首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An acid-stable phosphoprotein was formed in a microsomal membrane fraction isolated from bovine aortic smooth muscle in the presence of Mg2+ + ATP and Ca2+. The microsomes also showed Ca2+ uptake activity. The Ca2+ dependence of phosphoprotein formation and of Ca2+ uptake occurred over the same range of Ca2+ concentration (1-10 microM), and resembled similar findings from rabbit skeletal microsomes. The molecular weight of the phosphorylated protein, estimated by SDS-gel electrophoresis, was approximately 105,000. The phosphoprotein was labile at alkaline pH, and its decomposition was accelerated by hydroxylamine. Half-maximum incorporation of 32P in the presence of 10 microM Ca2+ occurred at 60 nM ATP. The calcium-dependent phosphoprotein formation was not affected by 5 mM NaN3, but was inhibited in a dose-dependent fashion by ADP with a 50% inhibition occurring at 180 microM. Fifty mM MgCl2 was required for the maximal phosphorylation. The rate of phosphoprotein decomposition after adding 2 mM EGTA was accelerated by varying the Mg2+ concentration from 10 microM to 3 mM. Alkaline pH (9.0) slowed the rate of phosphoprotein decay. Optimal Ca2+-dependent phosphoprotein occurred at 15 degrees C over a broad pH range (6.4 to 9.0). The activation energy of EGTA-induced phosphoprotein decomposition was 25.6 kcal/mol between 0 and 16 degrees C and 14.6 kcal/mol between 16 and 30 degrees C. The phosphoprotein formed by aortic microsomes was thus quite similar to the acid-stable phosphorylated intermediate of the Ca2+-transport ATPase of sarcoplasmic reticulum from skeletal and cardiac muscle. These data suggest that the Ca2+-dependent phosphoprotein is a reaction intermediate of the Ca2+,Mg2+-ATPase of the aortic microsomes.  相似文献   

2.
The catalytic properties of myometrium sarcolemmal Ca2+, Mg2(+)-ATPase purified from plasma membrane solubilizate by affinity chromatography on calmodulin-Sepharose were investigated. The enzyme isolated in the presence of azolectin revealed a calmodulin-independent affinity for Ca2+ (Km = 0.17 microM). Purified Ca2+, Mg2(+)-ATPase displayed a strict substrate specificity, was inhibited by low concentrations of o-vanadate and was insensitive to oxytocin and prostaglandins E2 and F2 alpha. The enzyme activity was maximal at 45 degrees C, pH 7.5-8.0, and at Mg-ATP and Ca2+ concentrations of 1.5-2.5 mM and 5-20 microM, respectively.  相似文献   

3.
Media prepared with CDTA and low concentrations of Ca2+, as judged by the lack of Na+-dependent phosphorylation and ATPase activity of (Na+ +K+)-ATPase preparations are free of contaminant Mg2+. In these media, the Ca2+-ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca2+-ATPase activity is present. In the absence of Mg2+ the rate of phosphorylation in the presence of 1 microM Ca2+ is very low but it approaches the rate measured in Mg2+-containing media if the concentration of Ca2+ is increased to 5 mM. The KCa for phosphorylation is 2 microM in the presence and 60 microM in the absence of Mg2+. Results are consistent with the idea that for catalysis of phosphorylation the Ca2+-ATPase needs Ca2+ at the transport site and Mg2+ at an activating site and that Ca2+ replaces Mg2+ at this site. Under conditions in which it increases the rate of phosphorylation, Ca2+ is without effect on the Ca2+-ATPase activity in the absence of Mg2+ suggesting that to stimulate ATP hydrolysis Mg2+ accelerates a reaction other than phosphorylation. Activation of the E1P----E2P reaction by Mg2+ is prevented by Ca2+ after but not before the synthesis of E1P from E1 and ATP, suggesting that Mg2+ stabilizes E1 in a state from which Mg2+ cannot be removed by Ca2+ and that Ca2+ stabilizes E1P in a state insensitive to Mg2+. The response of the Ca2+-ATPase activity to Mg2+ concentration is biphasic, activation with a KMg = 88 microM is followed by inhibition with a Ki = 9.2 mM. Ca2+ at concentration up to 1 mM acts as a dead-end inhibitor of the activation by Mg2+, and Mg2+ at concentrations up to 0.5 mM acts as a dead-end inhibitor of the effects of Ca2+ at the transport site of the Ca2+-ATPase.  相似文献   

4.
The effects of divalent cations (Zn2+, Cd2+, Ca2+, Mg2+) on the cytosol androgen receptor were determined by sedimentation into sucrose gradients. At low ionic strength (25 mM KCl, 50 mM Tris, pH 7.4), Zn2+ (200 microM total, which calculates to 130 nM free Zn2+ in 10 mM mercaptoethanol) causes a shift in the sedimentation coefficient of the rat Dunning prostate tumor (R3327H) cytosol receptor and rat ventral prostate cytosol receptor from 7.5 +/- 0.3 S to 8.6 +/- 0.3 S. Zn2+ stabilizes the 8.6 S receptor form in salt concentrations up to 0.15 M KCl in 50 mM Tris, pH 7.2. In low ionic strength gradients containing Ca2+ (greater than or equal to 200 microM) or Mg2+ (greater than or equal to 1 mM), the receptor sediments as 4.7 +/- 0.3 S. The dissociating effects of Ca2+ and Mg2+ can be fully reversed by sedimentation into gradients containing Zn2+ (200 microM total) or Cd2+ (10 microM total). In the presence of Zn2+ (200 microM total), Ca2+ (10 microM to 3 mM) converts the receptor to an intermediate form with sedimentation coefficient 6.2 +/- 0.2 S, Stokes radius 73 A, and apparent Mr approximately 203,000. The potentiating effect of Zn2+ on formation of the 8.6 S receptor (in the absence of Ca2+) and the 6.2 S receptor (in the presence of Ca2+) requires both the 4.5 S receptor and the 8 S androgen receptor-promoting factor. Sodium molybdate stabilizes the untransformed cytosol receptor but, unlike Zn2+, does not promote reconstitution of the 8.6 S receptor from its partially purified components. These results indicate that divalent cations alter the molecular size of the androgen receptor in vitro and thus may have a role in altering the state of transformation of the receptor.  相似文献   

5.
The effects of K+ and Na+ on the Ca2+,Mg2+-ATPase of sarcoplasmic reticulum fragments (SRF) were investigated at 1 mM ATP. There was an alteration of the sensitivity of the ATPase to the monovalent cations during storage of the SRF preparation. The Ca2+, Mg2+-ATPase of freshly prepared SRF was slightly activated by 5-10 mM K+ and Na+. Mg2+-ATPase was inhibited by both the monovalent cations to the same extent, and this response to the ions was independent of the freshness of the preparations. After storage of SRF, however, the Ca2+,Mg2+-ATPase was markedly activated by higher concentrations of K+ and Na+ (0.2-0.3 M). K+ and Na+ reduced the Ca uptake at the steady state in freshly prepared SRF, but did not affect pre-steady state uptake. In the presence of oxalate, the rate of Ca accumulation both in fresh and stored preparations was activated by 0.1-0.2 M K+ and Na+. The Ca2+, mg2+-ATPase with oxalate, so-called "extra ATPase," showed the same response to the ions as did the activity without oxalate during storage.  相似文献   

6.
Bovine adrenocortical microsomes were prepared and partially purified by discontinuous sucrose density gradient. Light fractions of the microsomes at the interface between 15 and 30% sucrose solution, exhibited ATP dependent Ca2+ uptake. The Ca2+ uptake was dependent on temperature and stimulated by free Ca2+ (the concentration for half maximal activation = 1.0 microM) and Mg2+. The Ca2+ uptake was inhibited by ADP but not affected by 10 mM NaN3 or 0.5 mM ouabain. Calcium release from the microsomes was accelerated by a Ca2+ ionophore, A23187, but not by a Ca2+ antagonist, diltiazem. A microsomal protein with a molecular weight of 100-110 kDa was phosphorylated by [gamma-32P]ATP in the presence of Ca2+, and the Ca2+ dependency was over the same range as the Ca2+ uptake (the concentration for half maximal activation = 3.0 microM). The phosphorylated protein (EP) was stable at acidic pH but labile at alkaline pH and sensitive to hydroxylamine. The rate of EP formation at 0 degrees C in the presence of 1 microM ATP and 10 microM Ca2+ (half time = 0.2 s) was less than that in the sarcoplasmic reticulum (SR) of rabbit skeletal muscle (half time = 0.1 s). The rate of EP decomposition at 0 degrees C after adding EGTA was about 6.7 times slower (rate constant: kd = 4.3 X 10(-3) s-1) than that of SR. It was suggested that adrenocortical microsomes contain a Ca2+ dependent ATPase which function as a Ca2+ pump with similar properties to that of SR.  相似文献   

7.
We have identified and characterized calcium transport and the phosphorylated intermediate of the (Ca2+ + Mg2+)-ATPase in plasma membrane vesicles prepared from rat liver. The calcium transport did not absolutely require the presence of oxalate and was completely inhibited by 1 microM of ionophore A23187. Oxalate, which serves as a trapping agent in calcium uptake of skeletal muscle and liver microsomes, was not absolutely required to maintain the net accumulation of calcium. The Vmax and Km for calcium uptake were 35.2 +/- 10.1 pmol of calcium/mg of protein/min, and 17.6 +/- 2.5 nM of free calcium, respectively. Ten mM magnesium was required for the maximal accumulation of calcium. Substitution of 5 and 10 mM ADP, CTP, GTP, and UTP for ATP could not support calcium uptake. The calcium uptake was not affected by 0.5 mM ouabain, 20 mM azide, or 2 micrograms/ml of oligomycin but was inhibited in a dose-dependent fashion by vanadate, with a Ki of approximately 20 microM for vanadate. The substrate affinities and specificities of this calcium-transport activity suggest that it is closely associated with the (Ca2+ + Mg2+)-ATPase reported in the plasma membranes of liver (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215). A calcium-stimulated and magnesium-dependent phosphoprotein was also demonstrated in the same membrane vesicles. The free calcium concentration at which its phosphorylation was half-maximal was 15.5 +/- 5.6 nM. Sodium fluoride, ouabain, sodium azide, oligomycin, adriamycin, and N,N'-dicyclohexylcarbodiimide did not affect its formation while vanadate at 100 microM inhibited the calcium-dependent phosphorylation by approximately 60%. The properties of this phosphoprotein suggest that it may be the phosphorylated intermediate of the (Ca2+ + Mg2+)-ATPase in the plasma membranes of rat liver.  相似文献   

8.
Sarcoplasmic reticulum vesicles were preloaded with either 45Ca2+ or unlabeled Ca2+. The unidirectional Ca2+ efflux and influx, together with Ca2+-dependent ATP hydrolysis and phosphorylation of the membrane-bound (Ca2+, Mg2+)-ATPase, were determined in the presence of ATP and ADP. The Ca2+ efflux depended on ATP (or ADP or both). It also required the external Ca2+. The Ca2+ concentration dependence of the efflux was similar to the Ca2+ concentration dependences of Ca2+ influx, Ca2+-dependent ATP hydrolysis, and phosphoenzyme formation. The rate of the efflux was approximately in proportion to the concentration of the phosphoenzyme up to 10 microM Ca2+. These results and other findings indicate that the Ca2+ efflux represents the Ca2+-Ca2+ exchange (between the external medium and the internal medium) mediated by the phosphoenzyme. In the range of 0.6-5.2 microM Mg2+, no appreciable Ca2+-Ca2+ exchange was detected although phosphoenzyme formation occurred to a large extent. Elevation of Mg2+ in the range 5.2 microM-4.8 mM caused a remarkable activation of the exchange, whereas the amount of the phosphoenzyme only approximately doubled. The kinetic analysis shows that this activation results largely from the Mg2+-induced acceleration of an exchange between the bound Ca2+ of the phosphoenzyme and the free Ca2+ in the internal medium. It is concluded that Mg2+ is essential for the exposure of the bound Ca2+ of the phosphoenzyme to the internal medium.  相似文献   

9.
The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport   总被引:2,自引:0,他引:2  
The ATP-dependent uptake of Ca2+ by rat liver microsomal fraction is dependent upon Mg2+. Studies of the Mg2+ requirement of the underlying microsomal Ca2+-ATPase have been hampered by the presence of a large basal Mg2+-ATPase activity. We have examined the effect of various Mg2+ concentrations on Mg2+-ATPase activity, Ca2+ uptake, Ca2+-ATPase activity and microsomal phosphoprotein formation. Both Mg2+-ATPase activity and Ca2+ uptake were markedly stimulated by increasing Mg2+ concentration. However, the Ca2+-ATPase activity, measured concomitantly with Ca2+ uptake, was apparently unaffected by changes in the Mg2+ concentration. In order to examine the apparent paradox of Mg2+ stimulation of Ca2+ uptake but not of Ca2+-ATPase activity, we examined the formation of the Ca2+-ATPase phosphoenzyme intermediate and formation of a Mg2+-dependent phosphoprotein, which we have proposed to be an attribute of the Mg2+-ATPase activity. We found that Ca2+ apparently inhibited formation of the Mg2+-dependent phosphoprotein both in the absence and presence of exogenous Mg2+. This suggests that Ca2+ may inhibit (at least partially) the Mg2+-ATPase activity. However, inclusion of the Ca2+ inhibition of Mg2+-ATPase activity in the calculation of Ca2+-ATPase activity reveals that this effect is insufficient to totally account for the stimulation of Ca2+ uptake by Mg2+. This suggests that Mg2+, in addition to stimulation of Ca2+-ATPase activity, may have a direct stimulatory effect on Ca2+ uptake in an as yet undefined fashion. In an effort to further examine the effect of Mg2+ on the microsomal Ca2+ transport system of rat liver, the interaction of this system with Sr2+ was examined. Sr2+ was sequestered into an A23187-releasable space in an ATP-dependent manner by rat liver microsomal fraction. The uptake of Sr2+ was similar to that of Ca2+ in terms of both rate and extent. A Sr2+-dependent ATPase activity was associated with the Sr2+ uptake. Sr2+ promoted formation of a phosphoprotein which was hydroxylamine-labile and base-labile. This phosphoprotein was indistinguishable from the Ca2+-dependent ATPase phosphoenzyme intermediate. Sr2+ uptake was markedly stimulated by exogenous Mg2+, but the Sr2+-dependent ATPase activity was unaffected by increasing Mg2+ concentrations. Sr2+ uptake and Sr2+-dependent ATPase activity were concomitantly inhibited by sodium vanadate. In contrast to Ca2+, Sr2+ had no effect on Mg2+-dependent phosphoprotein formation. Taken together, these data indicate that Mg2+ stimulated Ca2+ and Sr2+ transport by increasing the Ca2+ (Sr2+)/ATP ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Chemotactic stimulation of Dictyostelium discoideum induces an uptake of Ca2+ by the cells followed by a release of Ca2+. In this study we investigated the mechanism of Ca2+ release and found that it was inhibited by La3+, Cd2+ and azide. Ca2+ release occurred in the absence of external Na+, indicating that an Na+/Ca2+ exchange was not involved. Plasma membranes contained high- and low-affinity ATPase activities. Apparent K0.5 values were 8 microM for the major Mg2+-ATPase and 1.1 microM for the high-affinity Ca2+-ATPase, respectively. The Mg2+-ATPase activity was inhibited by elevated concentrations of Ca2+, whereas both Ca2+-ATPases were active in the absence of added Mg2+. The activities of the Ca2+-ATPases were not modified by calmodulin. The high-affinity Ca2+-ATPase was competitively inhibited by La3+ and Cd2+; we suggest that this high-affinity enzyme mediates the release of Ca2+ from D. discoideum cells.  相似文献   

11.
Formation of the phosphorylated intermediate (ECaP) of the human erythrocyte Ca2+-stimulated ATPase (Ca2+-ATPase) was more rapid and reached steady state sooner at 400 microM-Ca2+ than at 1 microM-Ca2+. Calmodulin increased the apparent rate of ECaP formation at 1 microM-Ca2+, whereas at 400 microM-Ca2+, calmodulin decreased the steady-state level of the ECaP without affecting its apparent rate of formation. Removal of endogenous Mg2+ with trans-1,2-diaminocyclohexane-NNN'N'-tetra-acetic acid, which decreased both the velocity and Ca2+-sensitivity of the Ca2+-ATPase, did not alter the Ca2+-sensitivity or the apparent rate of formation of ECaP. ECaP formation at high Ca2+ concentrations was not affected by Mg2+ concentrations as high as 1 mM, and the ECaP could be dephosphorylated by ADP and ATP along either the forward or reverse pathways. The results suggest that high Ca2+ concentrations inhibit Ca2+-ATPase activity by preventing dephosphorylation of the E2P complex, rather than by inhibition of the transformation from E1CaP ('high-Ca2+-affinity' ECaP) to E2CaP ('lower-energy' ECaP).  相似文献   

12.
A radioisotope flux-rapid-quench-Millipore filtration method is described for determining the effects of Ca2+, adenine nucleotides, and Mg2+ on the Ca2+ release behaviour of "heavy" sarcoplasmic reticulum (SR) vesicles. Rapid 45Ca2+ efflux from passively loaded vesicles was blocked by the addition of Mg2+ and ruthenium red. At pH 7 and 10(-9) M Ca2+, vesicles released 45Ca2+ with a low rate (k = 0.1 s-1). An increase in external Ca2+ concentration to 4 microM or the addition of 5 mM ATP or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) (AMP-PCP) resulted in intermediate 45Ca2+ release rates. The maximal release rate was observed in media containing 4 microM Ca2+ and 5 mM AMP-PCP and had a first-order rate constant of 30-100 s-1. Mg2+ partially inhibited Ca2+- and nucleotide-induced 45Ca2+ efflux. In the absence of AMP-PCP, 45Ca2+ release was fully inhibited at 5 mM Mg2+ or 5 mM Ca2+. The composition of the release media was systematically varied, and the flux data were expressed in the form of Hill equations. The apparent n values of activation of Ca2+ release by ATP and AMP-PCP were 1.6-1.9. The Hill coefficient of Ca2+ activation (n = 0.8-2.1) was dependent on nucleotide and Mg2+ concentrations, whereas the one of Mg2+ inhibition (n = 1.1-1.6) varied with external Ca2+ concentration. These results suggest that heavy SR vesicles contain a "Ca2+ release channel" which is capable of conducting Ca2+ at rates comparable with those found in intact muscle. Ca2+, AMP-PCP (ATP), and Mg2+ appear to act at noninteracting or interacting sites of the channel.  相似文献   

13.
K+-stimulated 45Ca2+ influx was measured in rat brain presynaptic nerve terminals that were predepolarized in a K+-rich solution for 15 s prior to addition of 45Ca2+. This 'slow' Ca2+ influx was compared to influx stimulated by Na+ removal, presumably mediated by Na+-Ca2+ exchange. The K+-stimulated Ca2+ influx in predepolarized synaptosomes, and the Na+-removal-dependent Ca2+ influx were both saturating functions of the external Ca2+ concentration; and both were half-saturated at 0.3 mM Ca2+. Both were reduced about 50% by 20 microM Hg2+, 20 microM Cu2+ or 0.45 mM Mn2+. Neither the K+-stimulated nor the Na+-removal-dependent Ca2+ influx was inhibited by 1 microM Cd2+, La3+ or Pb2+, treatments that almost completely inhibited K+-stimulated Ca2+ influx in synaptosomes that were not predepolarized. The relative permeabilities of K+-stimulated Ca2+, Sr2+ or Ba2+ influx in predepolarized synaptosomes (10:3:1) and the corresponding selectivity ratio for Na+-removal-dependent divalent cation uptake (10:2:1) were similar. These results strongly suggest that the K+-stimulated 'slow' Ca2+ influx in predepolarized synaptosomes and the Na+-removal-dependent Ca2+ influx are mediated by a common mechanism, the Na+-Ca2+ exchanger.  相似文献   

14.
Active Ca2+ uptake and the associated (Ca2+ + Mg2+)-ATPase activity were studied under the same conditions in an inside-out vesicle preparation of human red blood cells made essentially by the procedure of Quist and Roufogalis (Journal of Supramolecular Structure 6, 375-381, 1977). Some preparations were treated with 1 mM EDTA at 30 degrees to further deplete them of endogenous levels of calmodulin. As the Ca2+ taken up by the EDTA-treated inside-out vesicles, as well as the non-EDTA treated vesicles, was maintained after addition of 4.1 mM EGTA, the vesicles were shown to be impermeable to the passive leak of Ca2+ over the time course of the experiments. In the absence of added calmodulin, both active Ca2+ uptake and (Ca2+ + Mg2+)-ATPase were sensitive to free Ca2+ over a four log unit concentration range (0.7 microM to 300 microM Ca2+) at 6.4 mM MgCl2. Below 24 microM Ca2+ the stoichiometry of calcium transported per phosphate liberated was close to 2:1, both in EDTA and non-EDTA treated vesicles. Above 50 microM Ca2+ the stoichiometry approached 1:1. When MgCl2 was reduced from 6.4 mM to 1.0 mM, the stoichiometry remained close to 2:1 over the whole range of Ca2+ concentrations examined. In contrast to the results at 6.4 mM MgCl2, the Ca2+ pump was maximally activated at about 2 microM free Ca2+ and significantly inhibited above this concentration at 1 mM MgCl2. Calmodulin (0.5-2.0 microgram/ml) had little effect on the stoichiometry in any of the conditions examined. The possible significance of a variable stoichiometry of the Ca2+ pump in the red blood cell is discussed.  相似文献   

15.
Effect of endogenous polyamine spermine, a relaxant of smooth muscle, on the activity of myometrium cell plasma membrane Ca2+, Mg(2+)-ATPase was studied. It was observed a tendency to activation of enzyme at the spermine concentrations 0.1-0.5 mM, the increase of the polyamine concentrations up to 10 mM inhibited. ATPase by 80% (I50 = 5.5 +/- 0.3 mM). Spermine inhibited enzyme decreasing its turnover rate and affinity for Ca2+. The ATPase affinity for Mg2+ increased in the presence of spermine. It was revealed, that the inhibitory effect of spermine is changed by the stimulatory effect under the increase of Ca2+ concentration (up to 2.6 microM), that correlates with the relaxing effect of this polyamine on the smooth muscle.  相似文献   

16.
Sarcoplasmic reticulum vesicles of rabbit skeletal muscle are able to accumulate Ca2+ or Sr2+ at the expense of ATP hydrolysis. Depending on the conditions used, vesicles loaded with Ca2+ can catalyze either an ATP in equilibrium Pi exchange or the synthesis of ATP from ADP and Pi. Both reactions are impaired in vesicles loaded with Sr2+. The Sr2+ concentration required for half-maximal ATPase activity increases from 2 microM to 60-70 microM when the Mg2+ concentration is raised from 0.5 to 50 mM. The enzyme is phosphorylated by ATP in the presence of Sr2+. The steady state level of phosphoenzyme varies depending on both the Sr2+ and Mg2+ concentrations in the medium. Phosphorylation of the enzyme by Pi is inhibited by both Ca2+ and Sr2+. In the presence of 2 and 20 mM Mg2+, half-maximal inhibition is attained in the presence of 4 and 8 microM Ca2+ or in the presence of 0.24 mM and more than 2 mM Sr2+, respectively. After the addition of Sr2+, the phosphoenzyme is cleaved with two different rate constants, 0.5-1.5 s-1 and 10-18 s-1. The fraction of phosphoenzyme cleaved at a slow rate is smaller the higher the Sr2+ concentration in the medium. Ca2+ inhibition of enzyme phosphorylation by Pi is overcome by the addition of ITP. This is not observed when Ca2+ is replaced by Sr2+.  相似文献   

17.
The interactions of Cd2+ with active Ca2+ transport systems in rat intestinal epithelial cells have been investigated. ATP-driven Ca2+ transport in basolateral plasma membrane vesicles was inhibited by Cd2+ with an I50 value of 1.6 nM free Cd2+ at 1 microM free Ca2+, using EGTA and HEEDTA to buffer Ca2+ and Cd2+ concentrations, respectively. The inhibition was competitive in nature since the Km value of Ca2+ increased with increasing Cd2+ concentrations while the Vmax remained constant. Cd2+ had similar effects on ATP-dependent Ca2+ uptake by permeabilized enterocytes, indicating that non-mitochondrial and mitochondrial Ca2+ stores are also inhibited by nanomolar concentrations of Cd2+. We conclude that ATP-driven Ca2+ transport systems are the most sensitive elements so far reported in Cd2+ intoxication.  相似文献   

18.
Phosphorylation by ATP of E.*Ca2 (sarcoplasmic reticulum vesicles (SRV) with bound 45Ca2+) during 5-10 ms leads to the occlusion of 2 *Ca2+/EPtot [quench by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) alone] in both "empty" (10 microM free Ca2+in) or "loaded" SRV (20-40 mM free Ca2+in). The rate of Ca2+ "internalization" from the occluded E approximately P.*Ca2 was measured by using an ADP + EGTA quench; a *Ca2+ ion that is not removed by this quench is defined as internalized. In the presence of 20-40 mM unlabeled Ca2+ inside SRV, 1 *Ca2+/EPtot is internalized from 45Ca-labeled E approximately P.*Ca2 with a first-order rate constant of kl = 34 s-1. Empty SRV take up 2 *Ca2+/EPtot with the same initial rate, but the overall rate constant is kobsd = 17 s-1. The apparent rate constant (kb = 17 s-1) for internalization of the second *Ca2+ is inhibited by [Ca]in, with K0.5 approximately 1.3 mM and a Hill coefficient of n = 1.1. These data show that the two Ca2+ ions are internalized sequentially, presumably from separate sequential sites in the channel. [32P]EP.Ca2 obtained by rapid mixing of E.Ca2 with [gamma-32P]ATP and EGTA disappears in a biphasic time course with a lag corresponding to approximately 34 s-1, followed by EP* decay with a rate constant of approximately 17 s-1. This shows that both Ca2+ ions must be internalized before the enzyme changes its specificity for catalysis of phosphoryl transfer to water instead of to ADP. Increasing the concentration of ATP from 0.25 to 3 mM accelerates the rate of 45Ca2+ internalization from 34 to 69 s-1 for the first Ca2+ and from 17 to 34 s-1 for the second Ca2+. High [ATP] also accelerates both phases of [32P]EP.Ca2 disappearance by the same factor. The data are consistent with a single form of ADP-sensitive E approximately P.Ca2 that sequentially internalizes two ions. The intravesicular volume was estimated to be 2.0 microL/mg, so that one turnover of the enzyme gives 4 mM internal [Ca2+].  相似文献   

19.
Purified myometrium cells plasma membrane Ca2+, Mg(2+)-ATPase was reconstitute in liposomes in functionally active state by the method of cholate dialysis: it showed ATP-hydrolase activity increased by 0.8 microM A23187 average 4 times and it showed Mg2+, ATP-dependent Ca(2+)-transporting activity. Reconstituted system transported Ca2+ at an initial rate of 114.4 +/- 16.3 nmol.min-1.mg-1 with the stoichiometry Ca2+: ATP = 1: (3.2-3.7). Calmodulin increased by 30% the initial rate of Ca(2+)-accumulation by the proteoliposomes with reconstituted Ca2+, Mg(2+)-ATPase; 0.1 mM orthovanadate decreased by 80% Ca(2+)-accumulation by this system. Ca2+, Mg(2+)-ATPase reconstituted in liposomes is just Ca(2+)-transporting ATPase of the plasma membrane. Obtained enzyme preparate can be utilised for study of the properties of this important energy-dependent Ca(2+)-transporting system of smooth muscle cell.  相似文献   

20.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号