首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry – one of the most commonly used analytical tools in proteomics – for high-throughput analyses.  相似文献   

2.
The analysis of chlorophylls and their derivatives by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry is described. Four matrices—sinapinic acid, a-cyano-4-hydroxycinnnamic acid, terthiophene, and 3-aminoquinoline—were examined to determine optimal conditions for analysis of the molecular mass and structure of chlorophyll a as a representative chlorophyll. Among them, terthiophene was the most efficient without releasing metal ions, although it caused fragmentation of the phytol-ester linkage. Terthiophene was useful for the analyses of chlorophyll derivatives as well as porphyrin products such as 8-deethyl-8-vinyl-chlorophyll a, pheophorbide a, pyropheophorbide a, bacteriochlorophyll a esterified phytol, and protoporphyrin IX. The current method is suitable for rapid and accurate determination of the molecular mass and structure of chlorophylls and porphyrins.  相似文献   

3.
Activated factor XIII (FXIIIa) catalyzes the formation of γ-glutamyl-ε-lysyl cross-links within the fibrin blood clot network. Although several cross-linking targets have been identified, the characteristic features that define FXIIIa substrate specificity are not well understood. To learn more about how FXIIIa selects its targets, a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF MS)-based assay was developed that could directly follow the consumption of a glutamine-containing substrate and the formation of a cross-linked product with glycine ethylester. This FXIIIa kinetic assay is no longer reliant on a secondary coupled reaction, on substrate labeling, or on detecting only the final deacylation portion of the transglutaminase reaction. With the MALDI–TOF MS assay, glutamine-containing peptides derived from α2-antiplasmin, Staphylococcus aureus fibronectin binding protein A, and thrombin-activatable fibrinolysis inhibitor were examined directly. Results suggest that the FXIIIa active site surface responds to changes in substrate residues following the reactive glutamine. The P−1 substrate position is sensitive to charge character, and the P−2 and P−3 substrate positions are sensitive to the broad FXIIIa substrate specificity pockets. The more distant P−8 to P−11 region serves as a secondary substrate anchoring point. New knowledge on FXIIIa specificity may be used to design better substrates or inhibitors of this transglutaminase.  相似文献   

4.
It has become evident that the mystery of life will not be deciphered just by decoding its blueprint, the genetic code. In the life and biomedical sciences, research efforts are now shifting from pure gene analysis to the analysis of all biomolecules involved in the machinery of life. One area of these postgenomic research fields is proteomics. Although proteomics, which basically encompasses the analysis of proteins, is not a new concept, it is far from being a research field that can rely on routine and large-scale analyses. At the time the term proteomics was coined, a gold-rush mentality was created, promising vast and quick riches (i.e., solutions to the immensely complex questions of life and disease). Predictably, the reality has been quite different. The complexity of proteomes and the wide variations in the abundances and chemical properties of their constituents has rendered the use of systematic analytical approaches only partially successful, and biologically meaningful results have been slow to arrive. However, to learn more about how cells and, hence, life works, it is essential to understand the proteins and their complex interactions in their native environment. This is why proteomics will be an important part of the biomedical sciences for the foreseeable future. Therefore, any advances in providing the tools that make protein analysis a more routine and large-scale business, ideally using automated and rapid analytical procedures, are highly sought after. This review will provide some basics, thoughts and ideas on the exploitation of matrix-assisted laser desorption/ ionization in biological mass spectrometry - one of the most commonly used analytical tools in proteomics - for high-throughput analyses.  相似文献   

5.
与传统的微生物鉴定技术相比,基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS)是一种准确、可靠和快速的鉴定和分型的技术。本文通过检索近年来国内外相关研究论文,总结最新的研究进展,发现MALDI-TOF MS在临床病原微生物、食源性微生物以及环境微生物等鉴定中有较大的优势,加快了微生物鉴定的进程,同时探索该技术在新领域的最新进展和面临的挑战,以期为我国基质辅助激光解吸电离飞行时间质谱技术的发展提供参考。  相似文献   

6.
Although modern MS has facilitated the advent of metabolomics, some natural products such as carotenoids are not readily compatible to detection by MS. In the present article, we describe how matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF-MS) can be utilized to acquire mass spectra of carotenoids effectively. The procedure is sensitive (pmole range), reduces 'spot to spot' variation and provides high mass accuracy, thus aiding identification. The technique has been applied in vivo to the analysis of carotenoids in isolated plant cells and in vitro to three applications: (i) to show compatibility with purification methods such as LC, TLC and HPLC; (ii) for the rapid identification and quantification (by isotope dilution) of carotenoids present in crude extracts from plant tissues and whole cells; (iii) simultaneous semi-quantitative determination of carotenoids metabolites (m/z values) in crude plant extracts. Multivariate analysis of the recorded m/z values shows the effectiveness of the procedure in distinguishing genotypes from each other. In addition, the utility of the technique has been demonstrated on two mutant tomato populations, to determine alterations in carotenoid content, and a comparison made with traditional HPLC-photodiode array analysis. These data show that MALDI/TOF-MS can be used to rapidly profile, identify and quantify plant carotenoids reproducibly, as well as detecting other metabolites (m/z) in complex biological systems.  相似文献   

7.
Quantitative analysis of free fatty acids was achieved using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with a meso-tetrakis porphyrin matrix. Cesium acetate was employed as a cationizing agent. The MALDI signal was reproducible and dominated by cesiated cesium carboxylates [RCOOCs + Cs]+. The addition of two Cs ions resulted in a mass shift of 264.8 Da for each fatty acid and greatly reduced background peaks. A linear relationship between fatty acid concentration and corresponding fatty acid to internal standard peak intensity ratio was observed for three representative fatty acids analyzed across a concentration range from 4.40 to 150 microM, with correlation coefficients between 0.986 and 0.987. The application of this method was demonstrated with the analysis of free fatty acids in nonfasted and fasted rat plasmas. A total of eight free fatty acids (14:0, 16:0, 16:1, 17:0, 18:0, 18:1, 18:2, and 20:4) were detected. The relative peak height ratios of the fatty acids to the internal standard allow quantitative measurements of the free fatty acids. It was shown that the levels of free fatty acids were higher in fasted rats than in rats in a nonfasted state. This method is simple, sensitive, and fast. Thus, it provides an appealing tool for the analysis of free fatty acids or other low-molecular weight compounds during drug discovery and/or development.  相似文献   

8.
Severe acute respiratory syndrome coronavirus (SARS-CoV) 3C-like protease (3CL(pro)) mediates extensive proteolytic processing of replicase polyproteins, and is considered a promising target for anti-SARS drug development. Here we present a rapid and high-throughput screening method to study the substrate specificity of SARS-CoV 3CL(pro). Six target amino acid positions flanking the SARS-CoV 3CL(pro) cleavage site were investigated. Each batch of mixed peptide substrates with defined amino acid substitutions at the target amino acid position was synthesized via the "cartridge replacement" approach and was subjected to enzymatic cleavage by recombinant SARS-CoV 3CL(pro). Susceptibility of each peptide substrate to SARS-CoV 3CL(pro) cleavage was monitored simultaneously by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The hydrophobic pocket in the P2 position at the protease cleavage site is crucial to SARS-CoV 3CL(pro)-specific binding, which is limited to substitution by hydrophobic residue. The binding interface of SARS-CoV 3CL(pro) that is facing the P1' position is suggested to be occupied by acidic amino acids, thus the P1' position is intolerant to acidic residue substitution, owing to electrostatic repulsion. Steric hindrance caused by some bulky or beta-branching amino acids in P3 and P2' positions may also hinder the binding of SARS-CoV 3CL(pro). This study generates a comprehensive overview of SARS-CoV 3CL(pro) substrate specificity, which serves as the design basis of synthetic peptide-based SARS-CoV 3CL(pro) inhibitors. Our experimental approach is believed to be widely applicable for investigating the substrate specificity of other proteases in a rapid and high-throughput manner that is compatible for future automated analysis.  相似文献   

9.
A technique for sequencing oligonucleotides using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is described. The series of coupling failure species are extracted from the dimethoxytrityl-on, full-length oligonucleotide in crude synthetic material using C18 stationary-phase cartridges. These concentrated failure species can be easily detected by MALDI-TOF, which determines the mass difference between spectral ions to identify a particular base. The solid-phase extraction step greatly enhances ion signals and mass resolution, and sequencing information is generally obtained from the 5' end up to the first three to four nucleotides at the 3' end. Complete sequence can be generated in conjunction with snake venom phosphodiesterase digestion of purified material. This method eliminates difficulties associated with other mass spectrometric sequencing techniques involving oligonucleotide length; structure; and sugar, base, and backbone modifications. Examples of sequencing a 17-mer composed primarily of 2'-O-methylribonucleotides and a single nonnucleosidic linker and a mixed sugar backbone 51-mer with 2'-O-methylribonucleotides and a homopolymer tail are reported in this study.  相似文献   

10.
Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) was evaluated as a technique to characterize strains of the nitrogen-fixing actinomycete Frankia. MALDI-TOF MS reliably distinguished 37 isolates within the genus Frankia and assigned them to their respective host infection groups, i.e., the Alnus/Casuarina and the Elaeagnus host infection groups. The assignment of individual strains to sub-groups within the respective host infection groups was consistent with classification based on comparative sequence analysis of nifH gene fragments, confirming the usefulness of MALDI-TOF MS as a rapid and reliable tool for the characterization of Frankia strains.  相似文献   

11.
12.
The physiological response to small molecules (secondary messengers) is the outcome of a delicate equilibrium between biosynthesis and degradation of the signal. Cyclic diguanosine monophosphate (c-di-GMP) is a novel secondary messenger present in many bacteria. It has a complex cellular metabolism whereby usually more than one enzyme synthesizing and degrading c-di-GMP is encoded by a bacterial genome. To assess the in vivo conditions of c-di-GMP signaling, we developed a high-performance liquid chromatography (HPLC)-mass spectrometry-based method to detect c-di-GMP with high sensitivity and to quantify the c-di-GMP concentration in the bacterial cell as described here in detail. We successfully used the methodology to determine and compare the c-di-GMP concentrations in bacterial species such as Salmonella typhimurium, Escherichia coli, Pseudomonas aeruginosa, and Vibrio cholerae. We describe the use of the methodology to assess the change in c-di-GMP concentration during the growth phase and the contribution of a point mutation in S. typhimurium to the overall cellular c-di-GMP concentration.  相似文献   

13.
A new strategy has been employed for the identification of the covalent modification sites (mainly acetylation and methylation) of histone H3 from chicken erythrocytes using low enzyme/substrate ratios and short digestion times (trypsin used as the protease) with analysis by HPLC separation, matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF), matrix-assisted laser desorption ionization-postsource decay, and tandem mass spectrometric techniques. High-accuracy MALDI-TOF mass measurements with representative immonium ions (126 for acetylated lysine, 98 for monomethylated lysine, and 84 for di-, tri-, and unmethylated lysine) have been effectively used for differentiating methylated peptides from acetylated peptides. Our results demonstrate that lysines 4, 9, 14, 27, and 36 of the N-terminal of H3 are methylated, while lysines 14, 18, and 23 are acetylated. Surprisingly, a non-N-terminal residue, lysine 79, in the loop region hooking up to the bound DNA, was newly found to be methylated (un-, mono-, and dimethylated isoforms coexist). The reported mass spectrometric method has the advantages of speed, directness, sensitivity, and ease over protein sequencing and Western-blotting methods and holds the promise of an improved method for determining the status of histone modifications in the field of chromosome research.  相似文献   

14.
Chemerin is a chemoattractive protein acting as a ligand for the G-protein-coupled receptor ChemR23/CMKLR1 and plays an important role in the innate and adaptive immunity. Proteolytic processing of its C terminus is essential for receptor binding and physiological activity. Therefore, we investigated the plasma stability of the decapeptide chemerin 145-154 (P(145)-F(154)) corresponding to the C terminus of the physiologically active chemerin variant E(21)-F(154) from human hemofiltrate. For monitoring concentration-time profiles and degradation products we developed a novel matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry procedure using an internal peptide standard (hemorphin LVV-H7) for quantification. The linear range covers 2.5 orders of magnitude in the lower micromolar concentration range (lower limit of quantification 0.312 microg/ml, 0.25 microM) characterized by satisfactory reproducibility (CV < or =9%), accuracy (< or =10%), ruggedness, and recovery (98%). We found that chemerin 145-154 is C-terminally truncated in human citrate plasma by the cleavage of the penultimate dipeptidyl residue. N-terminal truncation was not observed. In contrast to citrate plasma, no degradation was detected in ethylenediammetetraacetate (EDTA) plasma. We identified angiotensin-converting-enzyme (ACE) to be responsible for C-terminal truncation, which could be completely inhibited by EDTA and captopril. These results are relevant to clarify the natural processing of chemerin and the potential involvement of ACE in mediating the immune response.  相似文献   

15.
N-Acetylneuraminic acid (a sialic acid) occurs mainly as a terminal substituent of oligosaccharides of glycoconjugates. Derivatives of neuraminic acid occur widely, substituted in the amino and hydroxy side chains, as well in the C-9 carbon skeleton. These derivatives are responsible for specific functions of sialic acids during cell-cell, cell-substrate, or cell-virus interactions. The study of O-acetylated neuraminic acids is difficult, because only small amounts are extractable from natural sources and they are generally unstable to acids and bases. We report a new method for the rapid analysis of O-acetylated neuraminic acids, using a combination of reversed phase HPLC and MALDI-TOF mass spectrometry. A mixture of neuraminic acids from bovine submaxillary gland mucins was analysed, as well as neuraminic acids variously substituted in the amino and hydroxy side chains with acetyl and glycolyl groups, respectively. © 1998 Rapid Science Ltd  相似文献   

16.
The DNA of all organisms is persistently damaged by endogenous reactive molecules. Most of the single-base endogenous damage is repaired through the base excision repair (BER) pathway that is initiated by members of the DNA glycosylase family. Although the BER pathway is often considered to proceed through a common abasic site intermediate, emerging evidence indicates that there are likely distinct branches reflected by the multitude of chemically different 3′ and 5′ ends generated at the repair site. In this study, we have applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI–TOF–MS) to the analysis of model DNA substrates acted on by recombinant glycosylases. We examine the chemical identity of several possible abasic site and nicked intermediates generated by monofunctional and bifunctional glycosylases. Our results suggest that the intermediate from endoIII/Nth might not be a simple β-elimination product as described previously. On the basis of 18O incorporation experiments, we propose a new mechanism for the endoIII/Nth family of glycosylases that may resolve several of the previous controversies. We further demonstrate that the use of an array of lesion-containing oligonucleotides can be used to rapidly examine the substrate preferences of a given glycosylase. Some of the lesions examined here can be acted on by more than one glycosylase, resulting in a spectrum of damaged intermediates for each lesion, suggesting that the sequence and coordination of repair activities that act on these lesions may influence the biological outcome of damage repair.  相似文献   

17.
Rapid methods using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to monitor recombinant protein expression from various prokaryotic and eukaryotic cell culture systems were devised. Intracellular as well as secreted proteins from both induced and constitutive expression systems were measured and monitored from whole cells and growth media, thus providing an alternative to time-consuming traditional methods for screening and monitoring of protein expression. The methods described here involve minimal processing of samples and are therefore relevant to high-throughput screening applications.  相似文献   

18.
A high-throughput matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI–TOF MS) assay is described for determination of chitolytic enzyme activity. The assay uses unmodified chitin oligosaccharide substrates and is readily achievable on a microliter scale (2 μl of total volume containing 2 μg of substrate and 1 ng of protein). The speed and sensitivity of the assay make it potentially well suited for the high-throughput screening of chitinase inhibitors. The mass spectrum is acquired in approximately 2 min, as opposed to typically 30–40 min for a single run with a high-performance liquid chromatography (HPLC)-based assay. By using the multiple-place MALDI MS targets, we estimate that 100 assays could be run in approximately 2–3 h without needing to remove the target from the instrument. In addition, because the substrate and product chitomers are visualized simultaneously in the TOF spectrum, this gives immediate information about the cleavage site and mechanism of the enzyme under study. The assay was used to monitor the purification and transgenic expression of plant class IV chitinases. By performing the assay with chitomer substrates and C-glycoside chitomer analogs, the enzyme mechanism of the class IV chitinases is described for the first time.  相似文献   

19.
Proline-containing peptides of the X-proline type are cleaved by the dipeptidase prolidase. The classical method of prolidase assay relied on the colorimetric estimation of the liberated proline with ninhydrin using acidic media and heat. This method, however, gave inconsistent results due to the nonspecificity of the ninhydrin color reaction. We report here a method for the detection of the liberated proline using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Human sera were incubated with a mixture containing the dipeptide glycyl-proline in Tris-HCl supplemented with manganese at 37 degrees C for 24h. The samples were precipitated with trifluoroacetic acid and centrifuged. An aliquot of the supernatant was mixed with an equal volume of ferulic acid solution. An aliquot from this mixture was spotted on a stainless steel mass spectrometry grid and analyzed using MALDI-TOF mass spectrometry. The activity of the enzyme was determined by the complete disappearance of the glycyl-proline peak with the concomitant appearance of the proline peak and can be expressed in terms of the ratio of the area beneath the proline to the area beneath the glycyl-proline peak. Subjects homozygous for prolidase deficiency had a ratio ranging from 0.006 to 0.04 while obligatory heterozygotes had a ratio ranging from around 1.1 to 2.4. Normal subjects had ratios ranging from 9 to 239. Using this method we have unambiguously identified subjects with homozygous or heterozygous prolidase deficiency. In addition to the advantage of rapid sample preparation time, this method is highly specific, reproducible, and sensitive.  相似文献   

20.
AIM: Application of MALDI-TOF MS for characterization of strains of Salmonella enterica subsp. enterica. METHODS AND RESULTS: Whole cells were analysed by MALDI-TOF MS. Spectra with a maximum of 500 mass peaks between (m/z) 0 and 25000 were examined for consensus peaks manually and by a computer software algorithm. Consensus peaks were observed by both methods for spectra of Salmonella enterica serovars Derby, Hadar, Virchow, Anatum, Typhimurium and Enteritidis. CONCLUSIONS: Differences in numbers of consensus peaks in spectra obtained by manual and computer comparison indicated that development of the software involving statistical analysis of peak accuracy is necessary. SIGNIFICANCE AND IMPACT OF THE STUDY: Development of an analysis system for peak profiles in whole cell MALDI-TOF MS spectra to enable intra and interlaboratory comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号