ASC) are of considerable interest because they are easy to harvest and can generate a huge proliferation of cells from a small quantity of fat. In this study, we investigated: (i) the expression patterns of reprogramming‐related genes in porcine ASC; and (ii) whether ASC can be a suitable donor cell type for generating cloned pigs. For these experiments, ASC, adult skin fibroblasts (AF) and fetal fibroblasts (FF) were derived from a 4‐year‐old female miniature pig. The ASC expressed cell‐surface markers characteristic of stem cells, and underwent in vitro differentiation when exposed to specific differentiation‐inducing conditions. Expression of DNA methyltransferase (DNMT)1 in ASC was similar to that in AF, but the highest expression of the DNMT3B gene was observed in ASC. The expression of OCT4 was significantly higher in FF and ASC than in AF (P < 0.05), and SOX2 showed significantly higher expression in ASC than in the other two cell types (P < 0.05). After somatic cell nuclear transfer (SCNT), the development rate of cloned embryos derived from ASC was comparable to the development of those derived using FF. Total cell numbers of blastocysts derived using ASC and FF were significantly higher than in embryos made with AF. The results demonstrated that ASC used for SCNT have a potential comparable to those of AF and FF in terms of embryo in vitro development and blastocyst formation.  相似文献   

5.
Obesity, and in particular visceral obesity, has been associated with an increased risk of developing cancers as well as higher rates of mortality following diagnosis. The impact of obesity on adipose-derived stromal cells (ASC), which contribute to the formation of tumor stroma, is unknown. Here we hypothesized that visceral source and diet-induced obesity (DIO) changes the ASC phenotype, contributing to the tumor promoting effects of obesity. We found that ASC isolated from subcutaneous (SC-ASC) and visceral (V-ASC) white adipose tissue(WAT) of lean(Le) and obese(Ob) mice exhibited similar mesenchymal cell surface markers expression, and had comparable effects on ovarian cancer cell proliferation and migration. Obese and visceral derived ASC proliferated slower and exhibited impaired differentiation into adipocytes and osteocytes in vitro as compared to ASC derived from subcutaneous WAT of lean mice. Intraperitoneal co-injection of ovarian cancer cells with obese or visceral derived ASC, but not lean SC-ASC, increased growth of intraperitoneal ID8 tumors as compared to controls. Obese and V-ASC increased stromal infiltration of inflammatory cells, including CD3+ T cells and F4/80+ macrophages. Obese and visceral derived ASC, but not lean SC-ASC, increased expression of chemotactic factors IL-6, MIP-2, and MCP-1 when cultured with tumor cells. Overall, these results demonstrate that obese and V-ASC have a unique phenotype, with more limited proliferation and differentiation capacity but enhanced expression of chemotactic factors in response to malignant cells which support infiltration of inflammatory cells and support tumor growth and dissemination.  相似文献   

6.
Background aimsTransplantation of mesenchymal stromal cells (MSC) derived from bone marrow (BM) or adipose tissue is expected to become a cell therapy for stroke. The present study compared the therapeutic potential of adipose-derived stem cells (ASC) with that of BM-derived stem cells (BMSC) in a murine stroke model.MethodsASC and BMSC were isolated from age-matched C57BL/6J mice. These MSC were analyzed for growth kinetics and their capacity to secrete trophic factors and differentiate toward neural and vascular cell lineages in vitro. For in vivo study, ASC or BMSC were administrated intravenously into recipient mice (1 × 105 cells/mouse) soon after reperfusion following a 90-min middle cerebral artery occlusion. Neurologic deficits, the degree of infarction, expression of factors in the brain, and the fate of the injected cells were observed.ResultsASC showed higher proliferative activity with greater production of vascular endothelial cell growth factor (VEGF) and hepatocyte growth factor (HGF) than BMSC. Furthermore, in vitro conditions allowed ASC to differentiate into neural, glial and vascular endothelial cells. ASC administration showed remarkable attenuation of ischemic damage, although the ASC were not yet fully incorporated into the infarct area. Nonetheless, the expression of HGF and angiopoietin-1 in ischemic brain tissue was significantly increased in ASC-treated mice compared with the BMSC group.ConclusionsCompared with BMSC, ASC have great advantages for cell preparation because of easier and safer access to adipose tissue. Taken together, our findings suggest that ASC would be a more preferable source for cell therapy for brain ischemia than BMSC.  相似文献   

7.
Wei Y  Sun X  Wang W  Hu Y 《Cytotherapy》2007,9(8):712-716
Cartilage has only a very limited capacity to renew its original structure. Stem cells have been used to repair damaged cartilage, and recent studies have indicated that stem cells from adipose tissue are attractive cell sources that have the capacity of multipotentiality to differentiate into osteogenic, chondrogenic, myogenic, neurogenic and endothelial cells. Adipose-derived stem cells (ASC) have unique characteristics compared with stem cells from BM. At present, ASC have been studied to promote chondrogenesis. This review discusses the application of ASC to cartilage formation.  相似文献   

8.
Skin regeneration is an important area of research in the field of tissue-engineering, especially for cases involving loss of massive areas of skin, where current treatments are not capable of inducing permanent satisfying replacements. Human adipose-derived stem cells (ASC) have been shown to differentiate in-vitro into both mesenchymal lineages and non-mesenchymal lineages, confirming their transdifferentiation ability. This versatile differentiation potential, coupled with their ease of harvest, places ASC at the advancing front of stem cell-based therapies. In this study, we hypothesized that ASC also have the capacity to transdifferentiate into keratinocyte-like cells and furthermore are able to engineer a stratified epidermis. ASC were successfully isolated from lipoaspirates and cell sorted (FACS). After sorting, ASC were either co-cultured with human keratinocytes or with keratinocyte conditioned media. After a 14-day incubation period, ASC developed a polygonal cobblestone shape characteristic of human keratinocytes. Western blot and q-PCR analysis showed the presence of specific keratinocyte markers including cytokeratin-5, involucrin, filaggrin and stratifin in these keratinocyte-like cells (KLC); these markers were absent in ASC. To further evaluate if KLC were capable of stratification akin to human keratinocytes, ASC were seeded on top of human decellularized dermis and cultured in the presence or absence of EGF and high Ca2+ concentrations. Histological analysis demonstrated a stratified structure similar to that observed in normal skin when cultured in the presence of EGF and high Ca2+. Furthermore, immunohistochemical analysis revealed the presence of keratinocyte markers such as involucrin, cytokeratin-5 and cytokeratin-10. In conclusion this study demonstrates for the first time that ASC have the capacity to transdifferentiate into KLC and engineer a stratified epidermis. This study suggests that adipose tissue is potentially a readily available and accessible source of keratinocytes, particularly for severe wounds encompassing large surface areas of the body and requiring prompt epithelialization.  相似文献   

9.
10.
The main physiological function of adipose-derived stromal/progenitor cells (ASC) is to differentiate into adipocytes. ASC are most likely localized at perivascular sites in adipose tissues and retain the capacity to differentiate into multiple cell types. Although cell surface markers for ASC have been described, there is no complete consensus on the antigen expression pattern that will precisely define these cells. DLK1(PREF1) is an established marker for mouse adipocyte progenitors which inhibits adipogenesis. This suggests that DLK1(PREF1) could be a useful marker to characterize human ASC. The DLK1(PREF1) status of human ASC is however unknown. In the present study we isolated ASC from the heterogeneous stromal vascular fraction of subcutaneous abdominal fat pats of adult women. These cells were selected by their plastic adherence and expanded to passage 5. The ASC were characterized as relatively homogenous cell population with the capacity to differentiate in vitro into adipocytes, chondrocytes, and osteoblasts and the immunophenotype CD105?/CD90?/CD34?/CD31?/FABP4?. The ASC were positive for DLK1(PREF1) which was well expressed in proliferating and density arrested cells but downregulated in the course of adipogenic differentiation. To investigate whether DLK1(PREF1) plays a role in the regulation of adipogenesis in these cells RNAi-mediated knockdown experiments were conducted. Knockdown of DLK1(PREF1) in differentiating ASC resulted in a significant increase of the expression of the adipogenic key regulator PPARγ2 and of the terminal adipogenic differentiation marker FABP4. We conclude that DLK1(PREF1) is well expressed in human ASC and acts as a negative regulator of adipogenesis. Moreover, DLK1(PREF1) could be a functional marker contributing to the characterization of human ASC.  相似文献   

11.
Antibody secreting cells (ASCs) generate antibodies in an antigen-specific manner as part of the adaptive immune response to infections, and these cells increase their surface expression of HLA-DR. We have studied this parameter (HLA-DR+ ASC) in patients with recent diarrheal infection using immuno-magnetic cell sorting and an enzyme linked immunospot (ELISPOT) technique that requires only one milliliter of blood. We validated this approach in adult patients with cholera (n = 15) or ETEC diarrhea (n = 30) on days 2, 7 and 30 after showing clinical symptom at the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) hospital in Dhaka, and we compared responses to age-matched healthy controls (n = 7). We found that HLA-DR+ ASC (DR+ASC) responses specific both for T cell-dependent (cholera toxin B subunit), and T cell-independent (lipopolysaccharide) antigens were elevated at day 7 after showing clinical cholera symptom. Similarly, DR+ASCs were elevated against both heat-labile toxin and colonization factors following ETEC infection. We observed significant correlations between antigen-specific DR+ASC responses and antigen-specific, gut homing ASC and plasma antibody responses. This study demonstrates that a simple ELISPOT procedure allows determination of antigen-specific ASC responses using a small volume of whole blood following diarrhea. This technique may be particularly useful in studying DR+ASC responses in young children and infants, either following infection or vaccination.  相似文献   

12.
Background aimsAdipose-derived stromal/stem cells (ASC) possess a multilineage differentiation potential, can be used from an autologous origin, and are, therefore, attractive candidates for clinical applications to repair or regenerate damaged tissues and organs. Beside their well-known differentiation into cells of mesodermal origin, ASC are able to differentiate into cells of ecto- and endodermal originMethodsPrevious studies have shown that all trans retinoic acid (ATRA) induces the expression of cytokeratin 18 (CK18), indicating the beginning of differentiation into the epithelial lineage. Nevertheless, ATRA does not induce the expression of other epithelial markers. Therefore, we tested the additional influence of two growth factors on the onset of epithelial differentiation of ASC. The cells were cultured with ATRA, Activin A (ActA) and bone morphogenetic protein-7 (BMP-7), either alone or in combination. Differentiation into the epithelial lineage was assessed by the expression of the characteristic epithelial markers CK18 and zonula occludens protein 1 (ZO-1) using Western blot, immunofluorescence staining and polymerase chain reaction (PCR) analysisResultsThe mixture of all three factors induced epithelial differentiation of ASC without enhancing cell proliferation. Upon induction, the ASC showed phenotypic changes consistent with an epithelial phenotype. The addition of the growth factors ActA and BMP-7 enhanced the inductive effect of ATRA, as shown by the de novo expression of ZO-1 in addition to CK18 expressionConclusionsOur study highlights the onset of the epithelial differentiation of ASC induced by culture with a combination of ATRA, ActA and BMP-7.  相似文献   

13.
The natural antioxidants, tocopherols and ascorbate (ASC), are of great interest in terms of human health, because of their role in the prevention of chronic diseases. In cell metabolism, tocopherols are the major lipid-soluble antioxidants, whereas ASC and glutathione (GSH) are hydro-soluble antioxidants. These three metabolites cooperate in scavenging for oxygen radicals and protecting cell membranes. ASC and GSH are required in the process of regeneration of tocopherol from its α-cromanoxyl radical, while, GSH donates electrons for the reduction of dehydroascorbate (DHA), the fully oxidised form of ASC. Two cell lines of sunflower (Helianthus annuus L. cv Gloriasol) with differing capability to synthesise α-tocopherol were identified. In spite of the differing content of α-tocopherol (almost threefold higher in the high synthesising cell line, HT, than in the low synthesising one, LT), the cell lines have comparable growth curves. In the cells collected in the stationary phase, the ASC and GSH pools are also significantly higher in the HT cells than in the LT cells. On the other hand, the enzymes responsible for H2O2 scavenging and ASC and GSH recycling had higher activity in the LT than in the HT cells. The cooperation between the three antioxidant systems in the maintenance of the cellular redox balance is discussed, as well as the possible utilisation of the HT cell line for the in vitro production of natural antioxidants.  相似文献   

14.
Background aimsAdipose stromal cells (ASC) are a promising alternative to progenitor cells from other tissue compartments because of their multipotential and capacity to retrieve significantly more progenitor cells. Initial cell samples are heterogeneous, containing a collection of cells that may contribute to tissue repair, but the sample becomes more homogeneous with each passage. Therefore, we hypothesized that the osteogenic potential of culture-expanded ASC would differ from uncultured ASC.MethodsAdipose tissue was collected from a yearling colt, and ASC were isolated and expanded using standard protocols or prepared by a commercial vendor using proprietary technology (proprietary stromal vascular fraction, SVFp). Cells were seeded on collagen sponges and maintained in osteogenic culture conditions for up to 21 days to assess osteogenic potential. The ability of each population to stimulate neovascularization and bone healing was determined upon implanting cell-loaded sponges into a rodent calvarial bone defect. Neovascularization was measured 3 weeks post-implantation, while bone formation was monitored over 12 weeks using in vivo microcomputed tomography (microCT).ResultsSVFp exhibited increased intracellular alkaline phosphatase activity compared with cultured ASC but proliferated minimally. Histologic analysis of explanted tissues demonstrated greater vascularization in defects treated with cultured ASC compared with SVFp. We detected increases in bone volume for defects treated with cultured cells while observing similar values for bone mineral density, regardless of cell type.ConclusionsThese results suggest that expanded ASC are advantageous for neovascularization and bone healing in this model compared with SVFp, and provide additional evidence of the utility of ASC in bone repair.  相似文献   

15.
16.
This study was undertaken to gain better insights into the role of TLRs and MyD88 in the development and differentiation of memory B cells, especially of ASC, during the Th2 polarized memory response induced by Natterins. Our in vivo findings demonstrated that the anaphylactic IgG1 production is dependent on TLR2 and MyD88 signaling, and that TLR4 acts as adjuvant accelerating the synthesis of high affinity-IgE. Also, TLR4 (MyD88-independent) modulated the migration of innate-like B cells (B1a and B2) out of the peritoneal cavity, and the emigration from the spleen of B1b and B2 cells. TLR4 (MyD88-independent) modulated the emigration from the spleen of Bmem as well as ASC B220pos. TLR2 triggered to the egress from the peritoneum of Bmem (MyD88-dependent) and ASC B220pos (MyD88-independent). We showed that TLR4 regulates the degree of expansion of Bmem in the peritoneum (MyD88-dependent) and in BM (MyD88-independent) as well as of ASC B220neg in the spleen (MyD88-independent). TLR2 regulated the intensity of the expansion of Bmem (MyD88-independent) and ASC B220pos (MyD88-dependent) in BM. Finally, TLR4 signals sustained the longevity of ASC B220pos (MyD88-independent) and ASC B220neg into the peritoneum (MyD88-dependent) and TLR2 MyD88-dependent signaling supported the persistence of B2 cells in BM, Bmem in the spleen and ASC B220neg in peritoneum and BM. Terminally differentiated ASC B220neg required the cooperation of both signals through TLR2/TLR4 via MyD88 for longevity in peritoneum, whereas Bmem required only TLR2/MyD88 to stay in spleen, and ASC B220pos rested in peritoneum dependent on TLR4 signaling. Our data sustain that earlier events on memory B cells differentiation induced in secondary immune response against Natterins, after secondary lymph organs influx and egress, may be the key to determining peripheral localization of innate-like B cells and memory B cells as ASC B220pos and ASC B220neg.  相似文献   

17.
There is increasing evidence that many solid tumors are hierarchically organized with the bulk tumor cells having limited replication potential, but are sustained by a stem-like cell that perpetuates the tumor. These cancer stem cells have been hypothesized to originate from transformation of adult tissue stem cells, or through re-acquisition of stem-like properties by progenitor cells. Adenosquamous carcinoma (ASC) is an aggressive type of lung cancer that contains a mixture of cells with squamous (cytokeratin 5+) and adenocarcinoma (cytokeratin 7+) phenotypes. The origin of these mixtures is unclear as squamous carcinomas are thought to arise from basal cells in the upper respiratory tract while adenocarcinomas are believed to form from stem cells in the bronchial alveolar junction. We have isolated and characterized cancer stem-like populations from ASC through application of selective defined culture medium initially used to grow human lung stem cells. Homogeneous cells selected from ASC tumor specimens were stably expanded in vitro. Primary xenografts and metastatic lesions derived from these cells in NSG mice fully recapitulate both the adenocarcinoma and squamous features of the patient tumor. Interestingly, while the CSLC all co-expressed cytokeratins 5 and 7, most xenograft cells expressed either one, or neither, with <10% remaining double positive. We also demonstrated the potential of the CSLC to differentiate to multi-lineage structures with branching lung morphology expressing bronchial, alveolar and neuroendocrine markers in vitro. Taken together the properties of these ASC-derived CSLC suggests that ASC may arise from a primitive lung stem cell distinct from the bronchial-alveolar or basal stem cells.  相似文献   

18.
Familial Mediterranean fever (FMF) is characterized by recurrent attacks of fever and serositis; in some cases, ensuing amyloidosis results in kidney damage. Treatment with colchicine reduces the frequency and severity of FMF attacks and prevents amyloidosis, although the mechanisms behind these effects are unknown. Pyrin, the protein product of the MEFV gene, interacts with ASC, a key molecule in apoptotic and inflammatory processes. ASC forms intracellular speck-like aggregates that presage cell death. Here we show that cell death after ASC speck formation is much slower in nonmyeloid cells than in myeloid cells. Additionally, we demonstrate that colchicine prevents speck formation and show that specks can survive in the extracellular space after cell death. Because we also found that ASC is expressed in renal glomeruli of patients with FMF but not in those of control patients, we posit that high local ASC expression may result in speck formation and that specks from dying cells may persist in the extracellular space where they have the potential (perhaps in association with pyrin) to nucleate amyloid. The fact that speck formation requires an intact microtubule network as shown here could potentially account for the ability of prophylactic colchicine to prevent or reverse amyloidosis in patients with FMF.  相似文献   

19.
20.
To understand the function of ascorbic acid (ASC) in root development, the distribution of ASC, ASC oxidase, and glutathione (GSH) were investigated in cells and tissues of the root apex of Cucubita maxima. ASC was regularly distributed in the cytosol of almost all root cells, with the exception of quiescent centre (QC) cells. ASC also occurred at the surface of the nuclear membrane and correspondingly in the nucleoli. No ASC could be observed in vacuoles. ASC oxidase was detected by immunolocalization mainly in cell walls and vacuoles. This enzyme was particularly abundant in the QC and in differentiating vascular tissues and was absent in lateral root primordia. Administration of the ASC precursor L-galactono-gamma-lactone markedly increased ASC content in all root cells, including the QC. Root treatment with the ASC oxidized product, dehydroascorbic acid (DHA), also increased ASC content, but caused ASC accumulation only in peripheral tissues, where DHA was apparently reduced at the expense of GSH. The different pattern of distribution of ASC in different tissues and cell compartments reflects its possible role in cell metabolism and root morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号