首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent data suggest that endothelial progenitor cells (EPCs) are involved in recanalizing venous thrombi. We examined the impact of a fibrin network, and particularly of adsorbed thrombin, on EPCs derived from cord blood CD34(+) cells. Fibrin networks generated in microplates by adding CaCl(2) to platelet-depleted plasma retained adsorbed thrombin at the average concentration of 4.2 nM per well. EPCs expressed high levels of endothelial cell protein C receptor and thrombomodulin, allowing the generation of activated protein C on the fibrin matrix in the presence of exogenous human protein C. The fibrin matrix induced significant EPC proliferation and, when placed in the lower chamber of a Boyden device, strongly enhanced EPC migration. These effects were partly inhibited by hirudin by 41% and 66%, respectively), which suggests that fibrin-adsorbed thrombin interacts with EPCs via the thrombin receptor PAR-1. Finally, spontaneous lysis of the fibrin network, studied by measuring D-dimer release into the supernatant, was inhibited by EPCs but not by control mononuclear cells. Such an effect was associated with a 10-fold increase in plasminogen activator inhibitor-1 (PAI-1) secretion by EPCs cultivated in fibrin matrix. Overall, our data show that EPCs, in addition to their angiogenic potential, have both anticoagulant and antifibrinolytic properties. Thrombin may modulate these properties and contribute to thrombus recanalization by EPCs.  相似文献   

2.
Endothelial progenitor cells (EPC) may enhance blood vessel formation in a variety of clinical settings such as ischaemia and tumour angiogenesis as well as in tissue-engineered matrices. In the present study, we cultured a murine endothelial progenitor cell line, T17b, in vitro in cell culture as well as in an FDA-approved fibrin matrix and investigated cell proliferation, differentiation and secretion patterns of the angiogenic growth factor VEGF under hypoxia and differentiation. We show that T17b EPC remain viable for at least 8 days in the fibrin matrix where they proliferate and form clusters including lumen-like structures. Proliferation in fibrin clots overlayed with basal medium (BM) was confirmed morphologically and immunohistochemically by positive Ki67 staining, indicating mitotic activity. Significant cell proliferation and Ki-67 expression were absent when cells were incubated with dibutyryl-cAMP and retinoic acid (RA). Incubation with dibutyryl-cAMP and RA stimulated the expression of the EPC differentiation markers von Willebrand Factor (vWF) and VEGF receptor 2 (VEGFR-2), indicating successful differentiation in the fibrin clot. EPC differentiation induced by dibutyryl-cAMP and RA was confirmed in 2-D chamber slide cultures by positive vWF immunostaining, which was absent in BM controls. EPC chamber slides also displayed positive vWF staining when exposed to hypoxia under BM conditions, indicating EPC activation and differentiation could also be induced by hypoxia. Taken together, T17b EPC secrete increased levels of VEGF when submitted to either hypoxia or differentiation and can be differentiated into mature endothelial cells not only in cell and matrigel cultures but also in a fibrin matrix that is FDA approved for clinical application.  相似文献   

3.
Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti‐inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009 ]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood‐derived AC133+ cells that produce functional EPC progenies. Decursin dose‐dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle‐shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin‐2, angiopoietin receptor Tie‐2, Flk‐1 (vascular endothelial growth factor receptor‐2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose‐dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor‐induced mobilization of circulating EPCs (CD34 + /VEGFR‐2+ cells) from bone marrow and early incorporation of Dil‐Ac‐LDL‐labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild‐type‐ or bone‐marrow‐transplanted mice. Accordingly, decursin attenuated EPC‐derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. J. Cell. Biochem. 113: 1478–1487, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
血管再生中的内皮祖细胞   总被引:5,自引:0,他引:5  
Xu QB 《生理学报》2005,57(1):1-6
循环血液里存在一种被称为内皮祖细胞(endothelial progenitor cells,EPCs)的祖细胞亚群,具有在体内外分化为成熟内皮细胞的能力。根据内皮祖细胞与其他血液细胞的粘附能力的差异和内皮祖细胞的抗原特异性,内皮祖细胞可通过贴壁培养和免疫磁珠筛选而分离获得。内皮祖细胞可特异性表达三种祖细胞分子标志:CD133、CD34和血管内皮生长因子受体-2。当内皮祖细胞分化为成熟内皮细胞后,血小板内皮细胞粘附分子-1(CD31)、血管内皮粘附素(VE-cadherin,又称CD144)和Ⅷ因子(vWF)表达将上调。越来越多的证据显示,内皮祖细胞有利于体内内皮损伤后修复和血管再生。我们的研究发现,内皮祖细胞可修复apoE-缺陷小鼠血管移植物中的损伤内皮并且在动脉血管外膜中存在大量的血管祖细胞。然而,在机体的血管再生和动脉硬化的形成进程中,这些内皮祖细胞的作用和机制还不太明确。另外,有关机体内相应心血管疾病危险因素是如何影响内皮祖细胞功能的机制也不清楚。因此,对内皮祖细胞的归巢、释放和粘附机制的进一步深入研究将有助于人们探索内皮祖细胞的基础理论和临床应用价值。  相似文献   

5.
Endothelial progenitor cells (EPCs) are a subset of the total mononuclear cell population (tMNCs) that possess an enhanced potential for differentiation within the endothelial‐cell lineage. Typically, EPCs are selected from tMNCs via the expression of both hematopoietic stem‐cell markers and endothelial‐cell markers, such as CD34, or by culturing tMNCs in media selective for endothelial cells. Both EPCs and tMNCs participate in vascular growth and regeneration, and their potential use for treatment of myocardial injury or disease has been evaluated in early‐phase clinical studies. Direct comparisons between EPCs and tMNCs are rare, but the available evidence appears to favor EPCs, particularly CD34+ cells, and the potency of EPCs may be increased as much as 30‐fold through genetic modification. However, these observations must be interpreted with caution because clinical investigations of EPC therapy are ongoing. We anticipate that with continued development, EPC therapy will become a safe and effective treatment option for patients with acute myocardial infarction or chronic ischemic disease. J. Cell. Physiol. 219: 235–242, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Endothelial progenitor cells (EPCs) can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU) assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP), PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15) or pro-angiogenic (galectin-3) properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP) was the most up-regulated gene.  相似文献   

7.
Endothelial progenitor cells (EPC) participate in revascularization and angiogenesis. EPC can be cultured in vitro from mononuclear cells of peripheral blood, umbilical cord blood or bone marrow; they also can be transdifferentiated from mesenchymal stem cells (MSC). We isolated EPCs from Wharton's jelly (WJ) using two methods. The first method was by obtaining MSC from WJ and characterizing them by flow cytometry and their adipogenic and osteogenic differentiation, then applying endothelial growth differentiating media. The second method was by direct culture of cells derived from WJ into endothelial differentiating media. EPCs were characterized by morphology, Dil-LDL uptake/UEA-1 immunostaining and testing the expression of endothelial markers by flow cytometry and RT-PCR. We found that MSC derived from WJ differentiated into endothelial-like cells using simple culture conditions with endothelium induction agents in the medium.  相似文献   

8.
Vascular endothelial cell injury has been implicated in the onset of atherosclerosis. A number of previous studies have demonstrated that endothelial progenitor cells (EPCs), in particular late EPCs, play important roles in endothelial maintenance and repair. Recent evidence has revealed shear stress as a key regulator for EPC differentiation. However, the detailed events that contribute to the shear stress-induced EPC differentiation, in particular the mechanisms of mechanotransduction, remain to be identified. The present study was undertaken to further confirm the effects of shear stress on the late EPC differentiation, and to investigate the role of integrins in this procedure. Shear stress was observed to increase the expression of endothelial cell differentiation markers, such as vWF and CD31, in late EPCs isolated from rat bone marrow. Shear stress moreover enhanced the mRNA expression of integrin subunits β(1) and β(3) in a time-dependent manner, and also upregulated specific integrins in late EPCs plated on substrates containing various extracellular matrix (ECM) proteins. In addition, the shear stress-induced vWF and CD31 expression were found to be related to the levels of integrin β(1) and β(3), and were inhibited in late EPCs treated with RGD peptide (Gly-Arg-Gly-Asp-Asn-Pro, GRGDNP) that blocks the binding of integrins to the extracellular matrix. Additionally, this increase was also attenuated by both anti-β(1) integrin and anti-β(3) integrin antibodies. The integrin subunits β(1) and β(3) thus play important roles in regulating the shear stress-induced endothelial cell differentiation marker expression in late EPCs. This may provide novel insights into the mechanisms of mechanotransduction in shear stress-mediated late EPC differentiation.  相似文献   

9.
10.
Angiogenesis after tissue injury occurs in a matrix environment consisting of fibrin, fibronectin, and vitronectin as the major extracellular matrix (ECM) constituents. ECM-integrin interactions is critical for angiogenesis and failure to bind a ligand to certain integrin receptors (αvβ3 or αvβ5) inhibits angiogenesis. The ligand that binds to αvβ3 or αvβ5 integrin receptors during microvascular angiogenesis has not been identified. Our hypothesis is that provisional matrix molecules provide the environmental context cues to microvascular endothelial cells and promote angiogenesis by decreased programmed cell death. Using cultured human microvascular endothelial cells, we show that vitronectin, in comparison to growth on alternative provisional matrix molecules (fibronectin, fibrinogen plus thrombin), collagen I, and basement membrane molecules (collagen IV), significantly reduces microvascular endothelial cell death in vitro. This reduction was observed using morphologic criteria, TdT-mediated dUTP nick end labeling (TUNEL) assay, histone release into the cytoplasm, and thymidine release into the supernatant. Though our data confirm that vitronectin may bind to more than one integrin receptor to reduce MEC apoptosis, binding to the αv component appears to be the critical integrin subcomponent for reducing apoptosis. J. Cell. Physiol. 175:149–155, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Neovascularization is essential for tumor growth. We have previously reported that the chemokine receptor CXCR2 is an important regulator in tumor angiogenesis. Here we report that the mobilization of bone marrow (BM)-derived endothelial progenitor cells (EPCs) is impaired in CXCR2 knockout mice harboring pancreatic cancers. The circulating levels of EPCs (positive for CD34, CD117, CD133, or CD146) are decreased in the bone marrow and/or blood of tumor-bearing CXCR2 knockout mice. CXCR2 gene knockout reduced BM-derived EPC proliferation, differentiation, and vasculogenesis in vitro. EPCs double positive for CD34 and CD133 increased tumor angiogenesis and pancreatic cancer growth in vivo. In addition, CD133(+) and CD146(+) EPCs in human pancreatic cancer are increased compared with normal pancreas tissue. These findings indicate a role of BM-derived EPC in pancreatic cancer growth and provide a cellular mechanism for CXCR2 mediated tumor neovascularization.  相似文献   

12.
ABSTRACT: BACKGROUND: Fibrin gels are a promising biomaterial for tissue engineering. However, current fabrication methods are time intensive with inherent variation. There is a pressing need to develop new and consistent approaches for producing fibrin-based hydrogels for examination. RESULTS: We developed a high throughput method for creating fibrin gels using molds fabricated from polydimethylsiloxane (PDMS). Fibrin gels were produced by adding solutions of fibrinogen and thrombin to cylindrical defects in a PDMS sheet. Undisturbed gels were collected by removing the sheet, and fibrin gels were characterized. The characteristics of resulting gels were compared to published data by measuring compressive stiffness and osteogenic response of entrapped human mesenchymal stem cells (MSCs). Gels exhibited compressive moduli nearly identical to our previously reported fabrication method. Trends in alkaline phosphatase activity, an early marker of osteogenic differentiation in MSCs, were also consistent with previous data. CONCLUSIONS: These findings demonstrate a streamlined approach to fibrin gel production that drastically reduces the time required to make fibrin gels, while also reducing variability between gel batches. This fabrication technique provides a valuable tool for generating large numbers of gels in a cost-effective manner.  相似文献   

13.
Plasma fibronectin is a vital component of the fibrin clot; however its role on clot structure is not clearly understood. The goal of this study was to examine the influence of fibronectin on the kinetics of formation, structural characteristics and composition of reconstituted fibrin clots or fibrin matrices. Fibrin matrices were formed by adding thrombin to 1, 2 or 4 mg/ml fibrinogen supplemented with 0–0.4 mg/ml fibronectin. The rate of fibrin matrix formation was then monitored by measuring light absorbance properties at different time points. Confocal microscopy of fluorescein conjugated fibrinogen was used to visualize the structural characteristics of fibrin matrices. The amount of fibronectin in fibrin matrices was determined through electrophoresis and immunoblotting of solubilized matrices. Fibronectin concentration positively correlated with the initial rate of fibrin matrix formation and with steady state light absorbance values of fibrin matrices. An increase in fibronectin concentration resulted in thinner and denser fibers in the fibrin matrices. Electrophoresis and immunoblotting showed that fibronectin was covalently and non-covalently bound to fibrin matrices and in the form of high molecular weight multimers. The formation of fibronectin multimers was attributed to cross-linking of fibronectin by trace amounts Factor XIIIa. These findings are novel because they link results from light absorbance studies to microcopy analyses and demonstrate an influence of fibronectin on fibrin matrix structural characteristics. This data is important in developing therapies that destabilize fibrin clots.  相似文献   

14.
15.
In the present study we investigate the fibrin(ogen)-endothelial cell binding and the effect of thrombin on the endothelial cells in relation to fibrin(ogen) binding capacity. Endothelial cell fibrinogen binding was concentration and time-dependent, reaching saturation at 1.4 M of added ligand. At equilibrium, the number of fibrinogen molecules bound per endothelial cell in the monolayer was 5.8±0.7×106. When endothelial cells were activated by different concentrations of thrombin (0–0.1 NIH units ml–1), no increase in fibrinogen binding capacity was observed at all the thrombin concentration tested. Whereas disruption of endothelial cell monolayers was observed at thrombin concentrations higher than 0.05 NIH units ml–1, no increase in the amount of fibrinogen bound was observed. Therefore, resting and thrombin-activated endothelial cells show the same fibrinogen binding capacity.The adhesion of endothelial cells in suspension on immobilized fibrinogen or fibrin was studied to ascertain whether the behavior of fibrin is similar to that of fibrinogen. The extent of endothelial cell attachment to immobilized fibrinogen and fibrin was similar (4275±130 cells cm–2 for fibrinogen and 4350±235 cells cm–2 for fibrin) and represent approximately 40% of the added endothelial cells. However, endothelial cell adhesion to immobilized fibrin was significantly faster than endothelial cell adhesion to immobilized fibrinogen. The maximum binding rate was 66±9 and 46±8 cells cm–2 min–1 for fibrin and fibrinogen, respectively. Therefore, the fibrinopeptides released by thrombin from fibrinogen induce qualitative changes which enhance the fibrin interaction with the endothelial cells.  相似文献   

16.
Vascular endothelial growth factor (VEGF) has been shown to promote neovascularization in animal models and, more recently, in human subjects. This feature has been assumed to result exclusively from its direct effects on fully differentiated endothelial cells, i.e. angiogenesis. Given its regulatory role in both angiogenesis and vasculogenesis during fetal development, we investigated the hypothesis that VEGF may modulate endothelial progenitor cell (EPC) kinetics for postnatal neovascularization. Indeed, we observed an increase in circulating EPCs following VEGF administration in vivo. VEGF-induced mobilization of bone marrow-derived EPCs resulted in increased differentiated EPCs in vitro and augmented corneal neovascularization in vivo. These findings thus establish a novel role for VEGF in postnatal neovascularization which complements its known impact on angiogenesis.  相似文献   

17.
Shear stress imposed by blood flow is crucial for differentiation of endothelial progenitor cells (EPCs). Histone deacetylase SIRT1 has been shown to play a pivotal role in many physiological processes. However, association of SIRT1 expression with shear stress‐induced EPC differentiation remains to be elucidated. The present study was designed to determine the effect of SIRT1 on EPC differentiation induced by shear stress, and to seek the underlying mechanisms. Human umbilical cord blood‐derived EPCs were exposed to laminar shear stress of 15 dyn/cm2 by parallel plate flow chamber system. Shear stress enhanced EPC differentiation toward endothelial cells (ECs) while inhibited to smooth muscle cells (SMCs). The expressions of phospho‐Akt, SIRT1 and histone H3 acetylation (Ac‐H3) in EPCs were detected after exposure to shear stress for 2, 6, 12, and 24 h, respectively. Shear stress significantly activated Akt phosphorylation, augmented SIRT1 expression and downregulated Ac‐H3. SIRT1 siRNA in EPCs diminished the expression of EC markers, but increased the expression of SMC markers, and resulted in upregulation of Ac‐H3. Whereas, resveratrol, an activator of SIRT1, had the opposite effects on both EPC differentiation and histone H3 acetylation. Wortmannin, an inhibitor of PI3‐kinase, suppressed endothelial differentiation of EPCs, decreased SIRT1, and upregulated Ac‐H3 expression. In addition, SIRT1 promoted tube formation of EPCs in matrix gels. These results provided a mechanobiological basis of shear stress‐induced EPC differentiation into ECs and suggest that PI3k/Akt‐SIRT1‐Ac‐H3 pathway is crucial in such a process. J. Cell. Biochem. 113: 3663–3671, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
We studied the effects of contact of bovine pulmonary artery endothelial cell monolayers with fibrin on the endothelial barrier function. Fibrin formed by clotting purified fibrinogen (0.5 to 3.0 mg/ml) with alpha-thrombin (1 U/ml) was added to endothelial monolayers and permeability measurements were made after fibrin removal. Fibrin incubation for 3 hours resulted in 2- to 5-fold increases in transendothelial 125I-albumin permeability. Permeability returned to baseline value within 3 hours after fibrin removal. Direct contact with fibrin was necessary for the response, since fibrin separated from the endothelium did not increase permeability. Contact with agarose (2 mg/ml) or fibrinogen (0.5 to 3.0 mg/ml) also did not increase endothelial permeability. Transmission electron microscopic examination indicated normal appearance of interendothelial junctions at a time when albumin permeability was increased and no overt evidence of endothelial injury. Incubation of fibrin with endothelial monolayers at 4 degrees C prevented the increase in albumin permeability. We examined the possibility that increased albumin transcytosis was responsible for fibrin's effect using 14C-sucrose (Mr = 342D), a lipid insoluble tracer. Fibrin increased sucrose flux by 1.5-fold compared to 2- to 5-fold increases in albumin flux. The results indicate that fibrin contact with the endothelial cell increases endothelial permeability. The effect of fibrin may involve activation of temperature-sensitive bulk phase transcytosis of albumin.  相似文献   

19.
Endothelial progenitor cells (EPCs) play a capital role in angiogenesis via directly participating in neo‐vessel formation and secreting pro‐angiogenic factors. Stromal cell‐derived factor 1 (SDF‐1) and its receptor CXCR4 play a critical role in the retention and quiescence of EPCs within its niche in the bone marrow. Disturbing the interaction between SDF‐1 and CXCR4 is an effective strategy for EPC mobilization. We developed a novel CXCR4 antagonist P2G, a mutant protein of SDF‐1β with high antagonistic activity against CXCR4 and high potency in enhancing ischaemic angiogenesis and blood perfusion. However, its direct effects on ischaemic tissue remain largely unknown. In this study, P2G was found to possess a robust capability to promote EPC infiltration and incorporation in neo‐vessels, enhance the expression and function of pro‐angiogenic factors, such as SDF‐1, vascular endothelial growth factor and matrix metalloprotein‐9, and activate cell signals involved in angiogenesis, such as proliferating cell nuclear antigen, protein kinase B (Akt), extracellular regulated protein kinases and mammalian target of rapamycin, in ischaemic tissue. Moreover, P2G can attenuate fibrotic remodelling to facilitate the recovery of ischaemic tissue. The capability of P2G in direct augmenting ischaemic environment for angiogenesis suggests that it is a potential candidate for the therapy of ischaemia diseases.  相似文献   

20.

Background

Previous studies have demonstrated that endothelial progenitor cells (EPCs), in particular late EPCs, play important roles in endothelial maintenance and repair. Recent evidence has revealed shear stress as a key regulator for EPC differentiation. However, the underlying mechanisms regulating the shear stress–induced EPC differentiation have not been understood completely. The present study was undertaken to further investigate the effects of shear stress on the late EPC differentiation, and to elucidate the signal mechanism involved.

Methodology/Principal Finding

In vitro and in vivo assays revealed that cytoskeletal remodeling was involved in the shear stress-upregulated expression of endothelial markers vWF and CD31 in late EPCs, with subsequently increased in vivo reendothelialization after arterial injury. Moreover, shear stress activated several mechanosensitive molecules including integrin β1, Ras, ERK1/2, paxillin and FAK, which were all involved in both cytoskeletal rearrangement and cell differentiation in response to shear stress in late EPCs.

Conclusions/Significance

Shear stress is a key regulator for late EPC differentiation into endothelial cells, which is important for vascular repair, and the cytoskeletal rearrangement mediated by the activation of the cascade of integrin β1, Ras, ERK1/2, paxillin and FAK is crucial in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号