首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In hybrid cells, not only are the nuclear genomes of parent cells fused, but their cytoplasm is as well. Mitochondrial DNA (mtDNA) is a convenient marker of cytoplasm that allows us to gain insight into the organization of hybrid-cell cytoplasm. We analyzed the parental mtDNA in hybrid cells resulting from the fusion of Mus musculus embryonic stem (ES) cells with splenocytes and fetal fibroblasts of DD/c mice or with splenocytes of M. caroli. Identification of parental mtDNA in hybrid cells was based on polymorphism among parental mtDNA for certain restriction endonucleases. We found that intra- and interspecific ES cell-splenocyte hybrid cells either entirely or partially lost mtDNA derived from a somatic partner, whereas ES cell-fibroblast hybrids retained mtDNA from both parents in similar ratios with a slight bias. The loss of somatic mitochondria by ES-splenocyte hybrids implies a nonrandom segregation of parental mitochondria, which was supported by a computer simulation of genetic drift. In contrast, ES cell-fibroblast hybrids show bilateral random segregation of the parental mitochondria judging from the analysis of mtDNA in single cells. Preferential segregation of somatic mitochondria does not depend on the differences in sequences of the parental mtDNA, but rather on the replicative state of parental cells.  相似文献   

2.
Unequal segregation of parental chromosomes in embryonic stem cell hybrids   总被引:4,自引:0,他引:4  
Chromosome segregation was studied in 14 intra- and 20 inter-specific hybrid clones generated by fusion of Mus musculus embryonic stem (ES) cells with fibroblasts or splenocytes of DD/c mice or Mus caroli. As a control for in vitro evolution of tetraploid karyotype we used a set of hybrid clones obtained by fusion of ES cells (D3) with ES cells (TgTP6.3). Identification of the parental chromosomes in the clones was performed by microsatellite analysis and in situ hybridization with labeled species-specific probes. Both analyses have revealed three types of clones: (i) stable tetraploid, observed only for ES x ES cell hybrids; (ii) bilateral loss of chromosomes of both ES and somatic partners; (iii) unilateral segregation of chromosomes of the somatic partner. Observed unilateral segregation was extensive in ES-splenocyte cell hybrids, but lower in ES-fibroblast hybrid clones. Developmental state of the somatic partner is presumably responsible for directional chromosome loss. Nonrandom segregation implies that initial differences in the parental homologous chromosomes were not immediately equalized implying at least transient persistence of the differentiated epigenotype.  相似文献   

3.
A unique type of nonstochastic mitochondrial DNA (mtDNA) segregation was found in mammalian cells. In human cell hybrids isolated from the fusion of HeLa cells with 23, GM639, A549, or 293 cells, HeLa mtDNA was always lost from the hybrids, whereas both parental mtDNAs were maintained in hybrids of HeLa X 143BTK-. Similar phenomena were observed in mouse cell hybrids isolated by the fusion of cells with different mtDNA types. Types 1, 2, and 3, can be distinguished from each other by restriction fragment-length polymorphisms. The mouse cell hybrids between cells with type 1 and type 2 mtDNA always lost type 2 mtDNA, whereas the hybrids between cells with type 2 and type 3 mtDNA retained both types stably. These observations suggest that either a codominant or a dominant/recessive relationship may be present in intraspecies mitochondrial genomes of human and mouse cells. When the mitochondrial genomes in cell hybrids are codominant, stochastic segregation occurs while nonstochastic segregation occurs when they are in the dominant/recessive relationship. These concepts may help elucidate organelle heredity in animals.  相似文献   

4.
Two distinct patterns of mitochondrial DNA (mtDNA) segregation were found in different mouse-rat hybrid cell lines. On mouse-rat hybrid cell line, H2, retained complete sets of chromosomes and mtDNAs of both mouse and rat. Even after cultivation for about one year after cloning, the H2 cell population still retained both parental mtDNAs. However, when mtDNAs of H2 subclones were examined, it was found that some individual cells in the H2 cell population contained only mouse or only rat mtDNA, although they still retained complete sets of both kinds of parental chromosomes. This type of mtDNA segregation, named stochastic segregation, is bidirectional and may be caused by the repetition of random sharing of mouse and rat mtDNAs with daughter cells. This segregation occurred spontaneously during long-term cultivation. The second type of mtDNA segregation, named chromosome-dependent segregation, was found in the other mouse-rat hybrid cell lines that segregated either mouse or rat chromosomes. In these hybrid cells, chromosomes and mtDNA of the same species co-segregated. This second type of segregation is unidirectional. The types of mtDNA segregation appear to depend on the stability of the parental chromosomes in the hybrid cells. When both mouse and rat chromosomes retain stably, mtDNA shows stochastic segregation. On the contrary, when either species of chromosomes is segregated from the cells, mtDNA shows chromosome-dependent segregation.  相似文献   

5.
Recombination of mammalian mitochondrial DNA (mtDNA) was examined using mouse X rat somatic cell hybrid clones and rat cybrid clones. The mouse X rat hybrids were isolated by fusion of chloramphenicol-sensitive (CAPs) mouse and CAP-resistant (CAPr) rat cells. The rat cybrids were isolated by fusion of rat cells with type B mtDNA and enucleated cells with type A mtDNA. Genetic and physical analyses showed that the mtDNAs of the hybrids and cybrids were simple mixtures of the two parental mtDNAs except in the following two cases: One was subclone H2-9 of mouse X rat hybrids, which was CAPr even though mtDNA from the CAPs mouse parent was predominantly retained. The other was rat cybrid subclones, Y12-24 and -61, which showed specific loss of one Hinf I fragment of type B mtDNA, B10. These observations suggest that, in contrast to the case with plant mtDNA, recombination of mammalian mtDNA occurs rarely, if at all.  相似文献   

6.
We have examined the restriction endonuclease cleavage patterns exhibited by the mitochondrial DNAs (mtDNA) of four chloramphenicol-resistant (CAPR) human x mouse hybrids and one CAPR cybrid derived from CAPR HeLa cells and CAPS mouse RAG cells. Restriction fragments of mtDNAs were separated by electrophoresis and transferred by the Southern technique to diazobenzyloxymethyl paper. The covalently bound DNA fragments were hybridized initially with 32P-labeled complementary RNA (cRNA) prepared from human mtDNA and, after removal of the human probe, hybridized with mouse [32P]cRNA prepared from mouse mtDNA. Three hybrids which preferentially segregated human chromosomes and the cybrid exhibited mtDNA fragments indistinguishable from mouse cells. One hybrid, ROH8A, which exhibited "reverse" chromosome segregation, contained only human mtDNA. The pattern of chromosome and mtDNA segregation observed in these hybrids and the cybrid support the hypothesis that a complete set of human chromosomes must be retained if a human-mouse hybrid is to retain human mitochondrial DNA.  相似文献   

7.
Mitochondrial DNA (mtDNA) from cell suspension cultures of two intergeneric somatic hybrids of Pennisetum americanum (pearl millet) + Saccharum officinarum (sugarcane) was examined by restriction endonuclease digestion and hybridization with sorghum mtDNA cosmids. The mtDNA of one somatic hybrid was indistinguishable from that of pearl millet, while the second exhibited a combination of parental mtDNAs, suggesting mitochondrial fusion. Several novel, possibly recombinant, mtDNA restriction fragments were detected in this hybrid, which may have resulted from intergenmic recombination.Florida Agriculture Experiment Station Journal Series No: 8090.  相似文献   

8.
In embryos derived by nuclear-transfer (NT), fusion of donor cell and recipient oocyte caused mitochondrial heteroplasmy. Previous studies from other laboratories have reported either elimination or maintenance of donor-derived mitochondrial DNA (mtDNA) from somatic cells in cloned animals. Here we examined the distribution of donor mtDNA in NT embryos and calves derived from somatic cells. Donor mitochondria were clearly observed by fluorescence labeling in the cytoplasm of NT embryos immediately after fusion; however, fluorescence diminished to undetectable levels at 24 hr after nuclear transfer. By PCR-mediated single-strand conformation polymorphism (PCR-SSCP) analysis, donor mtDNAs were not detected in the NT embryos immediately after fusion (less than 3-4%). In contrast, three of nine NT calves exhibited heteroplasmy with donor cell mtDNA populations ranging from 6 to 40%. These results provide the first evidence of a significant replicative advantage of donor mtDNAs to recipient mtDNAs during the course of embryogenesis in NT calves from somatic cells.  相似文献   

9.
The fate of human sperm-derived mtDNA in somatic cells.   总被引:3,自引:0,他引:3       下载免费PDF全文
Inheritance of animal mtDNA is almost exclusively maternal, most likely because sperm-derived mitochondria are actively eliminated from the ovum, either at or soon after fertilization. How such elimination occurs is currently unknown. We asked whether similar behavior could be detected in somatic cells, by following the fate of mitochondria and mtDNAs after entry of human sperm into transformed cells containing mitochondria but lacking endogenous mtDNAs (rho0 cells). We found that a high proportion (10%-20%) of cells contained functioning sperm mitochondria soon after sperm entry. However, under selective conditions permitting only the survival of cells harboring functional mtDNAs, only approximately 1/10(5) cells containing sperm mitochondria survived and proliferated. These data imply that mitochondria in sperm can enter somatic cells relatively easily, but they also suggest that mechanisms exist to eliminate sperm-derived mtDNA from somatic cells, mechanisms perhaps similar to those presumed to operate in the fertilized oocyte.  相似文献   

10.
Summary The chloroplast (cp) and mitochondrial (mt) DNAs of Petunia somatic hybrid plants, which were derived from the fusion of wild-type P. parodii protoplasts with albino P. inflata protoplasts, were analyzed by endonuclease restriction and Southern blot hybridization. Using 32P-labelled probes that distinguished the two parental cpDNAs at a BamH1 site and at a HpaII site, only the P. parodii chloroplast genome was detected in the 10 somatic hybrid plants analyzed. To examine whether cytoplasmic mixing had resulted in rearrangement of the mitochondrial genome in the somatic hybrids, restriction patterns of purified somatic hybrid and parental mtDNAs were analyzed. Approximately 87% of those restriction fragments which distinguish the two parental genomes are P. inflata-specific. Restriction patterns of the somatic hybrid mtDNAs differ both from the parental patterns and from each other, suggesting that an interaction occurred between the parental mitochondrial genomes in the somatic fusion products which resulted in generation of the novel mtDNA patterns. Southern blot hybridization substantiates this conclusion. In addition, somatic hybrid lines derived from the same fusion product were observed to differ in mtDNA restriction pattern, reflecting a differential sorting-out of mitochondrial genomes at the time the plants were regenerated.  相似文献   

11.
Our previous studies using rodent/human somatic-cell hybrids suggested that the expression of human mitochondrial glycerol-3-phosphate dehydrogenase (GPDM) is dependent on the presence of human mitochondria. This has now been tested directly by analysis of GPDM activity in a series of nine hybrid-cell lines, four segregating human chromosomes and five losing rodent chromosomes (reverse segregants). The chromosome composition of the hybrids was deduced from analysis of biochemical markers and examination of G- and G11-banded metaphase spreads and the mitochondrial content was determined by Southern blot analysis, using cloned mouse and human mtDNA sequences as probes. We found that the mtDNA species present in these hybrids correlated exactly with the pattern of chromosome segregation such that the conventional hybrids contained rodent mtDNA and the reverse segregants human mtDNA. However, the pattern of GPDM expression was not directly correlated with the species of chromosomes or mitochondria present: all the hybrids showed strong rodem GPDM activity and two from each class of hybrid also showed human GPDM activity but the other hybrids were negative for human GPDM. We conclude that rodent GPDM readily integrates into human mitochondria, that the expression of rodent GPDM is not dependent on the presence of rodent mitochondria, and that GPDM is not coded by mtDNA. Human GPDM either is not capable of being inserted into the rodent mitochondrial membrane or is regulated in some way in the hybrid cells by an unidentified rodent factor.  相似文献   

12.
Summary A simple, yet effective selection system was used to produce fertile somatic hybrids betweenNicotiana tabacum andN. debneyi. This approach utilized transgenic antibiotic-resistantN. tabacum andN. Debneyi as donor plants for mesophyll protoplast fusions. Thirteen somatic hybrid plants were regenerated from calli capable of growth on medium containing both antibiotics. The majority of the hybrids displayed a range of leaf and floral morphologies and growth habits that were intermediate to those of the parental species, and had chromosome numbers varying from amphidiploid (2n = 96) to hypoaneuploid (2n = 60). Isoenzyme and RFLP analysis demonstrated the presence and expression of nuclear genes from both parents in all of the hybrids. Most plants are fully fertile. Thus, these plants differ from the malesterile tobacco cybrids and alloplasmic lines produced by transferring theN. debneyi cytoplasm to tobacco. A nonrandom pattern of cytoplasmic segregation in the fusion products occurred with a bias towards the presence ofN. debneyi cp and mtDNA. Evidence for the presence of rearranged or recombinant cp and mtDNA in some of the hybrids was obtained. The somatic hybrids were successfully backcrossed to theN. tabacum parent and are now being tested for immunity to black root rot, a trait specific toN. debneyi, but not existent in theN. tabacum parental line.  相似文献   

13.
Several mouse-rat somatic hybrid cell lines were isolated by fusing chloramphenicol-resistant (CAPr) and CAP-sensitive (CAPs) parent cells, and propagation of the parent mitochondrial DNA (mtDNA) species in the hybrid cells was studied. The restriction endonucleases EcoRI, HpaII, and HaeIII were used for identification of mtDNA species. Both mouse and rat mtDNAs were propagated in all the hybrid cells examined and maintained during long-term cultivation and repeated cell division. Moreover, in CAPr mouse-rat hybrid cells, selection and successive cultivation in the presence of CAP did not increase the relative amount of mtDNA species of CAPr parent cell origin, and when CAP was removed from the culture medium, mtDNA species of CAPr parent cell origin did not decrease appreciably. The amount of mouse mtDNAs was consistently 1-4 times that of rat mtDNAs inthe mouse-rat hybrid cells regardless of the species of parent cells from which the CAP resistance was derived. Thus mouse-rat hybrid cells have a stable mtDNA population in which the amount of mouse mtDNAs is larger than that of rat mtDNAs without any influence of CAP selection.  相似文献   

14.
Developmental potential was assessed in 8 intra-specific and 20 inter-specific hybrid clones obtained by fusion of embryonic stem (ES) cells with either splenocytes or fetal fibroblasts. Number of chromosomes derived from ES cells in these hybrid clones was stable while contribution of somatic partner varied from single chromosomes to complete complement. This allowed us to compare pluripotency of the hybrid cells with various numbers of somatic chromosomes. Three criteria were used for the assessment: (i) expression of Oct-4 and Nanog genes; (ii) analyses of teratomas generated by subcutaneous injections of the tested cells into immunodeficient mice; (iii) contribution of the hybrid cells in chimeras generated by injection of the tested cells into C57BL blastocysts. All tested hybrid clones showed expression of Oct-4 and Nanog at level comparable to ES cells. Histological and immunofluorescent analyses demonstrated that most teratomas formed from the hybrid cells with different number of somatic chromosomes contained derivatives of three embryonic layers. Tested hybrid clones make similar contribution in various tissues of chimeras in spite of significant differences in the number of somatic chromosomes they contained. The data indicate that pluripotency is manifested as a dominant trait in the ES hybrid cells and does not depend substantially on the number of somatic chromosomes. The latter suggests that the developmental potential derived from ES cells is maintained in ES-somatic cell hybrids by cis-manner and is rather resistant to trans-acting factors emitted from the somatic one.  相似文献   

15.
Chromosome segregation of the parental chromosomes was studied in 20 interspecific hybrid clones obtained by fusion of Mus musculus embryonic stem cells with Mus caroli splenocytes. FISH analysis with labeled species specific probes and microsatellite markers was used for identification of the parental chromosomes. Cytogenetic analysis has shown significant intra- and interclonal variability in chromosome numbers and ratios of the parental chromosomes in the hybrid cells: six clones contained all M. caroli chromosomes, nine clones showed moderate segregation of M. caroli chromosomes (from 1 to 7), and five clones showed extensive loss of M. caroli chromosomes (from 12 to complete loss of all M. caroli autosomes). Both methods demonstrated "cryptic" segregation of the somatic partner chromosomes. For instance, five clones with near-tetraploid chromosome sets contained only few M. caroli chromosomes (from 1 to 8). The data obtained suggest that the tetraploid chromosome set per se is not a sufficient criterion for conclusion on the absence of chromosome loss in the hybrid cells. Note that "cryptic" chromosome segregation occurred at a high frequency in the examined hybrid clones. Thus, "cryptic" segregation should be borne in mind for assessing pluripotency and genome reprogramming of embryonic stem hybrid cells.  相似文献   

16.
Cytotoxic lymphoid cells derived from in vivo immunization of mice across H2 barriers were utilized in in vitro cytotoxicity assays. The target cells were somatic cell hybrids derived from parental cells differing at the H2 locus. The hybrid cells surviving cytotoxicity were grown to confluent populations and the H2 antigens selected against were no longer demonstrable by indirect immunofluorescence. Comparative karyology of hybrid cells expressing both parental H2 types before immunoselection with hybrid cells surviving immunoselection revealed a decrease in the number of murine chromosomes number 17, suggesting that those cells surviving cytotoxicity had spontaneously lost these chromosomes prior to the selection event. The possibility of immunoconstruction of somatic cell hybrids on the basis of their cell-surface antigens is discussed.  相似文献   

17.
We have studied the fate of parental mitochondrial DNA (mtDNA) in hybrid somatic cells derived by Sendai virus-induced fusion of human cells and mouse or rat cells. Many hybrid cell strains were obtained which contained sequences from both human and rodent mtDNA after 40 to 60 population doublings. Some strains were subcloned and cultured further for up to 150 doublings; a large fraction of these strains contained both parental mtDNA sequences at that time.The relation between human and rodent mtDNA sequences was tested in some of the hybrid cell strains. In a high fraction of strains tested the human and rodent mtDNA sequences were linked to each other by what are most likely covalent bonds. This linkage may be described as "recombination" of mtDNA sequences from two different animals.  相似文献   

18.
Doubly Uniparental Inheritance (DUI) is one of the most striking exceptions to the common rule of standard maternal inheritance of metazoan mitochondria. In DUI, two mitochondrial genomes are present, showing different transmission routes, one through eggs (F-type) and the other through sperm (M-type). In this paper, we report results from a multiplex real-time quantitative polymerase chain reaction analysis on the Manila clam Venerupis philippinarum (formerly Tapes philippinarum). We quantified M- and F-types in somatic tissues, gonads, and gametes. Nuclear and external reference sequences were used, and the whole experimental process was designed to avoid any possible cross-contamination. In most male somatic tissues, the M-type is largely predominant: This suggests that the processes separating sex-linked mitochondrial DNAs (mtDNAs) in somatic tissues are less precise than in other DUI species. In the germ line, we evidenced a strict sex-specific mtDNA segregation because both sperm and eggs do carry exclusively M- and F-types, respectively, an observation that is in contrast with a previous analysis on Mytilus galloprovincialis. More precisely, whereas two mtDNAs are present in the whole gonad, only the sex-specific one is detected in gametes. Because of this, we propose that the mtDNA transmission is achieved through a three-checkpoint process in V. philippinarum. The cytological mechanisms of male mitochondria segregation in males and degradation in females during the embryo development (here named Checkpoint #1 and Checkpoint #2) are already well known for DUI species; a Checkpoint #3 would act when primordial germ cells (PGCs) are first formed and would work in both males and females. We believe that Checkpoint #3 is a mere variation of the "mitochondrial bottleneck" in species with standard maternal inheritance, established when their PGCs separate during embryo cleavage.  相似文献   

19.
Mouse-rat hybrid somatic cells were isolated by fusion of chloramphenicol-sensitive (CAPs) mouse fibroblast cells with hypoxanthine-guanine-phosphoribosyltransferase-deficient (HGPRT) and CAP-resistant (CAPr) rat myoblast cells and selected with hypoxanthine-aminopterin-thymidine (HAT) and CAP. Restriction endonuclease cleavage patterns showed that both mouse and rat mitochondrial DNAs (mtDNAs) were present in the hybrid cells and that the amount of rat mtDNA was one-quarter that of mouse mtDNA, even after cultivation for 3 months in the presence of CAP. Nuclear ribosomal RNA (rRNA) genes of mouse and rat were shown to be expressed stably in the hybrid cells by homochromatography fingerprinting of RNase T1 digests. The genetic compatibility between mouse and rat chromosomes in the mouse-rat hybrid cells assures retention of both parental chromosomes, and this may be responsible for the expression of both parental rRNA genes, and for the retention of both parental mtDNAs in the hybrid cells.  相似文献   

20.
Summary Broccoli (Brassica oleracea L. italica) hypocotyl protoplasts were fused with mesophyll protoplasts of two B. napus lines, one carrying the Ogura (ogu) cms cytoplasm, and the other carrying a hybrid cytoplasm consisting of ogu mitochondria combined with triazine-tolerance-conferring chloroplasts from ctr cytoplasm. Two male-sterile somatic hybrids were recovered from the fusion of broccoli protoplasts with those of ogu/ctr cybrid B. napus. The ogu mtDNAs and ctr cpDNAs were not altered in these hybrids. Four male-sterile plants were recovered from the somatic hybridization of broccoli with ogu cms B. napus. Three of these possessed mitochondrial genomes that appeared to have resulted from recombination between the ogu and normal B. oleracea (ole) mtDNAs, while the fourth possessed an unrearranged ogu mtDNA. All four of these plants had B. oleracea cpDNA, and none displayed the seedling chlorosis associated with ogu chloroplasts. Most of the plants recovered from these fusions had the chromosome number expected of B. oleracea + B. napus hybrids (2n = 56). The novel cytoplasms may prove to be useful for the molecular analysis of Brassica cms and for the production of hybrid Brassica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号