首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Clostridium difficile, an emerging nosocomial pathogen of increasing clinical significance, produces two large protein toxins that are responsible for the cellular damage associated with the disease. The precise mechanisms by which toxin synthesis is regulated in response to environmental change have yet to be discovered. The toxin genes (tcdA and tcdB) are located in a pathogenicity locus (PaLoc), along with tcdR and tcdC. TcdR is an alternative RNA polymerase sigma factor that directly activates toxin gene expression, while the inverse relationship between expression of tcdR, tcdA and tcdB genes on the one hand and tcdC on the other has led to the suggestion that TcdC somehow interferes with toxin gene expression. This idea is further supported by the finding that many recent C. difficile epidemic strains in which toxin production is increased carry a common tcdC deletion mutation. In this report we demonstrate that TcdC negatively regulates toxin synthesis both in vivo and in vitro. TcdC destabilizes the TcdR-containing holoenzyme before open complex formation, apparently by interaction with TcdR or TcdR-containing RNA polymerase holoenzyme or both. In addition, we show that the hypertoxigenicity phenotype of C. difficile epidemic strains is not due to their common 18 bp in-frame deletion in tcdC.  相似文献   

2.
Rupnik M  Grabnar M  Geric B 《Anaerobe》2003,9(6):289-294
Clostridium difficile produces three toxins, TcdA, TcdB and CDT. TcdA and TcdB are single-stranded molecules acting as glucosyltransferases specific for small GTPases. CDT is an actin specific ADP-ribosylating binary toxin characteristically composed of two independent components, enzymatic CDTa (48 kDa) and binding CDTb (99 kDa). The cdtA and cdtB genes were sequenced in two CDT-positive strains of C. difficile (CD 196 and 8864) and at least two CDT-negative strains with truncated form of binary toxin genes are known (VPI 10463 and C. difficile genome strain 630). The prevalence of binary toxin producing strains is estimated to be from 1.6% to 5.5%, although a much higher proportion has been reported in some studies. The role of the binary toxin as an additional virulence factor is discussed.  相似文献   

3.
4.
Clostridium difficile TcdA is a large toxin that binds carbohydrates on intestinal epithelial cells. A 2-A resolution cocrystal structure reveals two molecules of alpha-Gal-(1,3)-beta-Gal-(1,4)-beta-GlcNAcO(CH(2))(8)CO(2)CH(3) binding in an extended conformation to TcdA. Residues forming key contacts with the trisaccharides are conserved in all seven putative binding sites in TcdA, suggesting a mode of multivalent binding that may be exploited for the rational design of novel therapeutics.  相似文献   

5.
6.
7.
8.
The mouse lethality test is the most sensitive method for confirming the diagnosis of infant botulism. Both Clostridium difficile and Clostridium botulinum produce heat-labile toxins which are lethal for mice and can be found in the feces of infants. These two toxins can be distinguished from one another in this assay when both are present in the same fecal specimen because they appear to be immunologically distinct toxins.  相似文献   

9.
Toxin B, an exotoxin produced by the anaerobic Gram-positive bacteria Clostridium difficile, is responsible for pseudomembranous colitis in humans. It deeply modifies morphology of cultured cells and enhances their membrane surface area, which suggests a possible alteration of membrane receptor distribution. Since toxin B and bacterial lipopolysaccharide can act synergistically on TNF-alpha production by mononuclear phagocytes, the effect of toxin B on CD14 expression was investigated using flow cytometric analysis. It was shown that monocytes overexpressed CD14 after 5 h of treatment with toxin B. In contrast, after 24 h of treatment, the percentage of CD14 monocytes decreased, although, most frequently, the remaining positive cells expressed high levels of CD14 compared with untreated cells. Macrophages treated for 5 h with toxin B overexpressed CD14, but this effect persisted for at least 24 h. Both the percentage of positive macrophages and the mean level of CD14 per cell were increased. Thus toxin B can modulate expression of CD14 and its modulation depends on the differentiation status and maybe on the activation state, since some individual variations were observed in monocyte response to toxin.  相似文献   

10.
Toxin B from Clostridium difficile induces typical morphological changes of cultured cells consisting of rounding up and arborization, which are associated with a dramatic disruption of microfilaments. In this study, we show that toxin L, a cytotoxin produced by bacterial strain Clostridium sordellii, has similar effects on cultured cells including the redistribution of F-actin and of the adhesion plaque protein vinculin. It has been assumed that the mechanisms involved in cytopathic effects of toxin B are related to the function of an unidentified component that regulates the organization of the actin cytoskeleton. We demonstrate that the treatment of cultured astrocytes with toxin B or toxin L alters the incorporation of inorganic phosphate into several proteins. Immunoblot analysis revealed that one of these proteins is tropomyosin. Since tropomyosin stabilizes microfilaments and inhibits the severing activity of gelsolin, the toxin-induced phosphorylation may counteract this inhibition resulting in severing of microfilaments and capping of short filaments. A decrease in the radioactivity associated with intermediate filament protein vimentin was also detected using a monoclonal antibody which specifically recognizes a phosphorylated epitope of vimentin. Since vimentin is an in vivo substrate for various protein kinases, these data are in favor of broad effects of these toxins. Direct measurement of protein kinase C in cells exposed to toxin B or to toxin L did not reveal a significant change in protein kinase C activity. Furthermore, treatments with toxins do not increase cAMP levels, suggesting that toxins do not activate protein kinase A. Although further studies are required to determine the primary target site for the clostridial cytotoxin B and L, our results show that they provoke the alteration in the phosphorylation of cellular proteins.  相似文献   

11.
12.
CodY, a global regulator of gene expression in low G + C Gram-positive bacteria, was found to repress toxin gene expression in Clostridium difficile. Inactivation of the codY gene resulted in derepression of all five genes of the C. difficile pathogenicity locus during exponential growth and stationary phase. CodY was found to bind with high affinity to a DNA fragment containing the promoter region of the tcdR gene, which encodes a sigma factor that permits RNA polymerase to recognize promoters of the two major toxin genes as well as its own promoter. CodY also bound, but with low affinity, to the toxin gene promoters, suggesting that the regulation of toxin gene expression by CodY occurs primarily through direct control of tcdR gene expression. Binding of CodY to the tcdR promoter region was enhanced in the presence of GTP and branched-chain amino acids, suggesting a link between nutrient limitation and the expression of C. difficile toxin genes.  相似文献   

13.
14.
Mono-glucosylation of Rho, Rac, and Cdc42 by Clostridium difficile toxin B (TcdB) induces changes of actin dynamics and apoptosis. When fibroblasts were treated with TcdB, an apparent decrease of the cellular Rac1 level was observed when applying anti-Rac1(Mab 102). This decrease was not based on degradation as inhibition of the proteasome by lactacystin did not stabilise cellular Rac1 levels. The application of anti-Rac1 (Mab 23A8) showed that the cellular Rac1 level slightly increased in TcdB-treated fibroblasts; thus, the apparent loss of cellular Rac1 was not due to degradation but due to impaired recognition of glucosylated Rac1 by anti-Rac1 (Mab 102). In contrast, recognition of RhoA by anti-RhoA (Mab 26C4) and Cdc42 by anti-Cdc42 (Mab 44) was not altered by glucosylation; a transient decrease of cellular RhoA and Cdc42 in TcdB-treated fibroblasts was indeed due to proteasomal degradation, as inhibition of the proteasome by lactacystin stabilised both cellular RhoA and Cdc42 levels. The finding that the apparent decrease of Rac1 reflects Rac1 glucosylation offers a valuable tool to determine Rac1 glucosylation.  相似文献   

15.
Aims:  3-Methylindole (3-MI) is a degradation product of l -tryptophan and is both an animal waste malodorant and threat to ruminant health. Culture conditions influencing 3-MI production in Clostridium scatologenes ATCC 25775 were investigated.
Methods and Results:  Extracellular 3-MI levels in cells cultured in brain heart infusion (BHI) medium (pH 7·0) at 33°C and 37°C for 72 h were 907 ± 38 and 834 ± 121  μ mol l−1, respectively. Cells cultured in tryptone-yeast (TY) extract medium at 37°C for 48 h produced 104 ± 86  μ mol l−1 3-MI; however, addition of 1 mmol l−1  l -tryptophan failed to increase extracellular levels (113 ± 50  μ mol l−1 3-MI). Specific activity of indole acetic acid decarboxylase measured in BHI, TY and TY plus 1 mmol l−1 tryptophan-grown cells displayed 35-, 33- and 76-fold higher levels than in semi-defined medium-grown cells.
Conclusions:  When cultured in rich medium, at 33°C or 37°C and pH 7·0, Cl. scatologenes ATCC 25775 optimally produced 3-MI. Addition of l- tryptophan to medium did not lead to significant increases in extracellular 3-MI levels. Whole cell assays indicate growth in rich medium significantly up-regulated 3-MI production.
Significance and Impact of the Study:  Information presented here may prove useful in understanding what factors influence 3-MI production in malodorous animal wastes.  相似文献   

16.
17.
18.
ADP-ribosylation of a protein in human fibroblasts treated with partially purified Clostridium difficile toxin B was previously reported. Here we show that the same protein was ADP-ribosylated also in human fibroblasts exposed to supernatant from a C. difficile strain producing neither toxin A nor toxin B. Furthermore, in Chinese hamster ovary and in Vero cells, showing toxin B-induced cytopathogenic effect, the protein was not significantly ADP-ribosylated. The results indicate that the ADP-ribosylation is unrelated to the cytopathogenic effect of toxin B. It appears to be caused by another unidentified factor from C. difficile, and the substrate may correspond to a protein modified endogenously in cells exposed to stressful situations. Cellular actin was not ADP-ribosylated by toxin B.  相似文献   

19.
Clostridium difficile toxin A, the chief pathogenicity factor of the antibiotic-associated pseudomembranous colitis, is an intracellular acting cytotoxin that reaches its targets, the Rho GTPases, after receptor-mediated endocytosis. The C-terminal part, constructed of repetitive peptide elements, is thought to bind to a lot of carbohydrate containing receptor molecules to induce clustering and endocytosis. To study which part of the receptor-binding domain is in charge of addressing toxin A into the target cells, we studied the functional, i.e., endocytosis-inducing, binding of toxin A. By a competition assay between various receptor-binding fragments of toxin A and the holotoxin A we found that the complete receptor-binding domain, encompassing the entire repetitive elements, but not parts of it, is necessary for binding-induced endocytosis. The receptor binding domain itself shows weaker competition with holotoxin A than the fragment consisting of receptor-binding domain plus intermediary part of the toxin. All toxin A fragments that compete with holotoxin A are capable of inducing their own endocytosis. Thus, the entire receptor-binding domain, covering the C-terminal third of the toxin A molecule, is responsible for cell uptake of toxin A and the intermediary part contributes to the correct folding and assembly of the repetitive domains.  相似文献   

20.
Abstract Clostridium difficile has been demonstrated to produce at least two toxins: an enterotoxin (toxin A) which elicits haemorrhagoc fluid accumulation in the rabbit ileal loop (RIL) test and a potent cytotoxin (toxin B). We report the isolation of an enterotoxic factor inducing a positive response in the RIL test without haemorrhage. This factor was separated by ion-exchange chromatography and its molecular weight, as estimated by SDS-polyacrylamide gel electrophoresis, was about 45 000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号