首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Persistence is an epigenetic trait that allows a small fraction of bacteria, approximately one in a million, to survive prolonged exposure to antibiotics. In Escherichia coli an increased frequency of persisters, called "high persistence," is conferred by mutations in the hipA gene, which encodes the toxin entity of the toxin-antitoxin module hipBA. The high-persistence allele hipA7 was originally identified because of its ability to confer high persistence, but little is known about the physiological role of the wild-type hipA gene. We report here that the expression of wild-type hipA in excess of hipB inhibits protein, RNA, and DNA synthesis in vivo. However, unlike the RelE and MazF toxins, HipA had no effect on protein synthesis in an in vitro translation system. Moreover, the expression of wild-type hipA conferred a transient dormant state (persistence) to a sizable fraction of cells, whereas the rest of the cells remained in a prolonged dormant state that, under appropriate conditions, could be fully reversed by expression of the cognate antitoxin gene hipB. In contrast, expression of the mutant hipA7 gene in excess of hipB did not markedly inhibit protein synthesis as did wild-type hipA and yet still conferred persistence to ca. 10% of cells. We propose that wild-type HipA, upon release from HipB, is able to inhibit macromolecular synthesis and induces a bacteriostatic state that can be reversed by expression of the hipB gene. However, the ability of the wild-type hipA gene to generate a high frequency of persisters, equal to that conferred by the hipA7 allele, may be distinct from the ability to block macromolecular synthesis.  相似文献   

2.
3.
Like many other bacteria, Escherichia coli remain as tiny viable individuals named persisters after being exposed to an antibiotic. These persisters are believed to be phenotypic heterogeneous one rather than mutants, because their progenies are as susceptible to antibiotics as their ancestors. Recently, two persister-related genes (hipB/hipA) were confirmed to belong to a toxin-antitoxin (TA) module. Their control circuit was believed to be responsible for generation of the persister subpopulation. For the well-studied TA module, we build a simple genetic regulation model to explain the phenotypic heterogeneity. We find that a sole double-negative feedback loop is not enough to explain the phenotypic heterogeneity; the cooperation mechanisms in HipB and HipA are indispensable. Moreover, our model illustrates an important persister-related experimental phenomenon: the emergence of the persister depends on the growth rate in continuous culture.  相似文献   

4.
The relA gene of Escherichia coli encodes guanosine 3',5'-bispyrophosphate (ppGpp) synthetase I, a ribosome-associated enzyme that is activated during amino acid starvation. The stringent response is thought to be mediated by ppGpp. Mutations in relA are known to result in pleiotropic phenotypes. We now report that three different relA mutant alleles, relA1, relA2, and relA251::kan, conferred temperature-sensitive phenotypes, as demonstrated by reduced plating efficiencies on nutrient agar (Difco) or on Davis minimal agar (Difco) at temperatures above 41 degrees C. The relA-mediated temperature sensitivity was osmoremedial and could be completely suppressed, for example, by the addition of NaCl to the medium at a concentration of 0.3 M. The temperature sensitivities of the relA mutants were associated with decreased thermotolerance; e.g., relA mutants lost viability at 42 degrees C, a temperature that is normally nonlethal. The spoT gene encodes a bifunctional enzyme possessing ppGpp synthetase and ppGpp pyrophosphohydrolase activities. The introduction of the spoT207::cat allele into a strain bearing the relA251::kan mutation completely abolished ppGpp synthesis. This ppGpp null mutant was even more temperature sensitive than the strain carrying the relA251::kan mutation alone. The relA-mediated thermosensitivity was suppressed by certain mutant alleles of rpoB (encoding the beta subunit of RNA polymerase) and spoT that have been previously reported to suppress other phenotypic characteristics conferred by relA mutations. Collectively, these results suggest that ppGpp may be required in some way for the expression of genes involved in thermotolerance.  相似文献   

5.
F'-episomes carrying the Salmonella typhimurium wild-type or attenuator-deleted histidine (his) operons were introduced into Escherichia coli strains containing relA or spoT single and double mutations known to affect guanosine 3'-diphosphate 5'-diphosphate (ppGpp) and guanosine 3'-triphosphate 5'-diphosphate (pppGpp) levels. Expression of the his operon and expression of the gene for 6-phosphogluconate dehydrogenase (gnd) were measured during balanced growth in amino acid-rich and minimal media. The data were consistent with the interpretation that ppGpp is a positive effector of his operon expression, whereas pppGpp is not an essential effector. The conclusion that his operon expression is maximally stimulated at a lower than maximum intracellular ppGpp concentration was further confirmed. Neither ppGpp nor pppGpp appeared to influence gnd gene expression. The metabolic regulation of the E. coli his operon was found to be similar to the ppGpp-meidated metabolic regulation of the S. typhimurium his operon.  相似文献   

6.
In Streptomyces coelicolor A3(2), deletion of relA or a specific mutation in rplK ( relC) results in an inability to synthesize ppGpp (guanosine 5'-diphosphate 3'-diphosphate) and impairs production of actinorhodin. We have found that certain rifampicin-resistant ( rif) mutants isolated from either relA or relC strains regain the ability to produce actinorhodin at the same level as the wild-type strain, although their capacity to synthesize ppGpp is unchanged. These rif mutants were found to have a missense mutation in the rpoB gene that encodes the RNA polymerase beta-subunit. This rpoB mutation was shown to be responsible for the observed changes in phenotype, as demonstrated by gene replacement experiments. Gene expression analysis revealed that the restoration of actinorhodin production in both relA and relC strains is accompanied by increased expression of the pathway-specific regulator gene actII-ORF4, which is normally decreased in the rel mutants. In addition to the restoration of antibiotic production, the rif mutants also exhibited a lower rate of RNA synthesis compared to the parental strain when grown in a rich medium, suggesting that these mutant RNA polymerases behave like "stringent" RNA polymerases. These results indicate that rif mutations can alter gene expression patterns independently of ppGpp. We propose that RNA polymerases carrying particular rif mutations in the beta-subunit can functionally mimic the modification induced by binding of ppGpp.  相似文献   

7.
Nonsense and insertion mutants in the relA gene of E. coli: cloning relA.   总被引:9,自引:0,他引:9  
J D Friesen  G An  N P Fiil 《Cell》1978,15(4):1187-1197
We have made use of lysogens of a specialized transducing bacteriophage, lambdapyrG+ relA+, to select nonsense (relAnon) and insertion (relAins) mutations in the relA gene. Three independent relAnon mutants were isolated on the phage. In all three, the relaxed phenotype was suppressed by supD, supE, supF or sup6. Three independent relAins mutants were isolated, all containing an insertion element (probably IS2) in an apparently identical location in the relA gene. Polyacrylamide gel electrophoretic analysis of peptides synthesized by the phages in ultraviolet lightkilled host cells revealed that no stringent factor was coded for by either the relAins or relAnon phages (the latter in a sup+ cell); stringent factor was detected when the relAnon phages were used in a similar experiment with supD or supE host cells. The relAnon and relAins mutations could be crossed in haploid form in the E. coli chromosome. These recombinants grew with a normal doubling time, had a ppGpp pool which was between 70 and 100% compared with the classical relA strain, and underwent a normal carbon source shift-down. A restriction endonuclease map of the pyrG relA region of the specialized transducing phage is presented in which the position of the insertion element (recognized by a novel Hind III-cut site) defines the position of the relA gene. This position was verified by an analysis of the structure of five plasmids formed by cloning portions of the region in the pBR322 cloning vehicle. Our results indicate that the relA gene is not an essential cellular function, that there might be a second mechanism for the synthesis of basal level ppGpp in the cell and that the sole function of the relA gene is apparently the high level ppGpp synthesis triggered in response to deacylated tRNA.  相似文献   

8.
V K Gordeev  M I Turkov 《Genetika》1983,19(2):217-220
It has been shown in our previous study that mutations in genes relA, relC and rpsL result in the delay in Escherichia coli ilv operon derepression; the complete inhibition of derepression of the ilv operon is observed in the double mutants having alterations in rpsL and relA or relC genes. At present, some mutations occurring in the fus gene and altering the structure of the translational elongation G factor have been also found to delay derepression of E. coli ilv operon and complete inhibition in fusr and rel double mutants. Phenotypical ile and val auxotrophy is also detected in the double E. coli mutants with spectinomycin resistance mutation in rpsE gene coding for the structure of ribosomal S5 protein and mutations in relA or relC genes. The suggestion of participation of the ilv operon in regulation of other E. coli amino acid operons expression is discussed.  相似文献   

9.
It was known previously that 1) the relA gene of Escherichia coli encodes an enzyme capable of guanosine 3',5'-bispyrophosphate (ppGpp) synthesis, 2) an uncharacterized source of ppGpp synthesis exists in relA null strains, and 3) cellular degradation of ppGpp is mainly due to a manganese-dependent ppGpp 3'-pyrophosphohydrolase encoded by the spoT gene. Here, the effects of spoT gene insertions and deletions are compared with analogous alterations in neighboring genes in the spo operon and found to be lethal in relA+ strains as well as slower growing in relAl backgrounds than delta relA hosts. Cells with null alleles in both the relA and spoT genes are found no longer to accumulate ppGpp after glucose exhaustion or after chelation of manganese ions by picolinic acid addition; the inability to form ppGpp is reversed by a minimal spoT gene on a multicopy plasmid. Strains apparently lacking ppGpp show a complex phenotype including auxotrophy for several amino acids and morphological alterations. We propose that the SpoT protein can either catalyze or control the alternative pathway of ppGpp synthesis in addition to its known role as a (p)ppGpp 3'-pyrophosphohydrolase. We favor the possibility that the SpoT protein is a bifunctional enzyme capable of catalyzing either ppGpp synthesis or degradation.  相似文献   

10.
11.
R Little  J Ryals    H Bremer 《Journal of bacteriology》1983,155(3):1162-1170
We have previously reported the isolation of Escherichia coli rpoB mutants in which the control of ribosome synthesis by the nucleotide effector guanosine tetraphosphate (ppGpp) is altered, owing to a 20-fold increased sensitivity of the mutant RNA polymerases to ppGpp. In these mutants, the level of ppGpp during exponential growth is decreased about 10-fold, relative to that of rpoB+ wild-type strains, such that a near normal partitioning of RNA polymerase occurs with respect to stable RNA (rRNA and tRNA) gene activity. Here, the physiological effects of two different rpoB alleles in a relA+ and relA background were analyzed in greater detail by comparison with their isogenic rpoB+ wild-type parents. For a given growth medium, the rpoB mutations were found to affect four parameters which resulted in a reduction of growth rate. The results reinforce a previous conclusion that a key element in control of the bacterial growth rate is a mutual relationship between control of ribosome synthesis by ppGpp and control of relA-independent ppGpp metabolism by the concentration and function of ribosomes.  相似文献   

12.
During its life cycle, Legionella pneumophila alternates between a replicative and a transmissive state. To determine their contributions to L. pneumophila differentiation, the two ppGpp synthetases, RelA and SpoT, were disrupted. Synthesis of ppGpp was required for transmission, as relA spoT mutants were killed during entry to and exit from macrophages. RelA, which senses amino acid starvation induced by serine hydroxamate, is dispensable in macrophages, as relA mutants spread efficiently. SpoT monitors fatty acid biosynthesis (FAB), since following cerulenin treatment, wild-type and relA strains expressed the flaA transmissive gene, but relA spoT mutants did not. As in Escherichia coli , the SpoT response to FAB perturbation likely required an interaction with acyl-carrier protein (ACP), as judged by the failure of the spoT-A413E allele to rescue transmissive trait expression of relA spoT bacteria. Furthermore, SpoT was essential for transmission between macrophages, since secondary infections by relA spoT mutants were restored by induction of spoT , but not relA . To resume replication, ppGpp must be degraded, as mutants lacking spoT hydrolase activity failed to convert from the transmissive to the replicative phase in either bacteriological medium or macrophages. Thus, L. pneumophila requires SpoT to monitor FAB and to alternate between replication and transmission in macrophages.  相似文献   

13.
Through the use of a new nucleotide extraction procedure, we had previously shown that relaxed mutants of Escherichia coli exhibit a unique response to amino acid starvation (Lagosky, P. A., and Chang, F. N. (1980) J. Bacteriol. 144, 499-508). The basal level amounts of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in both relA and phenotypically relaxed relA+ rplK (relC) strains were shown to decrease at the onset of amino acid limitation and to remain severely depressed throughout the course of the starvation. Upon resupplementation of amino acid-starved relaxed mutants, the production of ppGpp resumes and results in the temporary overaccumulation of this nucleotide beyond its original basal level amount. We now show that the basal level ppGpp content of relaxed bacteria, as well as its subsequent fluctuations in response to amino acid starvation, is inversely correlated with the initial rates of RNA synthesis in these strains. The ability of ppGpp to control the rate of protein synthesis in relA mutants was also examined. It was observed that ppGpp had no apparent direct effect on the initial rates of protein synthesis in relA mutants. The constant inverse correlation which exists between ppGpp content in relA mutants, and their rates of RNa synthesis provide evidence which indicates that basal level ppGpp synthesis has definite physiological significance. It also suggests that the synthesis of basal level ppGpp might be an absolute requirement needed for normal bacterial growth.  相似文献   

14.
We observed that the synthesis of basal-level guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in both relA mutants and relA+ relC strains of Escherichia coli decreased in response to amino acid limitation and that this was accompanied by an increase in ribonucleic acid (RNA) synthesis. Addition of the required amino acid to starved cultures of relaxed bacteria resulted in the resumption of ppGpp synthesis and a concomitant decrease in RNA production. Our results indicate that relA mutants retain a stringent factor-independent ribosomal mechanism for basal-level ppGpp synthesis. They also suggest that in relA+ bacteria, stringent factor-mediated ppGpp synthesis and the production of basal-level ppGpp are mutually exclusive. These findings substantiate the hypothesis that there are two functionally discrete mechanisms for ppGpp synthesis in E. coli. Through these studies we have also obtained new evidence which indicates that ppGpp serves as a modulator of RNA synthesis during balanced growth as well as under conditions of nutritional downshift and starvation.  相似文献   

15.
16.
The cellular concentrations of ppGpp in the dnaK(Ts) and dnaJ(Ts) mutants of Escherichia coli were examined, since the thermosensitive RNA synthesis of these mutants is relaxed by an additional mutation in the relA gene. The results showed that ppGpp accumulated extensively in the dnaK(Ts) and dnaJ(Ts) mutants after a temperature shift up, reaching levels of 5 mM and 0.5 mM, respectively. This unusual accumulation of ppGpp was suppressed by the relA1 mutation, implying that it results from induction of a stringent response in these mutants at a nonpermissive temperature.  相似文献   

17.
18.
The majority of cells transferred from stationary-phase culture into fresh medium resume growth quickly, while a few remain in a nongrowing state for longer. These temporarily nonproliferating bacteria are tolerant of several bactericidal antibiotics and constitute a main source of persisters. Several genes have been shown to influence the frequency of persisters in Escherichia coli, although the exact mechanism underlying persister formation is unknown. This study demonstrates that the frequency of persisters is highly dependent on the age of the inoculum and the medium in which it has been grown. The hipA7 mutant had 1,000 times more persisters than the wild type when inocula were sampled from younger stationary-phase cultures. When started after a long stationary phase, the two displayed equal and elevated persister frequencies. The lower persister frequencies of glpD, dnaJ, and surA knockout strains were increased to the level of the wild type when inocula aged. The mqsR and phoU deletions showed decreased persister levels only when the inocula were from aged cultures, while sucB and ygfA deletions had decreased persister levels irrespective of the age of the inocula. A dependency on culture conditions underlines the notion that during screening for mutants with altered persister frequencies, the exact experimental details are of great importance. Unlike ampicillin and norfloxacin, which always leave a fraction of bacteria alive, amikacin killed all cells in the growth resumption experiment. It was concluded that the frequency of persisters depends on the conditions of inoculum cultivation, particularly its age, and the choice of antibiotic.  相似文献   

19.
Bacterial populations contain persisters, cells which survive exposure to bactericidal antibiotics and other lethal factors. Persisters do not have a genetic resistance mechanism, and their means to tolerate killing remain unknown. In exponentially growing populations of Escherichia coli the frequency of persister formation usually is 10−7 to 10−5. It has been shown that cells overexpressing either of the toxic proteins HipA and RelE, both members of the bacterial toxin-antitoxin (TA) modules, have the ability to form more persisters, suggesting a specific role for these toxins in the mechanism of persistence. However, here we show that cells expressing proteins that are unrelated to TA modules but which become toxic when ectopically expressed, chaperone DnaJ and protein PmrC of Salmonella enterica, also form 100- to 1,000-fold more persisters. Thus, persistence is linked not only to toxicity caused by expression of HipA or dedicated toxins but also to expression of other unrelated proteins.  相似文献   

20.
Except for a small fraction of persisters, 10(-6) to 10(-5), Escherichia coli K-12 is killed by prolonged inhibition of murein synthesis. The progeny of persisters are neither more resistant to inhibition of murein synthesis nor more likely to persist than normal cells. Mutants have been isolated in which a larger fraction, 10(-2), persists. The persistent response of the mutants, Hip (high persistence), is to inhibition of murein synthesis at early or late steps by antibiotics (phosphomycin, cycloserine, and ampicillin) or by metabolic block (starvation for diaminopimelic acid). Killing of the parent strain by each of the four inhibitors has two phases: The first is rapid and lasts about 30 min; the second is slower, but still substantial, and lasts 3 to 4 h. The first phase also occurs in the Hip mutants, but then viability of the mutants remains constant after about 30 min. Neither tolerance, resistance, impaired growth, nor reversion of spheroplasts accounts for high-frequency persistence. Two of the mutations map at 33.8 min in a region containing few other recognized functions. This position and the phenotypes define hipA as a newly recognized gene. Transposons Tn5 and Tn10 have been inserted close to hipA making it possible to explore the molecular genetics of persistence, a long recognized but poorly understood phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号