首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A family of protein tyrosine phosphatases enriched within the central nervous system called striatal enriched phosphatase (STEP) has been implicated in the regulation of the N-methyl-d-aspartate receptor. STEP(61), a membrane-associated isoform located in the postsynaptic densities (PSDs) of striatal neurons, contains two transmembrane domains, two proline-rich domains, and a kinase-interacting motif. This study demonstrates that STEP(61) associates with Fyn, a member of the Src family kinases that is also enriched in PSDs. By using human embryonic kidney 293 cells for co-transfection, we determined that a substrate-trapping variant (STEP(61) CS) binds to Fyn but not to other members of the Src family present in PSDs. In a complementary experiment, myc-tagged Fyn immunoprecipitates STEP(61) CS. STEP(61) binds to Fyn through one of its proline-rich domains and the kinase-interacting motif domain, whereas Fyn binds to STEP(61) through its Src homology 2 domain and the unique N-terminal domain. STEP(61) CS pulls down Fyn when the Tyr(420) site is phosphorylated. In vitro, wild-type STEP(61) dephosphorylates Fyn at Tyr(420) but not at Tyr(531). These results suggest that STEP regulates the activity of Fyn by specifically dephosphorylating the regulatory Tyr(420) and may be one mechanism by which Fyn activity is decreased within PSDs.  相似文献   

2.
STEP (striatal-enriched phosphatase) is a non-receptor tyrosine phosphatase that is specifically expressed in the neurons of the central nervous system. STEP regulates the activity of several effector molecules involved in synaptic plasticity and neuronal cell survival, including MAPKs (mitogen-activated protein kinases), Src family kinases and NMDA (N-methyl-D-aspartic acid) receptors. The critical role of STEP in regulating these effectors requires that its activity be tightly regulated. Previous studies have demonstrated that the activity of STEP is regulated through reversible phosphorylation of a serine residue within the KIM (kinase-interacting motif), by cAMP-dependent PKA (protein kinase A). In the present paper we show that STEP is endogenously phosphorylated at two additional sites located within the KISs (kinase-specificity sequences). The basal activity of ERK (extracellular-signal-regulated kinase) and p38 MAPKs plays an important role in the phosphorylation of these two sites. Dephosphorylation of these two sites leads to polyubiquitination and proteolytic degradation of STEP. Conversely, the proteasome inhibitors MG-132 and epoxomicin can stabilize STEP. The active form of STEP is more susceptible to degradation than the inactive form. Taken together the results of the present paper establish that ubiquitin-dependent proteolysis could be a novel mechanism for irreversibly terminating the activity of STEP.  相似文献   

3.
Serotonin N-acetyltransferase (EC. 2.3.1.87) (AA-NAT) is a melatonin rhythm-generating enzyme in pineal glands. To establish a melatonin rhythm, AA-NAT activity is precisely regulated through several signaling pathways. Here we show novel regulation of AA-NAT activity, in which an intramolecular disulfide bond may function as a switch for the catalysis. Recombinant AA-NAT activity was irreversibly inhibited by N-ethylmaleimide (NEM) in an acetyl-CoA-protected manner. Oxidized glutathione or dissolved oxygen reversibly inhibited AA-NAT in an acetyl-CoA-protected manner. To identify the cysteine residues responsible for the inhibition, AA-NAT was first oxidized with dissolved oxygen, treated with NEM, reduced with dithiothreitol, and then labeled with [(14)C]NEM. Cys(61) and Cys(177) were specifically labeled in an acetyl-CoA-protected manner. The AA-NAT with the Cys(61) to Ala and Cys(177) to Ala double substitutions (C61A/C177A-AA-NAT) was fully active but did not exhibit sensitivity to either oxidation or NEM, whereas the AA-NATs with only the single substitutions retained about 40% of these sensitivities. An intramolecular disulfide bond between Cys(61) and Cys(177) formed upon oxidation and cleaved upon reduction was identified. Furthermore, C61A/C177A-AA-NAT expressed in COS7 cells was relatively insensitive to H(2)O(2)-evoked oxidative stress, whereas wild-type AA-NAT was strongly inhibited under the same conditions. These results indicate that the formation and cleavage of the disulfide bond between Cys(61) and Cys(177) produce the active and inactive states of AA-NAT. It is possible that intracellular redox conditions regulate AA-NAT activity through switching via an intramolecular disulfide bridge.  相似文献   

4.
Reactive oxidative species (ROS) and S‐glutathionylation modulate the activity of plant cytosolic triosephosphate isomerases (cTPI). Arabidopsis thaliana cTPI (AtcTPI) is subject of redox regulation at two reactive cysteines that function as thiol switches. Here we investigate the role of these residues, AtcTPI‐Cys13 and At‐Cys218, by substituting them with aspartic acid that mimics the irreversible oxidation of cysteine to sulfinic acid and with amino acids that mimic thiol conjugation. Crystallographic studies show that mimicking AtcTPI‐Cys13 oxidation promotes the formation of inactive monomers by reposition residue Phe75 of the neighboring subunit, into a conformation that destabilizes the dimer interface. Mutations in residue AtcTPI‐Cys218 to Asp, Lys, or Tyr generate TPI variants with a decreased enzymatic activity by creating structural modifications in two loops (loop 7 and loop 6) whose integrity is necessary to assemble the active site. In contrast with mutations in residue AtcTPI‐Cys13, mutations in AtcTPI‐Cys218 do not alter the dimeric nature of AtcTPI. Therefore, modifications of residues AtcTPI‐Cys13 and AtcTPI‐Cys218 modulate AtcTPI activity by inducing the formation of inactive monomers and by altering the active site of the dimeric enzyme, respectively. The identity of residue AtcTPI‐Cys218 is conserved in the majority of plant cytosolic TPIs, this conservation and its solvent‐exposed localization make it the most probable target for TPI regulation upon oxidative damage by reactive oxygen species. Our data reveal the structural mechanisms by which S‐glutathionylation protects AtcTPI from irreversible chemical modifications and re‐routes carbon metabolism to the pentose phosphate pathway to decrease oxidative stress.  相似文献   

5.
Escherichia coli thiol peroxidase (Tpx, p20, scavengase) is part of an oxidative stress defense system that uses reducing equivalents from thioredoxin (Trx1) and thioredoxin reductase to reduce alkyl hydroperoxides. Tpx contains three Cys residues, Cys(95), Cys(82), and Cys(61), and the latter residue aligns with the N-terminal active site Cys of other peroxidases in the peroxiredoxin family. To identify the catalytically important Cys, we have cloned and purified Tpx and four mutants (C61S, C82S, C95S, and C82S,C95S). In rapid reaction kinetic experiments measuring steady-state turnover, C61S is inactive, C95S retains partial activity, and the C82S mutation only slightly affects reaction rates. Furthermore, a sulfenic acid intermediate at Cys(61) generated by cumene hydroperoxide (CHP) treatment was detected in UV-visible spectra of 4-nitrobenzo-2-oxa-1,3-diazole-labeled C82S,C95S, confirming the identity of Cys(61) as the peroxidatic center. In stopped-flow kinetic studies, Tpx and Trx1 form a Michaelis complex during turnover with a catalytic efficiency of 3.0 x 10(6) m(-1) s(-1), and the low K(m) (9.0 microm) of Tpx for CHP demonstrates substrate specificity toward alkyl hydroperoxides over H(2)O(2) (K(m) > 1.7 mm). Rapid inactivation of Tpx due to Cys(61) overoxidation is observed during turnover with CHP and a lipid hydroperoxide, 15-hydroperoxyeicosatetraenoic acid, but not H(2)O(2). Unlike most other 2-Cys peroxiredoxins, which operate by an intersubunit disulfide mechanism, Tpx contains a redox-active intrasubunit disulfide bond yet is homodimeric in solution.  相似文献   

6.
In Bacillus subtilis most peroxide-inducible oxidative stress genes are regulated by a metal-dependent repressor, PerR. PerR is a dimeric, Zn2+-containing metalloprotein with a regulatory metal-binding site that binds Fe2+ (PerR:Zn,Fe) or Mn2+ (PerR: Zn,Mn). Reaction of PerR:Zn,Fe with low levels of hydrogen peroxide (H2O2) leads to oxidation of two His residues thereby leading to derepression. When bound to Mn2+, the resulting PerR:Zn,Mn is much less sensitive to oxidative inactivation. Here we demonstrate that the structural Zn2+ is coordinated in a highly stable, intrasubunit Cys4:Zn2+ site. Oxidation of this Cys4:Zn2+ site by H2O2 leads to the formation of intrasubunit disulfide bonds. The rate of oxidation is too slow to account for induction of the peroxide stress response by micromolar levels of H2O2 but could contribute to induction under severe oxidative stress conditions. In vivo studies demonstrated that inactivation of PerR:Zn,Mn required 10 mM H2O2, a level at least 1000 times greater than that needed for inactivation of PerR:Zn,Fe. Surprisingly even under these severe oxidation conditions there was little if any detectable oxidation of cysteine residues in vivo: derepression was correlated with oxidation of the regulatory site. Because oxidation at this site required bound Fe2+ in vitro, we suggest that treatment of cells with 10 mM H2O2 released sufficient Fe2+ into the cytosol to effect a transition of PerR from the PerR:Zn,Mn form to the peroxide-sensitive PerR: Zn,Fe form. This model is supported by metal ion affinity measurements demonstrating that PerR bound Fe2+ with higher affinity than Mn2+.  相似文献   

7.
Receptor protein-tyrosine phosphatase alpha (RPTPalpha) belongs to the subfamily of receptor-like protein-tyrosine phosphatases that are characterized by two catalytic domains of which only the membrane-proximal one (D1) exhibits appreciable catalytic activity. The C-terminal catalytic domain (D2) regulates RPTPalpha catalytic activity by controlling rotational coupling within RPTPalpha dimers. RPTPalpha-D2 changes conformation and thereby rotational coupling within RPTPalpha dimers in response to changes in the cellular redox state. Here we report a decrease in motility of RPTPalpha from cells treated with H2O2 on non-reducing SDS-polyacrylamide gels to a position that corresponds to RPTPalpha dimers, indicating intermolecular disulfide bond formation. Using mutants of all individual cysteines in RPTPalpha and constructs encoding the individual protein-tyrosine phosphatase domains, we located the intermolecular disulfide bond to the catalytic Cys-723 in D2. Disulfide bond formation and dimer stabilization showed similar levels of concentration and time dependence. However, treatment of lysates with dithiothreitol abolished intermolecular disulfide bonds but not stable dimer formation. Intermolecular disulfide bond formation and rotational coupling were also found using a chimera of the extracellular domain of RPTPalpha fused to the transmembrane and intracellular domain of the leukocyte common antigen-related protein (LAR). These results suggest that H2O2 treatment leads to oxidation of the catalytic Cys in D2, which then rapidly forms a disulfide bond with the D2 catalytic Cys of the dyad-related monomer, rendering an inactive RPTP dimer. Recovery from oxidative stress first leads to the reduction of the disulfide bond followed by a slower refolding of the protein to the active conformation.  相似文献   

8.
Oxidation of the cysteines from ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) leads to inactivation and promotes structural changes that increase the proteolytic sensitivity and membrane association propensity related to its catabolism. To uncover the individual role of the different cysteines, the sequential order of modification under increasing oxidative conditions was determined using chemical labeling and mass spectrometry. Besides, site-directed RubisCO mutants were obtained in Chlamydomonas reinhardtii replacing single conserved cysteines (Cys84, Cys172, Cys192, Cys247, Cys284, Cys427, Cys459 from the large and sCys41, sCys83 from the small subunit) and the redox properties of the mutant enzymes were determined. All mutants retained significant carboxylase activity and grew photoautotrophically, indicating that these conserved cysteines are not essential for catalysis. Cys84 played a noticeable structural role, its replacement producing a structurally altered enzyme. While Cys247, Cys284, and sCys83 were not affected by the redox environment, all other residues were oxidized using a disulfide/thiol ratio of around two, except for Cys172 whose oxidation was distinctly delayed. Remarkably, Cys192 and Cys427 were apparently protective, their absence leading to a premature oxidation of critical residues (Cys172 and Cys459). These cysteines integrate a regulatory network that modulates RubisCO activity and conformation in response to oxidative conditions.  相似文献   

9.
The genome of the cyanobacterium Anabaena PCC 7120 encodes seven polypeptides showing sequence similarities with peroxiredoxins (Prx-s). One of them, prxQ-A (alr2503), which encodes a Prx Q homologue, is located in the same gene cluster as pkn22, which encodes a Ser/Thr kinase. Here we report that the pkn22-knockout mutant (Mp22) is sensitive to oxidative stress because it fails to synthesize PrxQ-A; the expression of prxQ-A is significantly induced under oxidative stress conditions. The hypersensitivity of the Mp22 mutant to oxidative stress was restored by inducing the expression of the prxQ-A gene in trans. The recombinant PrxQ-A protein shows antioxidant activity protecting the DNA from being degraded by reactive oxygen species, catalyzes the reduction of H2O2 in the presence of DTT, and shows thioredoxin-dependent peroxidase activity in vitro. The conserved Cys47 residue is the peroxide oxidation site, since the replacement of Cys47 by a Ser residue completely abolished the peroxidase activity. All these data suggest that PrxQ-A may efficiently protect this organism from oxidative stress.  相似文献   

10.
In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification.  相似文献   

11.
Four cysteine residues (Cys866, Cys917, Cys1094, and Cys1105) have direct roles in cooperatively regulating Janus kinase 2 (JAK2) catalytic activity. Additional site-directed mutagenesis experiments now provide evidence that two of these residues (Cys866 and Cys917) act together as a redox-sensitive switch, allowing JAK2's catalytic activity to be directly regulated by the redox state of the cell. We created several variants of the truncated JAK2 (GST/(NΔ661)rJAK2), which incorporated cysteine-to-serine or cysteine-to-alanine mutations. The catalytic activities of these mutant enzymes were evaluated by in vitro autokinase assays and by in situ autophosphorylation and transphosphorylation assays. Cysteine-to-alanine mutagenesis revealed that the mechanistic role of Cys866 and Cys917 is functionally distinct from that of Cys1094 and Cys1105. Most notable is the observation that the robust activity of the CC866,917AA mutant is unaltered by pretreatment with dithiothreitol or o-iodosobenzoate, unlike all other JAK2 variants previously examined. This work provides the first direct evidence for a cysteine-based redox-sensitive switch that regulates JAK2 catalytic activity. The presence of this redox-sensitive switch predicts that reactive oxygen species can impair the cell's response to JAK-coupled cytokines under conditions of oxidative stress, which we confirm in a murine pancreatic β-islet cell line.  相似文献   

12.
4-Hydroxy-2-nonenal (4-HNE) is a lipid peroxidation product formed during oxidative stress that can alter protein function via adduction of nucleophilic amino acid residues. 4-HNE detoxification occurs mainly via glutathione (GSH) conjugation and transporter-mediated efflux. This results in a net loss of cellular GSH, and restoration of GSH homeostasis requires de novo GSH biosynthesis. The rate-limiting step in GSH biosynthesis is catalyzed by glutamate-cysteine ligase (GCL), a heterodimeric holoenzyme composed of a catalytic (GCLC) and a modulatory (GCLM) subunit. The relative levels of the GCL subunits are a major determinant of cellular GSH biosynthetic capacity and 4-HNE induces the expression of both GCL subunits. In this study, we demonstrate that 4-HNE can alter GCL holoenzyme formation and activity via direct posttranslational modification of the GCL subunits in vitro. 4-HNE directly modified Cys553 of GCLC and Cys35 of GCLM in vitro, which significantly increased monomeric GCLC enzymatic activity, but reduced GCL holoenzyme activity and formation of the GCL holoenzyme complex. In silico molecular modeling studies also indicate these residues are likely to be functionally relevant. Within a cellular context, this novel posttranslational regulation of GCL activity could significantly affect cellular GSH homeostasis and GSH-dependent detoxification during periods of oxidative stress.  相似文献   

13.
Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under stress conditions in vivo, the Trx/TrxR pathway alone is sufficient to reduce CgMsrA under normal conditions. Based on these results, a catalytic model for the reduction of CgMsrA by Mrx1 and Trx is proposed.  相似文献   

14.
Striatal enriched phosphatase (STEP) is a family of protein tyrosine phosphatases enriched within the CNS. A member of this family, STEP61, is a membrane-associated protein located in postsynaptic densities of striatal neurons. In this study, we demonstrate that STEP61, is cleaved into smaller isoforms. To clarify the mechanism of cleavage, STEP61 was transiently expressed in NT2/D1 neuronal precursor cells. Exposure of transfected cells to the calcium ionophore, A23187, or to thapsigargin resulted in the rapid cleavage of STEP61. Pretreatment with the calpain inhibitor, calpeptin, or EGTA prevented proteolysis. One of the cleavage products has a relative molecular mass of 33 kDa (STEP33). A protein with the identical mobility is detected following calpain treatment of STEP61 fusion protein or postsynaptic densities purified from rat striatum. Exposure of primary neuronal cultures to glutamate also led to a significant increase in the concentration of a low molecular weight form of STEP. Taken together, these results suggest that in response to a rapid influx of calcium, STEP61, is proteolytically cleaved by calpain, leading to the release of a smaller isoform. This model may explain the rapid appearance of STEP33 in response to transient hypoxia-ischemia in the brain as cells attempt to counter the increase in tyrosine phosphorylation levels following neuronal insults.  相似文献   

15.
16.
The AhpC/AhpD system of Mycobacterium tuberculosis provides important antioxidant protection, particularly when the KatG catalase-peroxidase activity is depressed, as it is in many isoniazid resistant strains. In the absence of lipoamide or bovine dihydrolipoamide dehydrogenase (DHLDH), components of the normal catalytic system, covalent dimers, tetramers, and hexamers are formed when a mixture of AhpC and AhpD is exposed to peroxide. Each of the oligomers contains equimolar amounts of AhpC and AhpD. This oligomerization is reversible because the oligomers can be fully reduced to the monomeric species by dithiothreitol. Using mutagenesis, we confirm here that Cys61 and Cys174 of AhpC as well as Cys133 and Cys130 of AhpD are critical for activity in the fully reconstituted system consisting of AhpC, AhpD, lipoamide, DHLDH, and NADH. A key step in the reduction of oxidized AhpC by reduced AhpD is formation of a disulfide cross-link between Cys61 of AhpC and Cys133 of AhpD. This cross-link can be reduced by intramolecular reaction with either Cys174 of AhpC or Cys130 of AhpD. Cys176 can also, to some extent, substitute for Cys174, providing a measure of redundancy that helps to maintain the efficiency of this antioxidant protective system.  相似文献   

17.
The annexin A2-S100A10 heterotetramer (AIIt) is a multifunctional Ca(2+)-dependent, phospholipid-binding, and F-actin-binding phosphoprotein composed of two annexin A2 subunits and two S100A10 subunits. It was reported previously that oxidative stress from exogenous hydrogen peroxide or generated in response to tumor necrosis factor-alpha results in the glutathionylation of Cys(8) of annexin A2. In this study, we demonstrate that AIIt is an oxidatively labile protein whose level of activity is regulated by the redox status of its sulfhydryl groups. Oxidation of AIIt by diamide resulted in a time- and concentration-dependent loss of the ability of AIIt to interact with phospholipid liposomes and F-actin. The inhibitory effect of diamide on the activity of AIIt was partially reversed by dithiothreitol. In addition, incubation of AIIt with diamide and GSH resulted in the glutathionylation of AIIt in vitro. Mass spectrometry established the incorporation of 2 mol of GSH/mol of annexin A2 subunit at Cys(8) and Cys(132). Glutathionylation potentiated the inhibitory effects of diamide on the activity of AIIt. Furthermore, AIIt could be deglutathionylated by glutaredoxin (thiol transferase). Thus, we show for the first time that AIIt can undergo functional reactivation by glutaredoxin, therefore establishing that AIIt is regulated by reversible glutathionylation.  相似文献   

18.
The permeability transition pore complex: another view   总被引:49,自引:0,他引:49  
Halestrap AP  McStay GP  Clarke SJ 《Biochimie》2002,84(2-3):153-166
Mitochondria play a critical role in initiating both apoptotic and necrotic cell death. A major player in this process is the mitochondrial permeability transition pore (MPTP), a non-specific pore, permeant to any molecule of < 1.5 kDa, that opens in the inner mitochondrial membrane under conditions of elevated matrix [Ca(2+)], especially when this is accompanied by oxidative stress and depleted adenine nucleotides. Opening of the MPTP causes massive swelling of mitochondria, rupture of the outer membrane and release of intermembrane components that induce apoptosis. In addition mitochondria become depolarised causing inhibition of oxidative phosphorylation and stimulation of ATP hydrolysis. Pore opening is inhibited by cyclosporin A analogues with the same affinity as they inhibit the peptidyl-prolyl cis-trans isomerase activity of mitochondrial cyclophilin (CyP-D). These data and the observation that different ligands of the adenine nucleotide translocase (ANT) can either stimulate or inhibit pore opening led to the proposal that the MPTP is formed by a Ca-triggered conformational change of the ANT that is facilitated by the binding of CyP-D. Our model is able to explain the mode of action of a wide range of known modulators of the MPTP that exert their effects by changing the binding affinity of the ANT for CyP-D, Ca(2+) or adenine nucleotides. The extensive evidence for this model from our own and other laboratories is presented, including reconstitution studies that demonstrate the minimum configuration of the MPTP to require neither the voltage activated anion channel (VDAC or porin) nor any other outer membrane protein. However, other proteins including Bcl-2, BAX and virus-derived proteins may interact with the ANT to regulate the MPTP. Recent data suggest that oxidative cross-linking of two matrix facing cysteine residues on the ANT (Cys(56) and Cys(159)) plays a key role in regulating the MPTP. Adenine nucleotide binding to the ANT is inhibited by Cys(159) modification whilst oxidation of Cys(56) increases CyP-D binding to the ANT, probably at Pro(61).  相似文献   

19.
Striatal-Enriched protein tyrosine Phosphatase of MW 61 kDa (STEP(61)) is a protein tyrosine phosphatase recently implicated in the pathophysiology of Alzheimer's disease (AD). STEP(61) is elevated in human AD prefrontal cortex and in the cortex of several AD mouse models. The elevated levels of active STEP(61) down-regulate surface expression of GluN1/GluN2B (formerly NR1/NR2B) receptor complexes, while genetically reducing STEP levels rescues both the biochemical and cognitive deficits in a triple transgenic AD mouse model (3xTg-AD). Here, we show that increased STEP(61) also plays a role in beta amyloid (Aβ)-mediated internalization of the α-amino-3-hydroxy-5-methyl-4-(AMPA) receptor (AMPAR) subunits GluA1/GluA2 (formerly GluR1/GluR2). We purified Aβ oligomers and determined that oligomers, but not monomers, lead to endocytosis of GluA1/GluA2 receptors in cortical cultures. The decrease in GluA1/GluA2 receptors is reversed in the progeny of STEP knock-out (KO) mice crossed with Tg2576 mice, despite elevated levels of Aβ. These results provide strong support for the hypothesis that STEP(61) is required for Aβ-mediated internalization of GluA1/GluA2 receptors.  相似文献   

20.
Although it is well recognized that bacteria respond to environmental stress through global networks, the mechanism by which stress is relayed to the interior of the cell is poorly understood. Here we show that enigmatic toxin-antitoxin systems are vital in mediating the environmental stress response. Specifically, the antitoxin MqsA represses rpoS, which encodes the master regulator of stress. Repression of rpoS by MqsA reduces the concentration of the internal messenger 3,5-cyclic diguanylic acid, leading to increased motility and decreased biofilm formation. Furthermore, the repression of rpoS by MqsA decreases oxidative stress resistance via catalase activity. Upon oxidative stress, MqsA is rapidly degraded by Lon protease, resulting in induction of rpoS. Hence, we show that external stress alters gene regulation controlled by toxin-antitoxin systems, such that the degradation of antitoxins during stress leads to a switch from the planktonic state (high motility) to the biofilm state (low motility).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号