首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of a reliable dose monitoring system in hadron therapy is essential in order to control the treatment plan delivery. Positron Emission Tomography (PET) is the only method used in clinics nowadays for quality assurance. However, the accuracy of this method is limited by the loss of signal due to the biological washout processes. Up to the moment, very few studies measured the washout processes and there is no database of washout data as a function of the tissue and radioisotope. One of the main difficulties is related to the complexity of such measurements, along with the limited time slots available in hadron therapy facilities. Thus, in this work, we proposed an alternative in vivo methodology for the measurement and modeling of the biological washout parameters without any radiative devices. It consists in the implementation of a point-like radioisotope source by direct injection on the tissues of interest and its measurement by means of high-resolution preclinical PET systems. In particular, the washout of 11C carbonate radioisotopes was assessed, considering that 11C is is the most abundant β+ emitter produced by carbon beams. 11C washout measurements were performed in several tissues of interest (brain, muscle and 9L tumor xenograf) in rodents (Wistar rat). Results show that the methodology presented is sensitive to the washout variations depending on the selected tissue. Finally, a first qualitative correlation between 11C tumor washout properties and tumor metabolism (via 18F-FDG tracer uptake) was found.  相似文献   

2.
Potassium efflux from single skinned skeletal muscle fibers.   总被引:1,自引:0,他引:1       下载免费PDF全文
The efflux of 42K from single, skinned (sarcolemma removed) skeletal muscle fibers has been determined. Isotope washout curves are kinetically complex and can be fit as the sum of three exponentials, including a fast component (k = 0.25 s-1) with a pool size equivalent to 91% of the fiber volume, an intermediate component (k = 0.08 s-1) equivalent to 6% of the fiber volume, and a slow component (k = 0.008 s-1) equivalent to 0.5% of fiber volume. Only the intermediate kinetic component is significantly affected by pretreatment of fibers with detergent. Efflux curves from detergent-treated fibers could be fit as the sum of two exponentials with coefficients and rate constants comparable to those of the fast and slow component of washout of untreated controls. Similarly the washout of [14C]sucrose can be described as the sum of two exponentials. We conclude that the intermediate component of 42K washout results from the movement of ions from a membrane bound space within the skinned fiber. Because of its relative volume, the sarcoplasmic reticulum seems to be a reasonable choice as a structural correlate for this component. Our estimate of the potassium permeability for the sarcoplasmic reticulum (SR) based on the efflux data is 10(-7) cm/s. This value is less than previous estimates from isolated preparations.  相似文献   

3.
A set of generalized diffusion equations have been derived which describe radioactive tracer movement in any tissue that can be modeled as a distributed two-compartment system. These equations have been applied to ionic tracer movement in cylindrical muscle bundles, and the boundary conditions used correspond to experimental conditions during various ionic tracer diffusion experiments on cardiac papillary muscles. Specifically, solutions were obtained for extra- and intracellular tracer washout as well as for the extra- and intracellular steady-state tracer diffusion experiments of Weidmann (1966). These solutions are presented in series form as well as in graphical form and are compared with the corresponding experimental data. A comparison of these solutions with those obtained using simple exponential kinetics is presented, and it is shown that there is a marked discrepancy between these two methods of analysis for bundles of any appreciable diameter.  相似文献   

4.
《Molecular membrane biology》2013,30(1-2):131-157
α-Bungarotoxin (BuTX; 5 μg/ml) completely blocked the endplate potential and extrajunctional acetylcholine (ACh) sensitivity of surface fibers in normal and chronically denervated mammalian muscles, respectively, in about 35 min. A 0.72 ± 0.033 mV amplitude endplate potential returned in normal muscle fibers after 6.5 hr. of washout of α-BuTX, and an ACh sensitivity of 41.02 ± 3.95 mV/nC was recorded in denervated muscle after 6.5 hr of wash (control being 1215 ± 197 mV/nC). A two-step reaction of BuTX with binding sites which may allosterically interact is postulated.

Several pharmacologic differences were noted between the ACh receptors at the normal endplate and those appearing extrajunctionally following denervation. In normal innervated muscles exposed to BuTX in the presence of 20 μM carbamylcholine or decamethonium, washout of both drugs restored twitch to control levels within 2 hr. Endplate potentials large enough to initiate action potentials were also recorded in most surface fibers. In contrast, these agents, in much higher concentrations (50 μM), were almost ineffective in preventing BuTX blockade of ACh sensitivity in denervated muscle. Hexamethonium (10 and 50 mM) depressed neuromuscular transmission and blocked the action of BuTX in normal muscle in a dose-dependent fashion. On the extrajunctional receptors, hexamethonium (50 mM) was ineffective in protecting against BuTX. We may conclude that at the normal endplate region there are two distinct populations of ACh receptors, both of which react with cholinergic ligands and BuTX, but that a small population (representing ± 1% of the total) reacts with BuTX reversibly. Our findings further suggest a clear distinction between ACh receptors located at the normal endplate region and those of the extrajunctional region of the chronically denervated mammalian muscle.  相似文献   

5.
Using near-infrared spectroscopy (NIRS) and the tracer indocyanine green (ICG), we quantified blood flow in calf muscle and around the Achilles tendon during plantar flexion (1-9 W). For comparison, blood flow in calf muscle was determined by dye dilution in combination with magnetic resonance imaging measures of muscle volume, and, for the peritendon region, blood flow was measured by (133)Xe washout. From rest to a peak load of 9 W, NIRS-ICG blood flow in calf muscle increased from 2.4+/-0.2 to 74+/-5 ml x 100 ml tissue(-1) x min(-1), similar to that measured by reverse dye (77+/-6 ml x 100 ml tissue(-1) x min(-1)). Achilles peritendon blood flow measured by NIRS-ICG rose with exercise from 2.2+/-0.5 to 15.1+/-0.2 ml x 100 ml(-1) x min(-1), which was similar to that determined by (133)Xe washout (2.0+/-0.6 to 14.6+/-0.3 ml x 100 ml tissue(-1) x min(-1)). This is the first study using NIRS and ICG to quantify regional tissue blood flow during exercise in humans. Due to its high spatial and temporal resolution, the technique may be useful for determining regional blood flow distribution and regulation during exercise in humans.  相似文献   

6.
The effect of serum albumin on the washout of K42 from isolated frog sartorius muscles, previously labeled in vitro with this isotope, has been investigated. Incorporation of 1% serum albumin in the washout fluid has been found to cause a significant reduction in the rate constant for K42 loss from the muscle fibers. A similar reduction in the rat constant for K42 efflux was observed when the medium, though not containing protein, was exhaustively dialyzed before use against a solution containing serum albumin. Addition of 10?6 M HgCl2 to “dialyzed” Ringer increased the rate of loss of K42 from the fibers. Effects similar to those obtained with serum albumin were observed when 10?4 M cysteine was incorporated in the washout fluid. 3-mercapto-propanol gave rise to transient reductions in the rate of K42 efflux, but, following prolonged exposure to this agent, the efflux rate was increased. 2′3-dimercapto-propanol (BAL) increased the rate of K42 loss from the fibers. It is suggested that this effect of serum albumin is due to its sequestering action on toxic substances (tentatively identified as heavy metals) normally present in trace amounts in Ringer's solutions.  相似文献   

7.
To better understand factors that influence carbon monoxide (CO) washout rates, we utilized a multicompartment mathematical model to predict rates of CO uptake, distribution in vascular and extravascular (muscle vs. other soft tissue) compartments, and washout over a range of exposure and washout conditions with varied subject-specific parameters. We fitted this model to experimental data from 15 human subjects, for whom subject-specific parameters were known, multiple washout carboxyhemoglobin (COHb) levels were available, and CO exposure conditions were identical, to investigate the contributions of exposure conditions and individual variability to CO washout from blood. We found that CO washout from venous blood was biphasic and that postexposure times at which COHb samples were obtained significantly influenced the calculated CO half times (P < 0.0001). The first, more rapid, phase of CO washout from the blood reflected the loss of CO to the expired air and to a slow uptake by the muscle compartment, whereas the second, slower washout phase was attributable to CO flow from the muscle compartment back to the blood and removal from blood via the expired air. When the model was used to predict the effects of varying exposure conditions for these subjects, the CO exposure duration, concentration, peak COHb levels, and subject-specific parameters each influenced washout half times. Blood volume divided by ventilation correlated better with half-time predictions than did cardiac output, muscle mass, or ventilation, but it explained only approximately 50% of half-time variability. Thus exposure conditions, COHb sampling times, and individual parameters should be considered when estimating CO washout rates for poisoning victims.  相似文献   

8.
Fiber composition and oxidative capacity of hamster skeletal muscle.   总被引:6,自引:0,他引:6  
The hamster is a valuable biological model for physiological investigation. Despite the obvious importance of the integration of cardiorespiratory and muscular system function, little information is available regarding hamster muscle fiber type and oxidative capacity, both of which are key determinants of muscle function. The purpose of this investigation was to measure immunohistochemically the relative composition and size of muscle fibers composed of types I, IIA, IIX, and IIB fibers in hamster skeletal muscle. The oxidative capacity of each muscle was also assessed by measuring citrate synthase activity. Twenty-eight hindlimb, respiratory, and facial muscles or muscle parts from adult (144-147 g bw) male Syrian golden hamsters (n=3) were dissected bilaterally, weighed, and frozen for immunohistochemical and biochemical analysis. Combining data from all 28 muscles analyzed, type I fibers made up 5% of the muscle mass, type IIA fibers 16%, type IIX fibers 39%, and type IIB fibers 40%. Mean fiber cross-sectional area across muscles was 1665 +/- 328 microm(2) for type I fibers, 1900 +/- 417 microm(2) for type IIA fibers, 3230 +/- 784 microm(2) for type IIX fibers, and 4171 +/- 864 microm(2) for type IIB fibers. Citrate synthase activity was most closely related to the population of type IIA fibers (r=0.68, p<0.0001) and was in the rank order of type IIA > I > IIX > IIB. These data demonstrate that hamster skeletal muscle is predominantly composed of type IIB and IIX fibers.  相似文献   

9.
Light diffraction patterns from isolated frog semitendinosus muscle fibers were examined. When transilluminated by laser light, the muscle striations produce a diffraction pattern consisting of a series of lines that are projected as points onto an optical detector by a lens system. Diffraction data may be sequentially stored every 18 ms for later processing by digital computer systems. First- and second-order diffraction line intensities were examined from intact, chemically skinned, and glycerinated single fibers. The diffraction line intensities demonstrated a strong length dependence upon passive stretch from reference length to 3.6 micrometer. The first-order intensity linearly increased an average of 15-fold over the range examined. The magnitude of the second order intensity was less than the first order and showed an exponential rise with increasing length. Both first- and second-order intensities decreased upon muscle activation. Data from chemically skinned and glycerinated single fibers were not significantly different from intact fibers, indicating that the membrane structure has little effect upon the diffraction phenomenon in muscle. Theoretical model systems are examined in an attempt to find the basis of these results. Neither an analysis based on a diffraction grating with variable spacing nor the unit cell model of Fujime provides an explanation for the observed length dependency of intensity. Though the origin of the intensity decrease upon stimulation is not known, we have suggested that it could result from lateral misalignment of myofibrils and can occur upon activation.  相似文献   

10.
In order to study the development of the m. soleus muscle fibers during postnatal ontogenesis in the rat, methods for revealing ATPase activity of myosin at preincubation in acidic and alcaline medium and lactate dehydrogenase and succinate dehydrogenase activity have been used. The m. soleus undergoes three stages of development. The first stage--from birth of the animal up to the 7th day. During this time the muscle is homogenous. The second stage is characterized by appearance of certain histochemical differences in the muscle fibers. The muscle becomes mixed. During the whole period (in males from the 7th up to the 175th, and in females from the 7th up to the 60th-70th day) transferring of glycolytic fibers into oxidative-glycolytic ones with their successive transformation into oxidative fibers is observed. During the third stage (in males older than 175, and in females older than 60-70 days) the m. soleus converts from the mixed into the homogenous one consisting of oxidative fibers.  相似文献   

11.
We examine the muscle fiber population of skeletal muscles from whole body in the cheetah (Acinonyx jubatus). In the present experiments, we showed the characteristics of fiber composition in the cheetah by comparative studies among the cheetah, domestic cat, and the beagle dog. Fiber population was determined on muscle fibers stained with monoclonal antibody to each myosin heavy chain isoform. Histochemical analysis demonstrated that many muscles in the cheetah and domestic cat had a low percentage of Type I fibers and a high percentage of Type IIx fibers, while those in the beagle dog showed a high percentage of Type IIa. The hindlimb muscles in the cheetah had a higher percentage of Type II (Type IIa + IIx) fiber than the forelimb muscles. This fact suggests that the propulsive role of the hindlimb is greater than the forelimb in the cheetah. The longissimus in the cheetah had a high percentage of Type IIx fibers over a wide range from the thoracic to lumbar parts, while the population of muscle fibers in this muscle was different depending on the parts in the domestic cat and beagle dog. This indicates that the cheetah can produce a strong and quick extension of the spinal column and increase its stiffness during locomotion. Furthermore, we found the notable difference of muscle fiber type population between flexors and extensors of digits in the cheetah. The present experiments show the characteristics of muscle fibers in the cheetah, corresponded to its ability to perform high-speed running.  相似文献   

12.
Functional impairments of the mucociliary system (MCS) are known to develop in destructive tuberculous inflammation in the lung tissue. The effect of surfactant agents and their production stimulants is to recover the ventilation and gas exchange functions of the lung. The radioaerosol technique that adequately characterizes the deposition of an inhaled agent in the bronchial tree and records the state of mucociliary clearance (MCC) and MCS in different portions of the lung by the rate of tracer washout is of the greatest information value for the evaluation of MCC in vivo. Its normal values are in rather wide ranges so the absolute values are of low informative value. By taking into account the variability in the tracer washout range in health, the authors used only the time course of relative changes in this parameter--before and after surfactant therapy. The capacities of pulmonary scintigraphy were employed to monitor the efficiency of treatment for tuberculosis. The percentage of the activities in the areas of the right and left lung individually and in combination was estimated, by constructing the tracer washout curve. The percentage of 60-minute tracer washout was borne in mind to determine the rate of MCC.  相似文献   

13.
When skeletal muscle fibers are subjected to a hydrostatic pressure of 10 MPa (100 atmospheres), reversible changes in tension occur. Passive tension from relaxed muscle is unaffected, rigor tension rises, and active tension falls. The effects of pressure on muscle structure are unknown: therefore a pressure-resistant cell for x-ray diffraction has been built, and this paper reports the first study of the low-angle equatorial patterns of pressurized relaxed, rigor, and active muscle fibers, with direct comparisons from the same chemically skinned rabbit psoas muscle fibers at 0.1 and 10 MPa. Relaxed and rigor fibers show little change in the intensity of the equatorial reflections when pressurized to 10 MPa, but there is a small, reversible expansion of the lattice of 0.7 and 0.4%, respectively. This shows that the order and stability of the myofilament lattice is undisturbed by this pressure. The rise in rigor tension under pressure is thus probably due to axial shortening of one or more components of the sarcomere. Initial results from active fibers at 0.1 MPa show that when phosphate is added the lattice spacing and equatorial intensities change toward their relaxed values. This indicates cross-bridge detachment, as expected from the reduction in tension that phosphate induces. 10 MPa in the presence of phosphate at 11 degrees C causes tension to fall by a further 12%, but not change is detected in the relative intensity of the reflections, only a small increase in lattice spacing. Thus pressure appears to increase the proportion of attached cross-bridges in a low-force state.  相似文献   

14.
The conversion of multinucleate postmitotic muscle fibers to dividing mononucleate progeny cells (cellularisation) occurs during limb regeneration in salamanders, but the cellular events and molecular regulation underlying this remarkable process are not understood. The homeobox gene Msx1 has been studied as an antagonist of muscle differentiation, and its expression in cultured mouse myotubes induces about 5% of the cells to undergo cellularisation and viable fragmentation, but its relevance for the endogenous programme of salamander regeneration is unknown. We dissociated muscle fibers from the limb of larval salamanders and plated them in culture. Most of the fibers were activated by dissociation to mobilise their nuclei and undergo cellularisation or breakage into viable multinucleate fragments. This was followed by microinjection of a lineage tracer into single fibers and analysis of the labelled progeny cells, as well as by time-lapse microscopy. The fibers showing morphological plasticity selectively expressed Msx1 mRNA and protein. The uptake of morpholino antisense oligonucleotides directed to Msx1 led to a specific decrease in expression of Msx1 protein in myonuclei and marked inhibition of cellularisation and fragmentation. Myofibers of the salamander respond to dissociation by activation of an endogenous programme of cellularisation and fragmentation. Lineage tracing demonstrates that cycling mononucleate progeny cells are derived from a single myofiber. The induction of Msx1 expression is required to activate this programme. Our understanding of the regulation of plasticity in postmitotic salamander cells should inform strategies to promote regeneration in other contexts.  相似文献   

15.
Reorientation of the regulatory domain of the myosin head is a feature of all current models of force generation in muscle. We have determined the orientation of the myosin regulatory light chain (RLC) using a spin-label bound rigidly and stereospecifically to the single Cys-154 of a mutant skeletal isoform. Labeled RLC was reconstituted into skeletal muscle fibers using a modified method that results in near-stoichiometric levels of RLC and fully functional muscle. Complex electron paramagnetic resonance spectra obtained in rigor necessitated the development of a novel decomposition technique. The strength of this method is that no specific model for a complex orientational distribution was presumed. The global analysis of a series of spectra, from fibers tilted with respect to the magnetic field, revealed two populations: one well-ordered (+/-15 degrees ) with the spin-label z axis parallel to actin, and a second population with a large distribution (+/-60 degrees ). A lack of order in relaxed or nonoverlap fibers demonstrated that regulatory domain ordering was defined by interaction with actin rather than the thick filament surface. No order was observed in the regulatory domain during isometric contraction, consistent with the substantial reorientation that occurs during force generation. For the first time, spin-label orientation has been interpreted in terms of the orientation of a labeled domain. A Monte Carlo conformational search technique was used to determine the orientation of the spin-label with respect to the protein. This in turn allows determination of the absolute orientation of the regulatory domain with respect to the actin axis. The comparison with the electron microscopy reconstructions verified the accuracy of the method; the electron paramagnetic resonance determined that axial orientation was within 10 degrees of the electron microscopy model.  相似文献   

16.
A comparison is made between multiexponential and multicompartmental analyses of tracer washout data from biological tissues. Various analytical and computer methods are used to explore the relations between kinetic parameters of three-compartment models and parameters of three-exponential functions fitted to typical observed tracer washout records and also to examine relations between kinetic parameters of the same three-compartment models determined analytically and numerically.It is concluded that exponential factors and coefficients cannot always be equated respectively with compartmental transport rate constants or compartment sizes. Sufficient analytical and computer methodologies exist so that selection of meaningful biological models should not be hampered by a lack of appropriate solution procedures.  相似文献   

17.
The conversion of multinucleate postmitotic muscle fibers to dividing mononucleate progeny cells (cellularisation) occurs during limb regeneration in salamanders, but the cellular events and molecular regulation underlying this remarkable process are not understood. The homeobox gene Msx1 has been studied as an antagonist of muscle differentiation, and its expression in cultured mouse myotubes induces about 5% of the cells to undergo cellularisation and viable fragmentation, but its relevance for the endogenous programme of salamander regeneration is unknown. We dissociated muscle fibers from the limb of larval salamanders and plated them in culture. Most of the fibers were activated by dissociation to mobilise their nuclei and undergo cellularisation or breakage into viable multinucleate fragments. This was followed by microinjection of a lineage tracer into single fibers and analysis of the labelled progeny cells, as well as by time-lapse microscopy. The fibers showing morphological plasticity selectively expressed Msx1 mRNA and protein. The uptake of morpholino antisense oligonucleotides directed to Msx1 led to a specific decrease in expression of Msx1 protein in myonuclei and marked inhibition of cellularisation and fragmentation. Myofibers of the salamander respond to dissociation by activation of an endogenous programme of cellularisation and fragmentation. Lineage tracing demonstrates that cycling mononucleate progeny cells are derived from a single myofiber. The induction of Msx1 expression is required to activate this programme. Our understanding of the regulation of plasticity in postmitotic salamander cells should inform strategies to promote regeneration in other contexts.  相似文献   

18.
19.
Examination of the ultrastructure and mechanical activation of the ventro-abdominal flexor muscle of the freshwater crustacean Atya lanipes shows that the fibers are of the long sarcomere, tonic type. The fibers possess an ample and well-organized internal membrane system, with extensive regions of T/SR dyad contacts near the ends of the A bands. An orbit of 10-12 thin filaments surrounds each thick filament. The lanthanum tracer method reveals a highly regular organization of the T-system, Z-tubules, and multiple internal clefts. Tension generation responds to extracellular potassium in a concentration dependent manner and is very slow. Mechanical activation is strictly dependent on extracellular Ca2+, even though these muscle fibers do not generate Ca2+ currents when depolarized. Tension development responds to caffeine and is also dependent on extracellular Na+, suggesting that Ca2+ release from the SR and Ca2+ influx via the Na/Ca exchanger intervene in mechanical activation.  相似文献   

20.
We report here 1) the synthesis and properties of a new macromolecular carbonic anhydrase inhibitor, Prontosil-dextran, 2) its application to determine the localization of a previously described extracellular carbonic anhydrase in skeletal muscle, and 3) the application of a recently published histochemical technique using dansylsulfonamide to the same problem. Stable macromolecular inhibitors of molecular weights of 5,000, 100,000 and 1,000,000 were produced by covalently coupling the sulfonamide Prontosil to dextrans. Their inhibition constants towards bovine carbonic anhydrase II are 1-2 X 10(-7) M. The Prontosil-dextrans, PD 5,000, PD 100,000, and PD 1,000,000, were used in studies of the washout of H14CO3-) from the perfused rabbit hindlimb. This washout is slow due to the presence of an extracellular carbonic anhydrase and can be markedly accelerated by PD 5,000 but not by PD 100,000 and PD 1,000,000. Since PD 5,000 is accessible to the entire extracellular space and PD 100,000 and PD 1,000,000 are confined to the intravascular space, we conclude that the extracellular carbonic anhydrase of skeletal muscle is located in the interstitium. The histochemical studies show a strong staining of the sarcolemma of the muscle fibers with high oxidative capacity. It appears likely, therefore, that the extracellular carbonic anhydrase of skeletal muscle is associated with muscle plasma membranes with its active site directed toward the interstitial space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号