首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Although interleukin-1 (IL-1) has been implicated in the pathogenesis of inflammatory osteolysis, the means by which it recruits osteoclasts and promotes bone destruction are largely unknown. Recently, a cytokine-driven, stromal cell-free mouse osteoclastogenesis model was established. A combination of macrophage colony stimulating factor (M-CSF) and receptor activator of NFkappaB ligand (RANKL) was proven to be sufficient in inducing differentiation of bone marrow hematopoietic precursor cells to bone-resorbing osteoclasts in the absence of stromal cells or osteoblasts. This study utilizes this model to examine the impact of human IL-1beta on in vitro osteoclastogenesis of bone marrow progenitor cells. We found that osteoclast precursor cells failed to undergo osteoclastogenesis when treated with IL-1 alone. In contrast, IL-1 dramatically up-regulated osteoclastogenesis by 2.5- to 4-folds in the presence of RANKL and M-CSF. The effect can be significantly blocked by IL-1 receptor antagonist (p < 0.01). Tumor necrosis factor-alpha (TNF-alpha) was undetectable in the culture medium of differentiating osteoclasts induced by IL-1. Adding exogenous TNF-alpha neutralizing antibody had no influence on the IL-1-induced effect as well. These results show that in the absence of stromal cells, IL-1 exacerbates osteoclastogenesis by cooperating with RANKL and M-CSF, while TNF-alpha is not involved in this IL-1-stimulated osteoclast differentiation pathway.  相似文献   

3.
Multiple roles of M-CSF in human osteoclastogenesis   总被引:2,自引:0,他引:2  
Although the critical role of M-CSF in osteoclastogenesis is well documented, there has been no detailed analysis of how it regulates human osteoclast formation and function in vitro. We used a human osteoclastogenesis model employing CFU-GM osteoclast precursors cultured for 14 days on dentine with RANKL, with varying exposure to exogenous human M-CSF. Short-term treatment of precursors with M-CSF (10-100 ng/mL) resulted in increased proliferation with or without RANKL. Treatment with M-CSF (1-100 ng/mL) for 14 days caused a biphasic concentration-dependent stimulation of formation, fusion, and resorption peaking at 10-50 ng/mL and almost complete abolition of resorption at 100 ng/mL. Time-course studies using M-CSF (25 ng/mL) showed that osteoclast size, nuclei/cell, and resorption increased with longer duration of M-CSF treatment. When treatment was restricted to the first 4 days, M-CSF (25-100 ng/mL) stimulated formation of normal numbers of osteoclasts that resorbed less. Blockade of endogenous M-CSF signaling with neutralizing M-CSF antibody during the first week of culture extensively inhibited osteoclastogenesis, whereas blockade during the second week produced only a small reduction in resorption. Treatment with M-CSF during the second week of culture caused a small increase in osteoclast number and a concentration-dependent increase in cytoplasmic spreading with inhibition of resorption. We have shown that M-CSF modulates multiple steps of human osteoclastogenesis, including proliferation, differentiation and fusion of precursors. In the later stages of osteoclastogenesis, M-CSF modulates osteoclast-resorbing activity, but is not required for survival. Modulation of M-CSF signaling is a potential therapeutic target for conditions associated with excess bone resorption.  相似文献   

4.
Connection between B lymphocyte and osteoclast differentiation pathways   总被引:8,自引:0,他引:8  
Osteoclasts differentiate from the hemopoietic monocyte/macrophage cell lineage in bone marrow through cell-cell interactions between osteoclast progenitors and stromal/osteoblastic cells. Here we show another osteoclast differentiation pathway closely connected with B lymphocyte differentiation. Recently the TNF family molecule osteoclast differentiation factor/receptor activator of NF-kappaB ligand (ODF/RANKL) was identified as a key membrane-associated factor regulating osteoclast differentiation. We demonstrate that B-lymphoid lineage cells are a major source of endogenous ODF/RANKL in bone marrow and support osteoclast differentiation in vitro. In addition, B-lymphoid lineage cells in earlier developmental stages may hold a potential to differentiate into osteoclasts when stimulated with M-CSF and soluble ODF/RANKL in vitro. B-lymphoid lineage cells may participate in osteoclastogenesis in two ways: they 1) express ODF/RANKL to support osteoclast differentiation, and 2) serve themselves as osteoclast progenitors. Consistent with these observations in vitro, a decrease in osteoclasts is associated with a decrease in B-lymphoid cells in klotho mutant mice (KL(-/-)), a mouse model for human aging that exhibits reduced turnover during bone metabolism, rather than a decrease in the differentiation potential of osteoclast progenitors. Taken together, B-lymphoid lineage cells may affect the pathophysiology of bone disorders through regulating osteoclastogenesis.  相似文献   

5.
Differentiation of osteoclasts, the cells primarily responsible for bone resorption, is controlled by a variety of osteotropic hormones and cytokines. Of these factors, receptor activator of NF-kappaB (RANK) ligand (RANKL) has been recently cloned as an essential inducer of osteoclastogenesis in the presence of M-CSF. Here, we isolated a stroma-free population of monocyte/macrophage (M/Mphi)-like hemopoietic cells from mouse unfractionated bone cells that were capable of differentiating into mature osteoclasts by treatment with soluble RANKL (sRANKL) and M-CSF. However, the efficiency of osteoclast formation was low, suggesting the requirement for additional factors. The isolated M/Mphi-like hemopoietic cells expressed TGF-beta and type I and II receptors of TGF-beta. Therefore, we examined the effect of TGF-beta on osteoclastogenesis. TGF-beta with a combination of sRANKL and M-CSF promoted the differentiation of nearly all M/Mphi-like hemopoietic cells into cells of the osteoclast lineage. Neutralizing anti-TGF-beta Ab abrogated the osteoclast generation. These TGF-beta effects were also observed in cultures of unfractionated bone cells, and anti-TGF-beta blocked the stimulatory effect of 1, 25-dihydroxyvitamin D(3). Translocation of NF-kappaB into nuclei induced by sRANKL in TGF-beta-pretreated M/Mphi-like hemopoietic cells was greater than that in untreated cells, whereas TGF-beta did not up-regulate the expression of RANK, the receptor of RANKL. Our findings suggest that TGF-beta is an essential autocrine factor for osteoclastogenesis.  相似文献   

6.
Osteoclast progenitors differentiate into mature osteoclasts in the presence of receptor activator of NF-kappaB (RANK) ligand on stromal or osteoblastic cells and monocyte macrophage colony-stimulating factor (M-CSF). The soluble RANK ligand induces the same differentiation in vitro without stromal cells. Tumor necrosis factor-alpha (TNF-alpha), a potent cytokine involved in the regulation of osteoclast activity, promotes bone resorption via a primary effect on osteoblasts; however, it remains unclear whether TNF-alpha can also directly induce the differentiation of osteoclast progenitors into mature osteoclasts. This study revealed that TNF-alpha directly induced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs), which produced resorption pits on bone in vitro in the presence of M-CSF. The bone resorption activity of TNF-alpha-induced MNCs was lower than that of soluble RANK ligand-induced MNCs; however, interleukin-1beta stimulated this activity of TNF-alpha-induced MNCs without an increase in the number of MNCs. In this case, interleukin-1beta did not induce TRAP-positive MNC formation. The osteoclast progenitors expressed TNF receptors, p55 and p75; and the induction of TRAP-positive MNCs by TNF-alpha was inhibited completely by an anti-p55 antibody and partially by an anti-p75 antibody. Our findings presented here are the first to indicate that TNF-alpha is a crucial differentiation factor for osteoclasts. Our results suggest that TNF-alpha and M-CSF play an important role in local osteolysis in chronic inflammatory diseases.  相似文献   

7.
Physical interaction between the cell surface receptors CD47 and signal regulatory protein alpha (SIRPalpha) was reported to regulate cell migration, phagocytosis, cytokine production, and macrophage fusion. However, it is unclear if the CD47/SIRPalpha-interaction can also regulate macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-stimulated formation of osteoclasts. Here, we show that functional blocking antibodies to either CD47 or SIRPalpha strongly reduced formation of multinucleated tartrate-resistant acid phosphatase (TRAP)+ osteoclasts in cultures of murine hematopoietic cells, stimulated in vitro by M-CSF and RANKL. In addition, the numbers of osteoclasts formed in M-CSF/RANKL-stimulated bone marrow macrophage cultures from CD47-/- mice were strongly reduced, and bones of CD47-/- mice exhibited significantly reduced osteoclast numbers, as compared with wild-type controls. We conclude that the CD47/SIRPalpha interaction is important for M-CSF/RANKL-stimulated osteoclast formation both in vivo and in vitro, and that absence of CD47 results in decreased numbers of osteoclasts in CD47-/- mice.  相似文献   

8.
Old age and Cx43 deletion in osteocytes are associated with increased osteocyte apoptosis and osteoclastogenesis. We previously demonstrated that apoptotic osteocytes release elevated concentrations of the proinflammatory cytokine, high mobility group box 1 protein (HMGB1) and apoptotic osteocyte conditioned media (CM) promotes osteoclast differentiation. Further, prevention of osteocyte apoptosis blocks osteoclast differentiation and attenuates the extracellular release of HMGB1 and RANKL. Moreover, sequestration of HMGB1, in turn, reduces RANKL production/release by MLO-Y4 osteocytic cells silenced for Cx43 (Cx43def), highlighting the possibility that HMGB1 promotes apoptotic osteocyte-induced osteoclastogenesis. However, the role of HMGB1 signaling in osteocytes has not been well studied. Further, the mechanisms underlying its release and the receptor(s) responsible for its actions is not clear. We now report that a neutralizing HMGB1 antibody reduces osteoclast formation in RANKL/M-CSF treated bone marrow cells. In bone marrow macrophages (BMMs), toll-like receptor 4 (TLR4) inhibition with LPS-RS, but not receptor for advanced glycation end products (RAGE) inhibition with Azeliragon attenuated osteoclast differentiation. Further, inhibition of RAGE but not of TLR4 in osteoclast precursors reduced osteoclast number, suggesting that HGMB1 produced by osteoclasts directly affects differentiation by activating TLR4 in BMMs and RAGE in preosteoclasts. Our findings also suggest that increased osteoclastogenesis induced by apoptotic osteocytes CM is not mediated through HMGB1/RAGE activation and that direct HMGB1 actions in osteocytes stimulate pro-osteoclastogenic signal release from Cx43def osteocytes. Based on these findings, we propose that HMGB1 exerts dual effects on osteoclasts, directly by inducing differentiation through TLR4 and RAGE activation and indirectly by increasing pro-osteoclastogenic cytokine secretion from osteocytes.  相似文献   

9.
Osteoclasts are derived from haematopoietic stem cell precursors of the monocyte/macrophage cell lineage, through interaction with factors that are believed to include M-CSF and RANKL. VEGF is a proangiogenic cytokine that has been shown to promote osteoclast differentiation and survival. In this study, we assessed the role of VEGF and its receptors in osteoclastogenesis, in vitro, by culturing osteoclast precursors in the presence of VEGF, VEGF receptor-specific ligands, and blocking antibodies to VEGF receptors. Activation of VEGFR1 in the presence of RANKL induces osteoclast differentiation. Stimulating the receptors individually induced increased resorption by osteoclasts compared to controls but not to the level observed when stimulating both receptors simultaneously. We have shown that VEGF induces osteoclast differentiation through its action on VEGFR1. The way in which VEGF mediates its effect on mature osteoclast activity, however, may be through its interaction with both receptor subtypes.  相似文献   

10.
Osteoclasts are macrophage derived cells and as such are subject to regulation by molecules impacting other members of the immune system. Dap12 is an adaptor protein expressed by NK cells and B and T lymphocytes. Dap12 also mediates maturation of myeloid cells and is expressed by osteoclasts which are dysfunctional in its absence. We find Dap12-/- osteoclast precursors fail to differentiate, in vitro, and the abnormality is partially rescued by high dose M-CSF. The relative paucity of osteoclast number, even in presence of high dose cytokine, is attended by dampened proliferation of precursor cells and their failure to normally migrate towards the osteoclast-recognized matrix protein, osteopontin. Furthermore, Dap12-/- osteoclasts generated in high dose M-CSF fail to normally organize their cytoskeleton. The incapacity of Dap12 null cells to undergo normal osteoclast differentiation is not due to blunted stimulation of major RANK ligand (RANKL) or M-CSF induced signaling pathways. On the other hand, when plated on osteopontin, Dap12-/- pre-osteoclasts do not activate the tyrosine kinase, Syk, which normally binds to the adaptor protein and transmits downstream signals. Attesting to the importance of the Dap12/Syk complex, Syk deficient macrophages do not undergo normal osteoclastogenesis. Furthermore, the same cells plated onto osteopontin, adhere poorly and fail to phosphorylate c-Src or Pyk2, two kinases central to organization of the osteoclast cytoskeleton.  相似文献   

11.
Macrophage colony-stimulating factor suppresses osteoblast formation.   总被引:2,自引:0,他引:2  
We provide the first evidence that the bone marrow-derived cytokine, macrophage colony-stimulating factor (M-CSF), inhibits the formation of bone-forming osteoblasts. We examined both osteoclast and osteoblast formation in primary rat bone marrow cultures. As expected, M-CSF together with osteoprotegerin ligand (OPGL) markedly accelerated osteoclastogenesis. In contrast, treatment with M-CSF alone yielded no osteoclasts at any time. The most striking and novel observation was that M-CSF with or without OPGL dramatically suppressed osteoblast formation. In separate experiments, estradiol markedly suppressed osteoclast formation in the M-CSF/OPGL-treated cultures independently of osteoblasts. Consistent with this was the expression of estrogen receptor-alpha (ERalpha) and ERbeta mRNA in osteoclast precursors. We therefore conclude that in addition to the well-known action of M-CSF to modulate osteoclastogenesis, this cytokine may also regulate osteoblast formation.  相似文献   

12.
TNFalpha is a major osteoclastogenic cytokine and a primary mediator of inflammatory osteoclastogenesis. We have previously shown that this cytokine directly targets osteoclasts and their precursors and that deletion of its type-1 receptor (TNFr1) lessens osteoclastogenesis and impacts RANK signaling molecules. Osteoclastogenesis is primarily a RANK/RANKL-dependent event and occurs in an environment governed by both hematopoietic and mesenchymal compartments. Thus, we reasoned that TNF/TNFr1 may regulate RANKL and possibly RANK expression by stromal cells and osteoclast precursors (OCPs), respectively. RT-PCR experiments reveal that levels of RANKL mRNA in WT stromal cells are increased following treatment with 1,25-VD3 compared to low levels in TNFr1-null cells. Expression levels of OPG, the RANKL decoy protein, were largely unchanged, thus supporting a RANKL/OPG positive ratio favoring WT cells. RANK protein expression by OCPs was lower in TNFr1-null cells despite only subtle differences in mRNA expression in both cell types. Mix and match experiments of different cell populations from the two mice phenotypes show that WT stromal cells significantly, but not entirely, restore osteoclastogenesis by TNFr1-null OCPs. Similar results were obtained when the latter cells were cultured in the presence of exogenous RANKL. Altogether, these findings indicate that in the absence of TNFr1 both cell compartments are impaired. This was further confirmed by gain of function experiments using TNFr1- null cultures of both cell types at which exogenous TNFr1 cDNA was virally expressed. Thus, restoration of TNFr1 expression in OCPs and stromal cells was sufficient to reinstate osteoclastogenesis and provides direct evidence that TNFr1 integrity is required for optimal RANK-mediated osteoclastogenesis.  相似文献   

13.
Osteoclasts are derived from hemopoietic stem cells and play critical roles in bone resorption and remodeling. Multinucleated osteoclasts are attached tightly to bone matrix, whereas precursor cells with the potential to differentiate into osteoclasts in culture are widely distributed. In this study, we assessed the characteristics of osteoclast precursors in bone marrow (BM) and in extramedullary organs as indicated by their responsiveness to ligands for Toll-like receptors (TLRs) and to TNF-alpha. Development of osteoclasts from precursor cells in the BM was inhibited by CpG oligonucleotides, a ligand for TLR9, but not by LPS, a ligand for TLR4. BM osteoclasts were induced by TNF-alpha as well as receptor activator of NF-kappaB ligand in the presence of M-CSF. Splenic osteoclast precursors, even in osteoclast-deficient osteopetrotic mice, differentiated into mature osteoclasts following exposure to TNF-alpha or receptor activator of NF-kappaB ligand. However, splenic osteoclastogenesis was inhibited by both LPS and CpG. Osteoclastogenesis from peritoneal precursors was inhibited by not only these TLR ligands but also TNF-alpha. The effects of peptidoglycan, a ligand for TLR2, were similar to those of LPS. BM cells precultured with M-CSF were characterized with intermediate characteristics between those of splenic and peritoneal cavity precursors. Taken together, these findings demonstrate that osteoclast precursors are not identical in the tissues examined. To address the question of why mature osteoclasts occur only in association with bone, we may characterize not only the microenvironment for osteoclastogenesis, but also the osteoclast precursor itself in intramedullary and extramedullary tissues.  相似文献   

14.

Background

Osteoclasts, cells responsible for bone resorption, contribute to the development of degenerative, metabolic and neoplastic bone diseases, which are often characterized by persistent changes in bone microenvironment. We aimed to investigate the dynamics of osteoclast formation and death in cultures that considerably exceeded the length of standard protocol and to design a mathematical model describing osteoclastogenesis.

Methodology/Principal Findings

RAW 264.7 monocytic cells fuse to form multinucleated osteoclasts upon treatment with pro-resorptive cytokine RANKL. We have found that in long-term experiments (15–26 days), the dynamics of changes in osteoclast numbers was remarkably complex and qualitatively variable in different experiments. Whereas 19 of 46 experiments exhibited single peak of osteoclast formation, in 27 experiments we observed development of successive waves of osteoclast formation and death. Periodic changes in osteoclast numbers were confirmed in long-term cultures of mouse bone marrow cells treated with M-CSF and RANKL. Because the dynamics of changes in osteoclast numbers was found to be largely independent of monocytes, a two-species model of ordinary differential equations describing the changes in osteoclasts and monocytes was ineffective in recapitulating the oscillations in osteoclast numbers. Following experimental observation that medium collected from mature osteoclasts inhibited osteoclastogenesis in fresh cultures, we introduced a third variable, factor f, to describe osteoclast-derived inhibitor. This model allowed us to simulate the oscillatory changes in osteoclasts, which were coupled to oscillatory changes in the factor f, whereas monocytes changed exponentially. Importantly, to achieve the experimentally observed oscillations with increasing amplitude, we also had to assume that osteoclast presence stimulates osteoclast formation.

Conclusions/Significance

This study identifies the critical role for osteoclast autocrine regulation in controlling long-term dynamic of osteoclast formation and death and describes the complementary roles for negative and positive feedback mediators in determining the sharp dynamics of activation and inactivation of osteoclasts.  相似文献   

15.
16.
Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-alpha antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). TNF-alpha might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-kappaB and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed.  相似文献   

17.
Focusing on the final step of osteoclastogenesis, we studied cell fusion from tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells into multinuclear cells. TRAP-positive mononuclear cells before generation of multinuclear cells by cell fusion were differentiated from RAW264.7 cells by treatment with receptor activator of nuclear factor kappa B ligand (RANKL), and then the cells were treated with lipopolysaccharide (LPS), followed by culturing for further 12 h. LPS-induced cell fusion even in the absence of RANKL. Similarly, tumor necrosis factor (TNF)-alpha and peptidoglycan (PGN) induced cell fusion, but M-CSF did not. The cell fusion induced by RANKL, TNF-alpha, and LPS was specifically blocked by osteoprotegerin (OPG), anti-TNF-alpha antibody, and polymyxin B, respectively. LPS- and PGN-induced cell fusion was partly inhibited by anti-TNF-alpha antibody but not by OPG. When TRAP-positive mononuclear cells fused to yield multinuclear cells, phosphorylation of Akt, Src, extracellular signal-regulated kinase (ERK), p38MAPK (p38), and c-Jun NH2-terminal kinase (JNK) was observed. The specific chemical inhibitors LY294002 (PI3K), PP2 (Src), U0126 (MAPK-ERK kinase (MEK)/ERK), and SP600125 (JNK) effectively suppressed cell fusion, although SB203580 (p38) did not. mRNA of nuclear factor of activated T-cells c1 (NFATc1) and dendritic cell-specific transmembrane protein (DC-STAMP) during the cell fusion was quantified, however, there was no obvious difference among the TRAP-positive mononuclear cells treated with or without M-CSF, RANKL, TNF-alpha, LPS, or PGN. Collectively, RANKL, TNF-alpha, LPS, and PGN induced cell fusion of osteoclasts through their own receptors. Subsequent activation of signaling pathways involving PI3K, Src, ERK, and JNK molecules was required for the cell fusion. Although DC-STAMP is considered to be a requisite for cell fusion of osteoclasts, cell fusion-inducing factors other than DC-STAMP might be necessary for the cell fusion.  相似文献   

18.
Tumor necrosis factor-α (TNF) enhances osteoclast formation and activity leading to bone loss in various pathological conditions, but its precise role in osteoclastogenesis remains controversial. Although several groups showed that TNF can promote osteoclastogenesis independently of the receptor activator of NF-κB (RANK) ligand (RANKL), others demonstrated that TNF-mediated osteoclastogenesis needs permissive levels of RANKL. Here, we independently reveal that although TNF cannot stimulate osteoclastogenesis on bone slices, it can induce the formation of functional osteoclasts on bone slices in the presence of permissive levels of RANKL or from bone marrow macrophages (BMMs) pretreated by RANKL. TNF can still promote the formation of functional osteoclasts 2 days after transient RANKL pretreatment. These data have confirmed that TNF-mediated osteoclastogenesis requires priming of BMMs by RANKL. Moreover, we investigated the molecular mechanism underlying the dependence of TNF-mediated osteoclastogenesis on RANKL. RANK, the receptor for RANKL, contains an IVVY535–538 motif that has been shown to play a vital role in osteoclastogenesis by committing BMMs to the osteoclast lineage. We show that TNF-induced osteoclastogenesis depends on RANKL to commit BMMs to the osteoclast lineage and RANKL regulates the lineage commitment through the IVVY motif. Mechanistically, the IVVY motif controls the lineage commitment by reprogramming osteoclast genes into an inducible state in which they can be activated by TNF. Our findings not only provide important mechanistic insights into the action of RANKL in TNF-mediated osteoclastogenesis but also establish that the IVVY motif may serve as an attractive therapeutic target for bone loss in various bone disorders.  相似文献   

19.
Previous studies found that bone morphogenic proteins (BMPs) support osteoclast formation, but it is not clear whether this is a direct effect on osteoclasts or mediated indirectly through osteoblasts. We have shown that a mouse deficient for the BMP antagonist Twisted gastrulation suggested a direct positive role for BMPs on osteoclastogenesis. In this report, we further determine the significance of BMP signaling on osteoclast formation in vitro. We find that BMP2 synergizes with suboptimal levels of receptor activator of NF‐κB ligand (RANKL) to enhance in vitro differentiation of osteoclast‐like cells. The enhancement by BMP2 is not a result of changes in the rate of proliferation or survival of the bone marrow‐derived cultures, but is accompanied by an increase in expression of genes involved in osteoclast differentiation and fusion. Treatment with BMP2 did not significantly alter expression of RANKL or OPG in our osteoclast cultures, suggesting that the enhancement of osteoclastogenesis is not mediated indirectly through osteoblasts or stromal cells. Consistent with this, we detected phosphorylated SMAD1,5,8 (p‐SMAD) in the nuclei of mononuclear and multinucleated cells in osteoclast cultures. Levels of p‐SMAD, BMP2, and BMP receptors increased during differentiation. RNAi suppression of Type II BMP receptor inhibited RANKL‐stimulated formation of multinuclear TRAP‐positive cells. The BMP antagonist noggin inhibited RANKL‐mediated osteoclast differentiation when added prior to day 3, while addition of noggin on day 3 or later failed to inhibit their differentiation. Taken together, these data indicate that osteoclasts express BMP2 and BMP receptors, and that autocrine BMP signaling directly promotes the differentiation of osteoclasts‐like cells. J. Cell. Biochem. 109: 672–682, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
IL-12, like IL-18, was shown to potently inhibit osteoclast formation in cultures of cocultures of murine osteoblast and spleen cells, as well as in adult spleen cells treated with M-CSF and receptor activator of NF-kappaB ligand (RANKL). Neither IL-12 nor IL-18 was able to inhibit RANKL-induced osteoclast formation in cultured RAW264.7 cells, demonstrating that IL-12, like IL-18, was unable to act directly on osteoclastic precursors. IL-12, like IL-18, was found to act by T cells, since depletion of T cells from the adult spleen cell cultures ablated the inhibitory action of IL-12 and addition of either CD4 or CD8 T cells from C57BL/6 mice to RANKL-stimulated RAW264.7 cultures permitted IL-12 or IL-18 to be inhibitory. Additionally, IL-12 was still able to inhibit osteoclast formation in cocultures with osteoblasts and spleen cells from either GM-CSF R(-/-) mice or IFN-gamma R(-/-) mice, indicating that neither GM-CSF nor IFN-gamma was mediating osteoclast inhibition in these cultures. Combined, IL-18 and IL-12 synergistically inhibited osteoclast formation at concentrations 20- to 1000-fold less, respectively, than when added individually. A candidate inhibitor could not be demonstrated using neutralizing Abs to IL-4, IL-10, or IL-13 or from mRNA expression profiles among known cytokine inhibitors of osteoclastogenesis in response to IL-12 and IL-18 treatment, although the unknown inhibitory molecule was determined to be secreted from T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号