首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Phosphate efflux was measured as the fractional rate of loss of radioactivity from rabbit vagus loaded with radiophosphate. The effects of changes in extracellular calcium and of lanthanum have been investigated. In Locke solution with normal, 0.9mm, calcium and without phosphate, the fractional rate of loss was 1.62×10–3 min–1 at 120 min after the beginning of the washing period and fell slowly (9% hr–1) during washing from 2 to 6 hr. Addition of calcium to the Locke solution produced a transient increase followed by a reversible maintained increase in phosphate efflux. The latter was 40 and 75% above efflux in normal calcium for 20 and 50mm calcium, respectively. Removal of calcium, with or without addition of EGTA, produced only a transient increase in phosphate efflux, with no subsequent maintained change. Addition of low concentrations of lanthanum produced a reversible inhibition of phosphate efflux. Half-maximal inhibition was at 3.5 m lanthanum and appeared to be due to binding of lanthanum to more than one, probably two, sites. Measurements of inhibition by lanthanum at different calcium concentrations did not indicate any competition between calcium and lanthanum. It is suggested that at least a part of phosphate efflux depends on internal calcium and that lanthanum acts by preventing release of phosphate from the phosphate transport mechanism.  相似文献   

2.
The effects of Na-free and of K-free solutions on the membrane potential, on tension development, and on 45Ca exchange have been investigated in rabbit ear artery. The contraction induced by Na-free solutions and the tension which develops in K-free solutions after a delay of about 1 h are both submaximal. Exposure for 4 h to K-free solutions does not affect the membrane potential, whereas Na-free solutions depolarize the cells by 10-20 mV, depending on the Na-substitute. Neither the amplitude nor the rate constant of the slowly exchanging 45Ca-fraction is affected by these experimental procedures. Substituting external Na by choline or TMA induces a transient increase of the 45Ca-efflux rate which does not occur in a Ca-free efflux medium, and which can be blocked with La. K readmission to Na-enriched tissues hyperpolarizes the cells up to -100 mV and induces a relaxation, without exerting any effect on the 45Ca efflux rate. The release of Ca from intracellular stores, induced by histamine and FCCP, and its subsequent extrusion through the plasma membrane produce a transient stimulation of the 45Ca efflux, which is not affected by the reduction of the Na gradient. The transient contraction induced by histamine in Ca-free solutions is affected in a different way by different Na substitutes. The results do not fit the Na-Ca exchange hypothesis but are consistent with an effect of the Na gradient on the passive Ca influx.  相似文献   

3.
Summary To clarify the dependency of the Na/K coupling of the Na,K-pump on internal Na and external K concentrations in skeletal muscle, the ouabain-induced change in membrane potential, the ouabain-induced change in Na efflux and the membrane resistance were measured at various internal Na and external K concentrations in bullfrog sartorius muscle.Upon raising the internal Na concentration from 6 mmol/kg muscle water to 20 mmol/kg muscle water, the magnitude of the ouabain-induced change in membrane potential increased about eightfold and the magnitude of the ouabain-induced change in Na efflux increased about fivefold while the membrane resistance was not significantly changed. As the external K concentration increased from 1 to 10mm, the magnitude of the ouabain-induced change in membrane potential decreased (1/5.5 fold), while the magnitude of the ouabain-induced change in Na efflux increased (about 1.5-fold). The membrane resistance decreased upon raising the external K concentration from 1 to 10mm (1/2-fold). These observations imply that the values of the Na/K coupling of the Na,K-pump increases upon raising the internal Na concentration and decreases upon raising the external K concentration.  相似文献   

4.
The effects of ketoconazole and miconazole uptake on K(+) transport and the internal pH of Saccharomyces cerevisiae were studied. The uptake of both drugs was very fast, linear with concentration and not dependent on glucose, indicating entrance by diffusion and concentrating inside. Low (5.0μM) to intermediate concentrations (40μM) of both drugs produced a glucose-dependent K(+) efflux; higher ones also produced a small influx of protons, probably through a K(+)/H(+) exchanger, resulting in a decrease of the internal pH of the cells and the efflux of material absorbing at 260nm and phosphate. The cell membrane was not permeabilized. The K(+) efflux with miconazole was dependent directly on the medium pH. This efflux results in an increased membrane potential, responsible for an increased Ca(2+) uptake and other effects. These effects were not observed with two triazolic antifungals. A decrease of the Zeta (ζ) potential was observed at low concentrations of miconazole. Although the main effect of these antifungals is the inhibition of ergosterol synthesis, K(+) efflux is an important additional effect to be considered in their therapeutic use. Under certain conditions, the use of single mutants of several transporters involved in the movements of K(+) allowed to identify the participation of several antiporters in the efflux of the cation.  相似文献   

5.
Na efflux of rabbit RBC is approximately 10 mmoles/kg wet weight. hr. One-half of this consists of a ouabain-insensitive exchange diffusion component. Ouabain inhibits 2.5 mmoles/kg.hr of Na efflux. K influx is 3.0 mmoles/kg.hr; 2.2 mmoles/kg.hr are inhibited by ouabain. In contrast with human RBC, ouabain inhibition of Na efflux and K influx of rabbit RBC is easily reversible. After 2 hr, ouabain inhibition of Na efflux is completely compensated for by increased internal Na concentration and Na efflux returns to initial levels. Removal of ouabain at this stage results in stimulation of the efflux by 4.3 mmoles/kg.hr. Na influx is initially not affected by ouabain but is increased by 2.4 mmoles/kg.hr after 2 hr incubation with the drug. Removal of K from normal Ringer does not affect Na efflux and increases Na influx by 1.6 mmoles/kg.hr. Addition of ouabain to K-free Ringer inhibits Na efflux and influx to the same extent (1.6 mmoles/kg.hr). Removal of Na from K-free Ringer has an inhibitory effect on efflux similar to that of ouabain. These findings suggest that the fraction of Na efflux inhibited by removal of external K is completely replaced by a new, ouabain-sensitive exchange diffusion of Na ions.  相似文献   

6.
To investigate whether the Na permeability of the resting membrane is determined predominantly by the excitable Na channel, we examined the effects of tetrodotoxin (TTX) and the complete removal of external Na+ on the resting potential. In the intact squid axon bathed in K-free artificial seawater, both TTX and the removal of Na+ produced small hyperpolarizations. The effect of Na removal, however, was larger than that of TTX. In the perfused squid axon, the hyperpolarization produced by the removal of external Na+ was greatly enhanced when the internal K concentration ([K+]i) was reduced. The effect of TTX, on the other hand, was not sensitive to the [K+]i or to the membrane potential. For [K+]i = 50 mM and [K+]o = 0, the average hyperpolarization produced by TTX was 1.2 mV, while the hyperpolarization produced by Na removal was approximately 21 mV. The difference between these two effects suggests that the majority of the resting Na current passes through pathways other than the excitable Na channel.  相似文献   

7.
Summary Conventional microelectrode techniques were combined with unilateral mucosal ionic substitutions to determine the effects of luminal pH and luminal alkali-earth cation concentrations on apical membrane cation permeability inNecturus gallbladder epithelium. Acidification of the mucosal solution caused reversible depolarization of both cell membranes and increase of transepithelial resistance. Low pH media also caused: (a) reduction of the apical membrane depolarization induced by high K, and (b) increase of the apical membrane hyperpolarization produced by Na replacement with Li or N-Methyl-d-glucamine. These results, in conjunction with estimates of cell membrane conductances, indicate that acidification of the luminal solution produces a reduction of apical membrane K permeability (P K). Addition of alkali earth cations (Mg2+, Ca2+, Sr2+, or Ba2+) produced cell membrane depolarization, increase of relative resistance of the luminal membrane and reduction of the apical membrane potential change produced by a high-K mucosal medium. These results, as those produced by low pH, can be explained by a reduction of apical membraneP K. The effects of Ba2+ on membrane potential and relative apical membraneP K were larger than those of all other four cations at all concentrations tested (1–10mm). The effect of Sr2+ was significantly larger than those of Mg2+ and Ca2+ at 10mm, but not different at 5mm. The reduction ofP K produced by mucosal acidification appears to be mediated by: (a) nonspecific titration of membrane fixed negative charges, and (b) an effect of luminal proton activity on the apical K channel. Divalent cations reduce apical membraneP K probably by screening negative surface charges. The larger magnitude of the effects of Ba2+ and Sr2+ can be explained by binding to membrane sites, in the surface or in the K channel, in addition to their screening effect. We suggest that the action of luminal pH on K secretion in some segments of the renal tubule could be mediated in part by this pH-dependent K permeability of the luminal membrane.  相似文献   

8.
An energy-dependent efflux system for potassium ions in yeast   总被引:3,自引:0,他引:3  
An efflux of potassium ions was demonstrated in mutants of yeast cells lacking a functional high affinity carrier system for monovalent cations. This efflux showed the following characteristics: (a) It was stimulated by the presence of a substrate, either glucose or ethanol. (b) It was stimulated by several cationic organic molecules, such as ethidium bromide, dihydrostreptomycin, diethylaminoethyldextran, and also by trivalent cations, such as Al3+ and lanthanides; this stimulation also depended on the presence of a substrate. (c) K+ efflux was decreased in yeast mutants with decreased ATPase activity, which generated a lower membrane potential. (d) Although the efflux appeared to be of an electrogenic nature, producing hyperpolarization of cells, it was accompanied by the efflux of phosphate, probably as an anion partially compensating for the large amount of cations leaving the cell. (e) K+ efflux was also accompanied by an uptake of protons. (f) The efflux appeared more clearly in cells grown in YPD medium, and not in more complex media nor in the same YPD medium if supplemented with Ca2+ or Mg2+. Efflux of monovalent cations produced by Tb3+ and organic cationic agents was also demonstrated in wild type strains. This efflux system appears to be, at least partially, electrogenic, but seems to be also an exchange system for protons and to function as a symport with phosphate; it may be involved in the regulation of the internal pH of the cell, and appears to be regulated by its link to the energetic status of the cell, probably through the membrane potential.  相似文献   

9.
Plasma membrane vesicles prepared from the bag region of the somatic muscle cell of the parasite Ascaris suum contain a large conductance, voltage-sensitive, calcium-activated chloride channel. The ability of this channel to conduct a variety of carboxylic acids, a number of which are products of anaerobic respiration, was investigated using the patch-clamp technique and isolated inside-out patches of muscle membrane. The channel has a conductance of 140 pS in symmetrical 140 mm chloride. Replacement of internal chloride with various carboxylic acids (140 mm) caused large hyperpolarizing shifts in the reversal potential. Permeability ratios, relative to chloride, were calculated for each acid. The relationship between permeability ratio and ionic size is inverse and linear predicting a pore diameter of 6.55 Å. This simple relationship was not observed between ionic size and conductance. Calculation of the transition state energy required to transfer a single methyl group from aqueous phase to the binding site afforded a value that was low but favorable, indicating a cationic binding site of low field strength. As the channel is able to open fully at the resting membrane potential of Ascaris and is permeable to fatty acids produced by anaerobic respiration, the possible role of this channel in the removal of metabolic products across the muscle membrane is discussed.This work was financed by the Scientific and Engineering Research Council (S.E.R.C.). M. Valkanov was sponsored by The British Council.  相似文献   

10.
The membrane potential of the Ehrlich ascites tumor cell was shown to be influenced by its amino acid content and the activity of the Na+ :K+ pump. The membrane potential (monitored by the fluorescent dye, 3,3'-dipropylthiodicarbocyanine iodide) varied with the size of the endogenous amino acid pool and with the concentration of accumulated 2-aminoisobutyrate. When cellular amino acid content was high, the cells were hyperpolarized; as the pool declined in size, the cells were depolarized. The hyperpolarization seen with cellular amino acid required cellular Na+ but not cellular ATP. Na+ efflux was more rapid from cells containing 2-aminoisobutyrate than from cells low in internal amino acids. These observations indicate that the hyperpolarization recorded in cells with high cellular amino acid content resulted from the electrogenic co-efflux of Na+ and amino acids. Cellular ATP levels were found to decline rapidly in the presence of the dye and hence the influence of the pump was seen only if glucose was added to the cells. When the cells contained normal Na+ (approx. 30mM), the Na+ :K+ pump was shown to have little effect on the membrane potential (the addition of ouabain had little effect on the potential). When cellular Na+ was raised to 60mM, the activity of the pump changed the membrane potential from the range -25 to -30 mV to -44 to -63 mV. This hyperpolarization required external K+ and was inhibited by ouabain.  相似文献   

11.
Addition of ATP to medium surrounding intact, transformed 3T3 cells activates the formation of aqueous channels in the plasma membrane. This results in efflux of nucleotide pools and ions and entry into the cytosol of charged, phosphorylated species. In such permeabilized cells, glycolysis is totally dependent on the external addition of glucose, inorganic phosphate, ADP, K+, Mg2+ and NAD+ which restore lactic acid formation to levels found in untreated cells. As expected, such reconstitution of glycolytic activity is found to restore intracellular ATP levels. This is accompanied by sealing of the membrane channels so that efflux of nucleotide pools ceases. Pyruvate, a substrate for mitochondrial ATP synthesis, when provided along with ADP and inorganic phosphate also produces sealing of the membrane channels. On the other hand, reactivation of pentose phosphate shunt activity, which does not lead to ATP synthesis, does not induce restoration of the membrane permeability barrier. Furthermore, compounds which lower the internal ATP pool prevent sealing, and also render the plasma membrane more sensitive to external ATP (Rozengurt and Heppel, '79). Sealing of aqueous channels following restoration of the internal ATP pool is associated with phosphorylation of the inner membrane surface, and is unaffected by inhibitors of protein synthesis, microfilament or microtubular assembly. These results indicate the probable role of intracellular ATP in the restoration and/or maintenance of an active membrane barrier against efflux of small molecules and ions in transformed 3T3 cells.  相似文献   

12.
The Control of the Membrane Potential of Muscle Fibers by the Sodium Pump   总被引:6,自引:5,他引:1  
Frog sartorius muscles were made Na-rich by immersion in K-free sulfate Ringer's solution in the cold. The muscles were then loaded with Na24 and the extracellular space cleared of radioactivity. When such Na-rich muscles were transferred to lithium sulfate Ringer's solution at 20°C, Na efflux was observed to increase with time, to reach a maximum about 15 minutes after the transfer of the muscles to Li2SO4, and then to decline. The decline in efflux from these muscles was proportional to ([Na]i)8 over a considerable range of [Na]i. The membrane potential of Na-rich muscles was about -48 mv in K-free sulfate Ringer's at 4°C but changed to -76 mv in the same solution at 20°C and to -98 mv in Li2SO4 Ringer's at 20°C. By contrast, muscles with a normal [Na]i showed a fall in membrane potential when transferred from K-free sulfate Ringer's to Li2SO4 Ringer's solution. The general conclusions from this study are (a) that Na extrusion is capable of generating an electrical potential, and (b) that increases in [Na]i lead to reversible increases in PNa of muscle fibers.  相似文献   

13.
Net K movements in reconstituted human red cell ghosts and the resealing of ghosts to cations after osmotic hemolysis of red cells have been studied as functions of the free Ca ion concentration. The Ca-dependent specific increase in K permeability was shown to be mediated by a site close to the internal surface of the membrane with an apparent dissociation constant ap pH 7.2 for Ca (K'p1) of 3-5 X 10(-7) M, for Sr of 7 X 10(-6) M. Ba and Mg did not increase the K-permeability of the membrane but inhibited the Ca-mediated permeability changes. K'D1 decreased in a nonlinear fashion when the pH was increased from 6.0 to 8.5. Two different pK' values of this membrane site were found at pH 8.3 and 6.3. The Ca-activated net K efflux into a K-free medium was almost completely inhibited by an increase in intracellular Na from 4 to 70mM. Extracellular K antagonized this Na effect. Changes in the extracellular Na (0.1-140 mM) or K (0.1-6 mM) concentrations had little effect and did not change K'p1. The Ca-stimulated recovery of a low cation permeability in ghost cells appeared to be mediated by a second membrane site which was accessible to divalent cations only during the process of hemolysis in media of low ionic strength. The apparent dissociation constant for Ca at this site (K'p2) varied between 6 X 10(-7) and 4 X 10(-6) M at pH 7.2 Mg, Sr, and Ba could replace Ca functionally. The selectivity sequence was Ca greater than Sr greater than Ba greater than Mg. K'p2 was independent on the pH value in the range between 6.0 and 8.0 Hill coefficients of 2 were observed for the interaction of Ca with both membrane sites suggesting that more than one Ca ion is bound per site. The Hill cofficients were affected neither by the ion composition nor by the Ph values of the intra-and extracellular media. It is concluded that two different pathways for the permeation of cations across the membrane are controlled by membrane sites with high affinities for Ca: One specific for K, one unspecific with respect to cations. The K-specific "channel" has properties similar to the K channel in excitable tissues.  相似文献   

14.
Summary Net K movements in reconstituted human red cell ghosts and the resealing of ghosts to cations after osmotic hemolysis of red cells have been studied as functions of the free Ca ion concentration. The Ca-dependent specific increase in K permeability was shown to be mediated by a site close to the internal surface of the membrane with an apparent dissociation constant at pH 7.2 for Ca (K D1) of 3–5×10–7 m, for Sr of 7×10–6 m. Ba and Mg did not increase the K-permeability of the membrane but inhibited the Ca-mediated permeability changes.K D1 decreased in a nonlinear fashion when the pH was increased from 6.0 to 8.5. Two different pK values of this membrane site were found at pH 8.3 and 6.3. The Ca-activated net K efflux into a K-free medium was almost completely inhibited by an increase in intracellular Na from 4 to 70mm. Extracellular K antagonized this Na effect. Changes in the extracellular Na (0.1–140mm) or K(0.1–6mm) concentrations had little effect and did not changeK D1. The Ca-stimulated recovery of a low cation permeability in ghost cells appeared to be mediated by a second membrane site which was accessible to divalent cations only during the process of hemolysis in media of low ionic strength. The apparent dissociation constant for Ca at this site (K D2) varied between 6×10–7 and 4×10–6 m at pH 7.2. Mg, Sr, and Ba could replace Ca functionally. The selectivity sequence was Ca>Sr>Ba>Mg.K D2 was independt on the pH value in the range between 6.0 and 8.0. Hill coefficients of 2 were observed for the interaction of Ca with both membrane sites suggesting that more than one Ca ion is bound per site. The Hill coefficients were affected neither by the ion composition nor by the pH values of the intra- and extracellular media. It is concluded that two different pathways for the permeation of cations across the membrane are controlled by membrane sites with high affinities for Ca: One specific for K, one unspecific with respect to cations. The K-specific channel has properties similar to the K channel in excitable tissues.  相似文献   

15.
At pH 7, addition of glucose to an anaerobic suspension of non-metabolizing yeast cells causes a transient net efflux of K+ from the cells and a concomitant transient hyperpolarization of the plasma membrane (Van de Mortel, J.B.J., et al. (1988) Biochem. Biophys. Acta 936, 421-428). Both phenomena are effectively suppressed in the presence of low concentrations of polyvalent cations. The concentrations of Mn2+, Ca2+, Ba2+, Mg2+, Sr2+ and La3+ required for half-maximal suppression of the transient hyperpolarization are 10, 17, 20, 38, 47 and 5 microM, respectively. Subsequent addition of EDTA 90 s after that of Ca2+ immediately restores both K+ efflux and cellular uptake of the fluorescent membrane potential probe 2-(dimethylaminostyryl)-1-ethylpyridinium (DMP). This suggests that an interaction of polyvalent cations with an external binding site blocks the putative K(+)-selective channel. Opening of this channel is not blocked by 20 mM tetraethylammonium nor by 100 microM 3,4-diaminopyridine. It is argued that this glucose-induced K(+)-conductive pathway is not identical to the voltage-gated K+ channels identified until now in patch-clamp studies of the yeast plasma membrane.  相似文献   

16.
Summary Single barnacle muscle fibers fromBalanus nubilus were used to study the effect of elevated external potassium concentration, [K] o , on Na efflux, membrane potential, and cyclic nucleotide levels. Elevation of [K] o causes a prompt, transient stimulation of the ouabain-insensitive Na efflux. The minimal effective concentrations is 20mm. The membrane potential of ouabain-treated fibers bathed in 10mm Ca2+ artificial seawater (ASW) or in Ca2+-free ASW decreases approximately linearly with increasing logarithm of [K] o . The slope of the plot is slightly steeper for fibers bathed in Ca2+-free ASW. The magnitude of the stimulatory response of the ouabain-insensitive Na efflux to 100mmK o depends on the external Na+ and Ca2+ concentrations, as well as on external pH, but is independent of external Mg2+ concentration. External application of 10–4 m verapamil virtually abolishes the response of the Na efflux to subsequent K-depolarization. Stabilization of myoplasmic-free Ca2+ by injection of 250mm EGTA before exposure of the fiber to 100mm K o leads to 60% reduction in the magnitude of the stimulation. Pre-injection of a pure inhibitor of cyclic AMP-dependent protein kinase reduces the response of the Na efflux to 100mm K o by 50%. Increasing intracellular ATP, by injection of 0.5m ATP-Na2 before elevation of [K] o , fails to prolong the duration of the stimulation of the Na efflux. Exposure of ouabain-treated, cannulated fibers to 100mm K o for time periods ranging from 30 sec to 10 min causes a small (60%), but significant, increase in the intracellular content of cyclic AMP with little change in the cyclic GMP level. These results are compatible with the view that the stimulatory response of the ouabain-insensitive Na efflux to high K o is largely due to a fall in myoplasmicpCa resulting from activation of voltage-dependent Ca2+ channels and that an accompanying rise in internal cAMP accounts for a portion of this response.  相似文献   

17.
Frog sartorius muscles subjected to loading with Na in K-free Ringer solution in the cold were subsequently labelled with 22Na. The uptake of 22Na is not sensitive to ouabain (10(-4) M) while sodium efflux is decreased by oubain. It is concluded that ouabain-sensitive Na-for Na interchange is not present in this condition. Possibly ouabain-sensitive sodium efflux is partly or completely potassium-requiring fraction since some K (approximately 10 microM) is inevitably present in K-free solution. The increase in the rate constant for potassium loss in the presence of ouabain favours this supposition.  相似文献   

18.
Summary Stage V and VI (Dumont, J.N., 1972.J. Morphol. 136:153–180) oocytes ofXenopus laevis were treated with collagenase to remove follicular cells and were placed in K-free solution for 2 to 4 days to elevate internal [Na]. Na/K pump activity was studied by restoring the eggs to normal 3mm K Barth's solution and measuring membrane current-voltage (I–V) relationships before and after the addition of 10 m dihydroouabain (DHO) using a two-microelectrode voltage clamp. Two pulse protocols were used to measure membraneI–V relationships, both allowing membrane currents to be determined twice at each of a series of membrane potentials: (i) a down-up-down sequence of 5 mV, 1-sec stair steps and (ii) a similar sequence of 1-sec voltage pulses but with consecutive pulses separated by 4-sec recovery periods at the holding potential (–40 mV). The resulting membraneI–V relationships determined both before and during exposure to DHO showed significant hysteresis between the first and second current measurements at each voltage. DHO difference curves also usually showed hysteresis indicating that DHO caused a change in a component of current that varied with time. Since, by definition, the steady-state Na/K pumpI–V relationship must be free of hysteresis, the presence of hysteresis in DHO differenceI–V curves can be used as a criterion for excluding such data from consideration as a valid measure of the Na/K pumpI–V relationship. DHO differenceI–V relationships that did not show hysteresis were sigmoid functions of membrane potential when measured in normal (90mm) external Na solution. The Na/K pump current magnitude saturated near 0 mV at a value of 1.0–1.5 A cm–2, without evidence of negative slope conductance for potentials up to +55 mV. The Na/K pump current magnitude in Na-free external solution was approximately voltage independent. Since these forward-going Na/K pumpI–V relationships do not show a region of negative slope over the voltage range –110 to +55 mV, it is not necessary to postulate the existence of more than one voltage-dependent step in the reaction cycle of the forward-going Na/K pump.  相似文献   

19.
The actions of clotrimazole and cetiedil, two drugs known to inhibit the Gardos channel, have been studied on single intermediate conductance calcium-activated potassium (IKCa) channels in inside out patches from human red blood cells, and compared with those of TEA and Ba2+ applied to the cytoplasmic face of the membrane. TEA produced a fast block which was observed as a reduction in the amplitude of the single channel current. This effect was weakly voltage dependent with the fraction of the membrane potential sensed by TEA at its binding site (δ) of 0.18 and a K d at 0 mV of 20.5 mm. Ba2+ was a very potent blocker of the channel, breaking the single channel activity up into bursts, interspersed with silent periods lasting several seconds. The effect of Ba2+ was very voltage sensitive, δ= 0.44, and a K d at 0 mV of 0.15 μm. Clotrimazole applied to the inner face of the membrane at a concentration ≤1 μm produced a slow block resulting in bursts of channel activity separated by quiescent periods lasting many seconds. The effect of clotrimazole was mimicked by a quaternary derivative UCL 1559, in keeping with an action at the cytoplasmic face of the channel. A high concentration of cetiedil (100 μm) produced only a weak block of the channel. The kinetics of this action were very slow, with burst and inter-burst intervals lasting several minutes. While inhibition of the Gardos channel by cetiedil is unlikely to involve an intracellular site of action, if clotrimazole is able to penetrate the membrane, part of its effect may result from binding to an intracellular site on the channel. Received; 18 February 1998/Received: 5 June 1998  相似文献   

20.
The transient increase in cation permeability observed in duck red cells incubated with norepinephrine has been shown to be a linked, bidirectional, co-transport of sodium plus potassium. This pathway, sensitive to loop diuretics such as furosemide, was found to have a [Na + K] stoichiometry of 1:1 under all conditions tested. Net sodium efflux was inhibited by increasing external potassium, and net potassium efflux was inhibited by increasing external sodium. Thus, the movement of either cation is coupled to, and can be driven by, the gradient of its co-ion. There is no evidence of trans stimulation of co- transport by either cation. The system also has a specific anion requirement satisfied only by chloride or bromide. Shifting the membrane potential by varying either external chloride (at constant internal chloride) or external potassium (at constant internal potassium in the presence of valinomycin and DIDs [4,4'-diisothiocyano- 2,2'-disulfonic acid stilbene]), has no effect on nor-epinephrine- stimulated net sodium transport. Thus, this co-transport system is unaffected by membrane potential and is therefore electrically neutral. Finally, under the latter conditions-when Em was held constant near EK and chloride was not at equilibrium-net sodium extrusion against a substantial electrochemical gradient could be produced by lowering external chloride at high internal concentrations, thereby demonstrating that the anion gradient can also drive co-transport. We conclude, therefore, that chloride participates directly in the co- transport of [Na + K + 2Cl].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号