共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
Hamid M. Said Alvaro Ortiz Thomas Y. Ma Eric McCloud 《Journal of cellular physiology》1998,176(3):588-594
The water-soluble vitamin riboflavin (RF) plays a critical role in many metabolic reactions, and thus, is essential for normal cellular functions and growth. The liver plays a central role in normal RF metabolism and is the site of maximal utilization of the vitamin. The mechanism of liver uptake of RF has been studied in animals, but no information is available describing the mechanism of the vitamin uptake in the human situation and its cellular regulation. In this study, we used the human-derived liver cells Hep G2 as an in vitro model system to address these issues. Uptake of RF by Hep G2 cells was found to be temperature- and energy-dependent but Na+-independent in nature. Uptake seemed to involve a carrier-mediated process as indicated by the saturation as a function of substrate concentration (apparent Km 0.41 ± 0.08 μM), and by the ability of the structural analogs lumiflavin and lumichrome to inhibit the uptake process [inhibition constant (Ki) of 1.84 and 6.32 μM, respectively]. RF uptake was energy dependent, and was inhibited by the -SH group blocker p-chloromercuriphenylsulfonate (p-CMPS) (Ki of 0.10 mM). Specific modulators of intracellular protein kinase A (PKA)-, protein kinase C (PKC)-, and protein tyrosine kinase (PTK)-mediated pathways did not affect RF uptake by Hep G2 cells. On the other hand, specific inhibitors of Ca2+/calmodulin-mediated pathway significantly inhibited the uptake process; this effect seemed to be mediated through a decrease in the Vmax of the substrate uptake process. Maintaining Hep G2 cells in a RF-deficient growth medium was associated with a significant up-regulation in the substrate uptake; this effect was specific for RF and was mediated mainly by means of an increase in the Vmax of the uptake process. These results describe, for the first time, the mechanism and cellular regulation of RF uptake by a human-derived liver cellular preparation, and shows the involvement of a carrier-mediated system in the uptake process. Furthermore, the uptake process seems to be regulated by an intracellular Ca2+/calmodulin-mediated pathway and by extracellular substrate levels. J. Cell. Physiol. 176:588–594, 1998. © 1998 Wiley-Liss, Inc. 相似文献
4.
The genotoxic and antigenotoxic activities of catechin, hamamelitannin and two proanthocyanidin fractions prepared from the bark of Hamamelis virginiana L. were investigated in a human derived, metabolically competent hepatoma cell line (Hep G2) using single cell gel electrophoresis (SCGE) for the detection of DNA-damage. DNA-migration was calculated as Olive tail moment (OTM). Catechin and a low-molecular weight proanthocyandin fraction (W(M)) caused only slight increases of OTM up to concentrations of 166 microg/ml whereas hamamelitannin and the proanthocyandin fraction with higher molecular weight (W(A)) led to a two-fold enhancement of OTM at the same concentrations. These effects were dose-independent. Treatment of the cells with the test compounds in a dose-range of 2-166 microg/ml prior to the exposure to benzo(a)pyrene (B(a)P, 10 microM, 2.5 microg/ml) led to a significant reduction of induced DNA damage which was dose-dependent for all test compounds, except for hamamelitannin. The inhibitory effects of proanthocyanidins were stronger than those of catechin and hamamelitannin; the lowest effective concentrations were about 2 microg/ml. In order to clarify the mechanisms of protection, possible effects of the test compounds on enzymes involved in toxification and detoxification of B(a)P were investigated. While B(a)P toxification by cytochrome P450 was not inhibited by the test compounds, detoxification by glutathion-S-transferase (GST) was induced by catechin and W(M). Combination experiments with the ultimate metabolite of B(a)P, (+/-)-anti-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE; 5 microM, 1.5 microg/ml), revealed strong inhibitory effects, indicating that the observed protective effects were caused by scavenging of the ultimate mutagen by the test compounds. Exposure of Hep G2 cells to the test compounds after B(a)P treatment did not influence B(a)P induced DNA damage, demonstrating that repair mechanisms were not affected. 相似文献
5.
We have used a model system consisting of two human hepatoma cell lines, Hep G2, representing well differentiated normal hepatocytes, and PLC/PRF/5, representing poorly differentiated malignant hepatocytes, to demonstrate that the differential presence of asialoglycoprotein receptor activity in these cell lines can be used to influence transferrin-mediated iron uptake. We based our experiments on the following facts: Hep G2 cells possess receptors that bind, internalize, and degrade galactose-terminal (asialo-)glycoproteins; PLC/PRF/5 cells have barely detectable asialoglycoprotein receptor activity; both cell lines possess active transferrin-mediated iron uptake; transferrin releases iron during acidification of intracellular vesicular compartments; primary amines, e.g. primaquine, inhibit acidification and iron release from transferrin. When added to culture medium, [55Fe]transferrin delivered 55Fe well to both cell lines. As expected, in the presence of [55Fe]transferrin, free primaquine caused a concentration-dependent decrease in 55Fe uptake in both cell lines. To create a targetable conjugate, primaquine was covalently coupled to asialofetuin to form asialofetuin-primaquine. When PLC/PRF/5 (asialoglycoprotein receptor (-)) cells were preincubated with this conjugate, transferrin-mediated 55Fe uptake was unaffected. However, transferrin-mediated 55Fe uptake by Hep G2 (asialoglycoprotein receptor (+)) cells under identical conditions was specifically decreased by 55% compared to control cells incubated without the conjugate. 相似文献
6.
Carboxypeptidase H. A regulatory peptide-processing enzyme produced by human hepatoma Hep G2 cells 总被引:1,自引:0,他引:1
B G Grimwood T H Plummer A L Tarentino 《The Journal of biological chemistry》1989,264(26):15662-15667
Human hepatoma (Hep G2) cells have been shown to secrete nanogram quantities of carboxypeptidase N (Grimwood, B. G., Plummer, T. H., Jr., and Tarentino, A. (1988) J. Biol. Chem. 263, 14397-14401). A second carboxypeptidase with an acidic pH optimum (pH 5.5) is also secreted at levels 2-3-fold greater than carboxypeptidase N. This enzyme was partially purified from the conditioned medium and compared with pure bovine pituitary carboxypeptidase H. The two enzymes behaved in a similar fashion in DE52 ion-exchange chromatography and on gel filtration, with the Hep G2 enzyme being slightly larger than the bovine pituitary enzyme (52-54 versus 50-52 kDa). Both enzymes hydrolyzed COOH-terminal basic amino acids from typical synthetic substrates as well as from natural leuenkephalin peptides and were identical based on pH activity profiles, inhibition by EDTA or guanidinoethyl mercaptosuccinic acid, and stimulation by Co2+ ions. Inhibition of enzyme secretion from Hep G2 cells by tunicamycin indicated that the Hep G2 enzyme was glycosylated. This finding was confirmed by a parallel deglycosylation of the Hep G2 and bovine pituitary carboxypeptidase H enzymes with peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F. Immunoblots using mouse antiserum to bovine pituitary carboxypeptidase H revealed that the Hep G2 enzyme was immunocross-reactive with the bovine enzyme but was slightly larger in size (54 versus 52 kDa). Continuous [35S]methionine labeling and purification to near homogeneity using an affinity matrix corroborated the observations that the secreted Hep G2 carboxypeptidase H was slightly larger than bovine pituitary carboxypeptidase H. The Hep G2-secreted enzyme in pulse-chase experiments was initially detected intracellularly after a 15-min pulse as a single protein of about 54 kDa and was present in the 30-min chase medium with no evidence for pre- or postsecretion proteolytic processing. The human adrenergic cell line IMR-32 continuously labeled with [35S]methionine also secreted carboxypeptidase H of the same size as the Hep G2 enzyme. 相似文献
7.
We have developed a system for targeting foreign DNA to hepatocytes in vitro using a soluble DNA carrier that takes advantage of receptor-mediated endocytosis to achieve internalization. The idea is based on the fact that hepatocytes possess a unique receptor that binds and internalizes galactose-terminal (asialo)glycoproteins. To create a targetable carrier system that could bind DNA in a nondeforming manner, we used poly(L-lysine) to bind DNA in a strong but noncovalent interaction. An asialoglycoprotein, asialoorosomucoid (AsOR), was chemically coupled to poly(L-lysine) to form an asialoorosomucoid-poly(L-lysine) conjugate. Various proportions of conjugate to DNA were tested to determine conditions that maximized DNA content in a soluble complex and that limited solubility of complexes. To test the targetable gene delivery system, AsOR-poly(L-lysine) conjugate was complexed to the plasmid pSV2 CAT containing the gene for chloramphenicol acetyltransferase (CAT) driven by an SV-40 promoter. We tested this complex using a model system consisting of human hepatoma cell line Hep G2 [asialoglycoprotein receptor (+)], hepatoma SK-Hep 1, IMR-90 fibroblasts, and uterine smooth muscle [receptor (-)] cells. Each cell line was incubated with 0.2 micron filtered AsOR-poly(L-lysine)-DNA complex or controls consisting of DNA plus AsOR, DNA plus poly(L-lysine), or DNA alone. Cells were assayed for the presence of CAT activity as a measure of gene transformation. SK-Hep 1, IMR-90, and smooth muscle [receptor (-)] cells produced no detectable acetylated chloramphenicol derivatives under any of these conditions.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
9.
The culture fluid of Hep G2 human hepatoma cells contains triglyceridase activity resistant to high-salt concentrations. The lipase binds to Sepharose-heparin columns from which it can be eluted by 0.8 to 0.9 M NaCl. The nature of this lipase was studied using antibodies raised against "liver" lipases from human and rat origin. The anti-rat liver lipase inhibits both the postheparin human and rat plasma enzyme while the anti-human liver lipase has no effect on the rat enzyme. The lipase of the Hep G2 cultures showed affinity to the antibodies raised against rat as well as human "liver" lipase as shown by inhibition experiments. These results show that Hep G2 cells secrete "liver" lipase and that there seems to exist a structural homology between the lipases from rat and human origin. 相似文献
10.
2- and 4-Aminobiphenyls induce oxidative DNA damage in human hepatoma (Hep G2) cells via different mechanisms 总被引:1,自引:0,他引:1
4-Aminobiphenyl (4-ABP) and its analogue, 2-aminobiphenyl (2-ABP), were examined for their ability to induce oxidative DNA damage in Hep G2 cells. Using the alkaline comet assay, we showed that 2-ABP and 4-ABP (25-200 microM) were able to induce the DNA damage in Hep G2 cells. With both compounds, formation of intracellular reactive oxygen species (ROS) was detected using flow cytometry analysis. Post-treatment of 2-ABP and 4-ABP-treated cells by endonuclease III (Endo III) or formamidopyrimidine-DNA glycosylase (Fpg) to determine the formation of oxidized pyrimidines or oxidized purines showed a significant increase of the extent of DNA migration. This indicated that oxidative DNA damage occurs in Hep G2 cells after exposure to 2-ABP and 4-ABP. This assumption was further substantiated by the fact that the spin traps, 5,5-dimethyl-pyrroline-N-oxide (DMPO) and N-tert-butyl-alpha-phenylnitrone (PBN), decreased DNA damage significantly. Furthermore, addition of the catalase (100 U/ml) caused a decrease in the DNA damage induced by 2-ABP or 4-ABP, indicating that H(2)O(2) is involved in ABP-induced DNA damage. Pre-incubation of the cells with the iron chelator desferrioxamine (DFO) (1mM) and with the copper chelator neocupronine (NC) (100 microM) also decreased DNA damage in cells treated with 200 microM 2-ABP or 200 microM 4-ABP, while the calcium chelator {1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester}(BAPTA/AM) (10 microM) decreased only DNA strand breaks in cells exposed to 4-ABP. This suggested that ions are involved in the formation of DNA strand breaks. Using RT-PCR and Western blotting, lower inhibition of the expression of the OGG1 gene and of the OGG1 protein was observed in cells treated with 4-ABP, and 2-ABP-treated cells showed a marked reduction in the expression of OGG1 gene and OGG1 protein. Taken together, our finding indicated the mechanisms of induced oxidative DNA damage in Hep G2 cell by 2-ABP and 4-ABP are different, although both tested compounds are isomers. 相似文献
11.
Effect of tunicamycin and monensin on secretion of thyroxine-binding globulin by cultured human hepatoma (Hep G2) cells 总被引:3,自引:0,他引:3
We have reported in the preceding paper that human hepatoma (Hep G2) cells synthesize thyroxine-binding globulin (TBG). In this paper, we evaluated the kinetics of secretion of the protein and the effects produced by the ionophore monensin and the glycosylation inhibitor tunicamycin. Cells were pulse labeled with [35S]methionine and then chased after addition of excess unlabeled methionine. TBG appeared in the medium after 10 min, and 50% of the protein was secreted after 45 min. After 2 h, more than 85% of TBG had been released. The rate of secretion of TBG was much slower than that of albumin, 50% of which was secreted after 20 min. Monensin, 1 microM, caused a marked delay in TBG secretion, with 50% released after 80 min. After 2 h, less than 60% had been released and a plateau was approached. Endoglycosidase H (endo H) treatment of intracellular and secreted TBG showed no alteration in the rate of conversion of TBG oligosaccharide units from high-mannose type (endo H-sensitive) to complex type (endo H-resistant), thus suggesting that monensin impeded the exit of TBG from the Golgi apparatus without affecting the terminal glycosylation of the protein. Tunicamycin, 5 micrograms/ml, completely blocked glycosylation and markedly affected TBG secretion, almost doubling the time required for the secretion of 50% of the protein. The effect was specific for TBG, since it was not observed in the case of albumin. After 2 h, only 56% of the protein had been released. Analysis of intracellular and extracellular immunoprecipitated products revealed the presence of aggregates (Mr greater than 100,000). The lack of carbohydrates, although not preventing TBG secretion, had marked quantitative effects, and increased the susceptibility to aggregation. 相似文献
12.
In vitro translation and processing of human hepatoma cell (Hep G2) gamma-glutamyl transpeptidase 总被引:1,自引:0,他引:1
Human hepatoma cell (Hep G2) gamma-glutamyl transpeptidase (gamma-GT), a 120 ka single-chain glycoprotein, is much larger than the expected precursor of the dimeric enzyme in other human tissues. However, the Hep G2 gamma-GT mRNA encodes a 63 kDa peptide, similar to that of rat gamma-GT mRNA product and to the predicted, unglycosylated precursor of the enzyme in human tissues. Translation in presence of dog pancreas microsomes results in processing of the 63 kDa to an 80 kDa core-glycosylated species which is subsequently cleaved to 58 and 22 kDa subunits resembling those in other human tissues. The unusually large Mr of gamma-GT in Hep G2 would thus seem to be due to further glycosylation and processing in the Golgi. A deficiency of the processing protease is the most likely reason for the persistence of the single-chain form of gamma-GT in Hep G2 cells. 相似文献
13.
Effect of 3-substituted Delta8(14)-15-ketosterols on cholesterol metabolism in hepatoma Hep G2 cells
Kisseleva AF Goryunova LE Medvedeva NV Alquier C Misharin AY 《Biochemistry. Biokhimii?a》1999,64(4):456-463
The effects of 3-substituted Delta8(14)-15-ketosterols--3beta-(2-hydroxyethoxy)-, 3beta-(2-propenyloxy)-, 3beta-[2(R,S),2,3-oxidopropyloxy]-, 3beta-[2(R,S),2,3-dihydroxypropyloxy]-, 3beta-(2-oxoethoxy)-, 3beta-[2(R,S),2-acetoxy-3-acetamidopropyloxy]-, and 3beta-[2(R,S), 2-hydroxy-3-acetamidopropyloxy]-5alpha-cholest-8(14)-en-15-o nes--on cholesterol metabolism were studied in human hepatoma Hep G2 cells. 3beta-(2-Propenyloxy)-, 3beta-(2-oxoethoxy)-, and 3beta-[2(R,S),2, 3-oxidopropyloxy]-5alpha-cholest-8(14)-en-15-ones inhibited cholesterol biosynthesis without any effect on triglyceride biosynthesis, while 3beta-[2(R,S),2-acetoxy-3-acetamidopropyloxy]- and 3beta-[2(R,S), 2-hydroxy-3-acetamidopropyloxy]-5alpha-cholest-8(14)-en-15-o nes inhibited both cholesterol biosynthesis and triglyceride biosynthesis at concentrations exceeding 10 microM. 3beta-[2(R,S),2, 3-Dihydroxypropyloxy]-5alpha-cholest-8(14)-en-15-one, effectively inhibiting cholesterol biosynthesis, was found also to be toxic in Hep G2 cells at micromolar concentrations. 3beta-[2(R,S),2, 3-Oxidopropyloxy]-5alpha-cholest-8(14)-en-15-one effectively inhibited cholesterol acylation. All the tested compounds decreased the HMG-CoA reductase mRNA level at concentrations exceeding 10 microM; however, they did not affect the LDL receptor mRNA level. Among the compounds tested, only 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one decreased the uptake and internalization of LDL-associated cholesteryl esters, being as effective as 25-hydroxycholesterol. 相似文献
14.
Disinfection of drinking water reduces pathogenic infection, but generates disinfection by-products (DBPs) in drinking water. In this study, the effect of fifteen DBPs on DNA damage in human-derived hepatoma line (HepG2) was investigated by the single cell gel electrophoresis (SCGE) assay. These fifteen DBPs are: four trihalomethanes (THMs), six haloacetic acides (HAAs), three haloacetonitriles (HANs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and chloral hydrate (CH). Based on the minimal effective concentration (MEC) at which DBPs induced significant increase in olive tail moment (OTM), the rank order of DNA-damaging potency is: bromodichloromethane (BDCM)>dibromochloromethane (DBCM)>tribromomethane (TBM)>trichloromethane (TCM) of the four THMs; iodoacetic acid (IA)>bromoacetic acid (BA)>dibromoacetic acid (DBA)>dichloracetic acid (DCA)>trichloroacetic acid (TCA) of the five HAAs; dibromoacetonitrile (DBN)approximately dichloroacetonitrile (DCN)>trichloroacetonitrile (TCN) of the three HANs. The DNA damaging potency of MX and CH is similar to TCA and DCA, respectively. IA is the most genotoxic DBP in the fifteen DBPs, followed by BA. Chloroacetic acid (CA) is not genotoxic in this assay. Our findings indicated that HepG2/SCGE is a sensitive tool to evaluate the genotoxicity of DBPs and iodinated DBPs are more genotoxic than brominated DBPs, but chlorinated DBPs are less genotoxic than brominated DBPs. 相似文献
15.
The cholesteryl oleate-POPC dispersions (1:3, mol/mol, mean particle size 110+/-20 nm) were taken up by the human hepatoma line Hep G2 cells via endocytosis. Internalization of the cholesteryl oleate-POPC dispersions by Hep G2 cells was dependent on the incubation time and dispersion concentration. At the cholesteryl oleate concentration 100 microM, its total uptake and internalization were found to be 1.5 nmol and 0.8 nmol per 1 mg of cell protein/24 h, respectively. Intracellular cleavage of the cholesteryl oleate incorporated in dispersions resulted in accumulation of free cholesterol capable of being released into the medium and metabolized to water-soluble polar products, presumably bile acids; oleic acid released is, apparently, involved in biosynthesis of triacylglycerides. The low-density lipoprotein receptor is not involved in internalization of lipid dispersions, and the presence of the cholesteryl oleate-POPC dispersions has no effect on the receptor-dependent internalization of cholesteryl esters of the low-density lipoproteins. The obtained data allow us to consider nonspecific internalization of cholesteryl esters by hepatocytes as a substantial part of the nonpolar lipid clearance. 相似文献
16.
Drug metabolism by the human hepatoma cell, Hep G2 总被引:4,自引:0,他引:4
S Sassa O Sugita R A Galbraith A Kappas 《Biochemical and biophysical research communications》1987,143(1):52-57
The human liver-derived cell line, Hep G2, has aryl hydrocarbon hydroxylase and 7-ethoxycoumarin o-de-ethylase activities. Partial purification of cytochrome P-450 from Hep G2 cells provided spectral evidence of this hemeprotein in the purified fraction. These results suggest that Hep G2 cells will be useful for the study of cytochrome P-450 and the regulation of mixed function oxidase activities in liver cells of human origin. 相似文献
17.
S Goenner A Boutron T Soni A Lemonnier N Moatti 《Biochemical and biophysical research communications》1992,189(1):472-479
The human hepatoma cell line Hep G2 was used to investigate amino acid transport systems in human liver tissue. The ubiquitous transport systems responsible for the uptake of most neutral amino acids (systems A, ASC and L) were found to be present. Transport system A was predominant for proline uptake but system ASC was the major Na(+)-dependent transport system, particularly for glutamine. The specific hepatic system N was functional, but only partially mediated glutamine uptake. The study of Na(+)-independent arginine uptake demonstrated the presence of the cationic transport system Y+, reflecting the transformed nature of Hep G2 cells. 相似文献
18.
L H Cohen M Griffioen C W van Roermund R J Wanders 《Biochimica et biophysica acta》1992,1126(1):114-118
Using the Hep G2 cell line as a model for the human hepatocyte the question was studied whether Hep G2-peroxisomes could be able to synthesize cholesterol. Hep G2 cell homogenates were applied to density gradient centrifugation on Nycodenz, resulting in good separation between the organelles. The different organelle fractions were characterized by assaying the following marker enzymes: catalase for peroxisomes, glutamate dehydrogenase for mitochondria and esterase for endoplasmic reticulum. Squalene synthase activity was not detectable in the peroxisomal fraction. Incubation of Hep G2 cells with U18666A, an inhibitor of the cholesterol synthesis at the site of oxidosqualene cyclase, together with heavy high density lipoprotein, which stimulates the efflux of cholesterol, led to a marked increase in the activity of squalene synthase as well as HMG-CoA reductase, whereas no significant effect on the marker enzymes was observed. Neither enzyme activity was detectable in the peroxisomal density gradient fraction, suggesting that in Hep G2-peroxisomes cholesterol synthesis from the water-soluble early intermediates of the pathway cannot take place. Both stimulated and non-stimulated cells gave rise to preparations where squalene synthase activity was comigrating with the reductase activity at the lower density side of the microsomal fraction; however, it was also present at the high density side of the microsomal peak, where reductase activity was not detected. 相似文献
19.
Jiuan J. Liu Bor-Shiun Chen Te-Feng Tsai Yun-Ju Wu Victor F. Pang Amy Hsieh Jih-Han Hsieh Tong H. Chang 《Cytotechnology》1991,5(2):129-139
Long-term and large scale cultivation of an anchorage-dependent cell line using an industrial scale hollow fiber perfusion bioreactor is described. Hep G2 cells (a human hepatoma cell line) were cultivated in an Acysyst-P® (Endotronic) with a total fiber surface area of 7.2 m2 (6×1.2 m2) to produce Hep G2 crude conditioned medium (CCM). Pretreatment of the cellulose acetate hollow fibers with collagen enhances the attachment of the anchorage-dependent cells. We have succeeded in growing the Hep G2 cells in an antibiotics-and serum-free IMDM medium, supplemented with 50g/ml of Hep G2 CCM protein at inoculation. The Hep G2 cells replicate and secrete CCM protein in quantities comparable to those produced in DMEM containing 10% fetal calf serum (FCS). The highest CCM protein productivity during the 80-day cultivation was 1.1 g/day with a total of 30 g of protein accumulated. Hep G2 CCM (20–40 g protein/ml) was comparable to or even better than 10% FCS in supporting the growth of Molt-4 (a human T leukemia cell line) and FO (a mouse myeloma cell line) cells in vitro. The availability of this large amount of Hep G2 CCM will aid the further purification and characterization of growth factor(s) which could be used as serum substituents. 相似文献
20.
Induction of haem synthesis in Hep G2 human hepatoma cells by dimethyl sulphoxide. A transcriptionally activated event. 下载免费PDF全文
Exposure of cultured human hepatoma cells (Hep G2) to medium containing 2% (v/v) dimethyl sulphoxide resulted in an approximate doubling in the activity of delta-aminolaevulinate dehydratase, an increase in the haem content and a decreased growth rate; induced enzyme activity was decrease by 50% after treatment with alpha-amanitin. The findings are strikingly similar to those seen in murine Friend-virus-transformed erythroleukaemia cells. 相似文献