首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant proteins produced in plant suspension cultures are often degraded by endogenous plant proteases when secreted into the medium, resulting in low yields. To generate protease‐deficient tobacco BY‐2 cell lines and to retrieve the sequence information, we cloned four different protease cDNAs from tobacco BY‐2 cells (NtAP, NtCP, NtMMP1, and NtSP), which represent the major catalytic classes. The simultaneous expression of antisense RNAs against these endogenous proteases led to the establishment of cell lines with reduced levels of endogenous protease expression and activity at late stages of the cultivation cycle. One of the cell lines showing reduced proteolytic activity in the culture medium was selected for the expression of the recombinant full‐length IgG1(κ) antibody 2F5, recognizing the gp41 surface protein of HIV‐1. This cell line showed significantly reduced degradation of the 2F5 heavy chain, resulting in four‐fold higher accumulation of the intact antibody heavy chain when compared to transformed wild type cells expressing the same antibody. N‐terminal sequencing data revealed that the antibody has two cleavage sites within the CDR‐H3 and one site at the end of the H4‐framework region. These cleavage sites are found to be vulnerable to serine proteases. The data provide a basis for further improvement of plant cells for the production of recombinant proteins in plant cell suspension cultures.  相似文献   

2.
Summary.  In cell suspension cultures of Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) a rapid and concentration-dependent accumulation of H2O2 is induced by excess concentrations of copper (up to 100 μM). This specific and early response towards copper stress was shown to be extracellular. Addition of 300 U of catalase per ml decreased the level of H2O2. Superoxide dismutase (5 U/ml) induced an increase in H2O2 production by 22.2%. This indicates that at least part of the H2O2 is produced by dismutation of superoxide. Pretreatment of the cell cultures with the NAD(P)H oxidase inhibitors diphenylene iodonium (2 and 10 μM) and quinacrine (1 and 5 mM) prevented the generation of H2O2 under copper stress for 90%. The influence of the pH on the H2O2 production revealed the possible involvement of cell-wall-dependent peroxidases in the generation of reactive oxygen species after copper stress. Received May 20, 2002; accepted July 26, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Plant Physiology, Department of Biology, University of Antwerp (RUCA), Groenenborgerlaan 171, 2020 Antwerp, Belgium.  相似文献   

3.
To evaluate Ni dynamics at the subcellular level, the distribution and speciation of Ni were determined in wild‐type (WT) and Ni‐tolerant (NIT) tobacco BY‐2 cell lines. When exposed to low but toxic levels of Ni, NIT cells were found to contain 2.5‐fold more Ni (14% of whole‐cell Ni values) in their cell walls than WT cells (6% of whole‐cell Ni values). In addition to higher levels of Ni in the apoplast, a higher proportion (94%) of symplastic Ni was localized in the vacuoles of NIT cells than in the vacuoles of WT cells (81%). The concentration of cytosolic Ni in the NIT cells was significantly lower (18 nmol g?1 FW) than that in the WT cells (85 nmol g?1 FW). In silico simulation showed that 95% of vacuolar Ni was in the form of Ni‐citrate complexes, and that free Ni2+ was virtually absent in the NIT cells. On the other hand, the amount of free metal ions was markedly increased in WT cells because free citrate was depleted by chelation of Ni. A protoplast viability assay using BCECF‐AM further demonstrated that the main mechanism that confers strong Ni tolerance was present in the symplast as opposed to the cell wall.  相似文献   

4.
S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) transfer methyl groups to substrates. In this study, a novel putative tobacco SAM-MTase termed Golgi-localized methyl transferase 1 (GLMT1) has been characterized. GLMT1 is comprised of 611 amino acids with short N-terminal region, putative transmembrane region, and C-terminal SAM-MTase domain. Expression of monomeric red fluorescence protein (mRFP)-tagged protein in tobacco BY-2 cell indicated that GLMT1 is a Golgi-localized protein. Analysis of the membrane topology by protease digestion suggested that both C-terminal catalytic region and N-terminal region seem to be located to the cytosolic side of the Golgi apparatus. Therefore, GLMT1 might have a different function than the previously studied SAM-MTases in plants.  相似文献   

5.
We have previously shown that the tobacco cyclin B1;1 protein accumulates during the G2 phase of the cell cycle and is subsequently destroyed during mitosis. Here, we investigated the sub-cellular localisation of two different B1-types and one A3-type cyclin during the cell cycle by using confocal imaging and differential interference contrast (DIC) microscopy. The cyclins were visualised as GFP-tagged fusion proteins in living tobacco cells. Both B1-type cyclins were found in the cytoplasm and in the nucleus during G2 but when cells entered into prophase, both cyclins became associated with condensing chromatin and remained on chromosomes until metaphase. As cells exited metaphase, the B1-type cyclins became degraded, as shown by time-lapse images. A stable variant of cyclin B1;1-GFP fusion protein, in which the destruction box had been mutated, maintained its association with the nuclear material at later phases of mitosis such as anaphase and telophase. Furthermore, we demonstrated that cyclin B1;1 protein is stabilised in metaphase-arrested cells after microtubule destabilising drug treatments. In contrast to the B1-type cyclins, the cyclin A3;1 was found exclusively in the nucleus in interphase cells and disappeared earlier than the cyclin B1 proteins during mitosis.  相似文献   

6.
In the budding yeast Saccharomyces cerevisiae, the mitotic spindle must align along the mother-bud axis to accurately partition the sister chromatids into daughter cells. Previous studies showed that spindle orientation required both astral microtubules and the actin cytoskeleton. We now report that maintenance of correct spindle orientation does not depend on F-actin during G2/M phase of the cell cycle. Depolymerization of F-actin using Latrunculin-A did not perturb spindle orientation after this stage. Even an early step in spindle orientation, the migration of the spindle pole body (SPB), became actin-independent if it was delayed until late in the cell cycle. Early in the cell cycle, both SPB migration and spindle orientation were very sensitive to perturbation of F-actin. Selective disruption of actin cables using a conditional tropomyosin double-mutant also led to defects in spindle orientation, even though cortical actin patches were still polarized. This suggests that actin cables are important for either guiding astral microtubules into the bud or anchoring them in the bud. In addition, F-actin was required early in the cell cycle for the development of the actin-independent spindle orientation capability later in the cell cycle. Finally, neither SPB migration nor the switch from actin-dependent to actin-independent spindle behavior required B-type cyclins.  相似文献   

7.
Cell migration is essential for a variety of fundamental biological processes such as embryonic development, wound healing, and immune response. Aberrant cell migration also underlies pathological conditions such as cancer metastasis, in which morphological transformation promotes spreading of cancer to new sites. Cell migration is driven by actin dynamics, which is the repeated cycling of monomeric actin (G-actin) into and out of filamentous actin (F-actin). CAP (Cyclase-associated protein, also called Srv2) is a conserved actin-regulatory protein, which is implicated in cell motility and the invasiveness of human cancers. It cooperates with another actin regulatory protein, cofilin, to accelerate actin dynamics. Hence, knockdown of CAP1 slows down actin filament turnover, which in most cells leads to reduced cell motility. However, depletion of CAP1 in HeLa cells, while causing reduction in dynamics, actually led to increased cell motility. The increases in motility are likely through activation of cell adhesion signals through an inside-out signaling. The potential to activate adhesion signaling competes with the negative effect of CAP1 depletion on actin dynamics, which would reduce cell migration. In this commentary, we provide a brief overview of the roles of mammalian CAP1 in cell migration, and highlight a likely mechanism underlying the activation of cell adhesion signaling and elevated motility caused by depletion of CAP1.  相似文献   

8.
9.
To study the function of xyloglucan endotransglycosylase (XET) in vivo we isolated, a tomato (Lycopersicon esculentum Mill.) XET cDNA (GenBank AA824986) from the homologous tobacco (Nicotiana tabacum L.) clone named NtXET-1 (Accession no. D86730). The expression pattern revealed highest levels of NtXET-1 mRNA in organs highly enriched in vascular tissue. The levels of NtXET-1 mRNA decreased in midribs with increasing age of leaves. Increasing leaf age was correlated with an increase in the average molecular weight (MW) of xyloglucan (XG) and a decrease in the relative growth rates of leaves. Transgenic tobacco plants with reduced levels of XET activity were created to further study the biochemical consequences of reduced levels of NtXET-1 expression. In two independent lines, total XET activity could be reduced by 56% and 37%, respectively, in midribs of tobacco plants transformed with an antisense construct. The decreased activity led to an increase in the average MW of XG by at least 20%. These two lines of evidence argue for NtXET-1 being involved in the incorporation of small XG molecules into the cell wall by transglycosylation. Reducing the incorporation of small XG molecules will result in a shift towards a higher average MW. The observed reduction in NtXET-1 expression and increase in the MW of XG in older leaves might be associated with strengthening of cell walls by reduced turnover and hydrolysis of XG. Received: 24 January 2000 / Accepted: 21 July 2000  相似文献   

10.
11.
哺乳动物肝细胞中cyp2e1基因所编码的蛋白CYP2E1在代谢异型有机物方面起着重要作用,转cyp2e1基因植物可以代谢多种小分子有机污染物;但cyp2e1基因在植物体内的表达调控和代谢机理尚不完全清楚。文中将含有cyp2e1基因的质粒pSLD50-6和对照gus基因的质粒pKH200转入根癌农杆菌GV3101,利用根癌农杆菌转基因技术将cyp2e1基因和对照gus基因成功转入烟草,分别获得了转cyp2e1和gus基因再生植株。选取PCR鉴定的再生植株进行荧光定量PCR(qRT-PCR)分析,结果表明:在转录水平上,转cyp2e1基因烟草中,乙醇处理后cyp2e1基因的表达明显下降,苯和甲苯处理后cyp2e1基因的表达量稍有下降;而丙酮、甲醛处理和缺氧条件下cyp2e1基因的表达有不同程度的升高。此外,苯处理后,转cyp2e1基因烟草中NADPH-P450氧化还原酶和细胞色素b5酶的基因活性显著提高,说明烟草中NADPH-P450氧化还原酶和细胞色素b5酶与CYP2E1酶的解毒过程有关,可能起到哺乳动物体内的NADPH-P450氧化还原酶和细胞色素b5的功能,参与CYP2E1酶催化过程的电子传递链。  相似文献   

12.
A slow-growing variant plant with distinct foliar and floral morphology was obtained in tissue cultures ofNicotiana tabacum cv. White Burley. The root and shoot differentiation in the callus derived from normal plants occurred on the 8th and 12th day, respectively, but took 10 and 14 days, respectively, in the variant callus. Amylase and acid phosphatase activities, starch and soluble carbohydrate contents were studied in non-differentiating callus (NDC), root differentiating callus (RDC) and shoot differentiating callus (SDC). The activities of amylase and acid phosphatase were low in the variant as compared to normal. Maximum amylase and acid phosphatase activities coincided with the appearance of roots or shoots. There was more starch accumulation in normal callus on differentiating media, but the variant showed a less pronounced change. The normal callus under differentiating conditions also showed more increase in soluble carbohydrates as compared to the variant. The increase in soluble carbohydrate was maintained till roots and shoot appeared. The increase the variant in differentiating was reflected in slow development of enzyme activities and low starch and sugar concentrations.  相似文献   

13.
14.
Fucci (fluorescent ubiquitination-based cell cycle indicator) is able to visualize dynamics of cell cycle progression in live cells; G1- and S-/G2-/M-phase cells expressing Fucci emit red and green fluorescence, respectively. This system could be applied to cell kinetic analysis of tumour cells in the field of cancer therapy; however, it is still unclear how fluorescence kinetics change after various treatments, including exposure to anticancer agents. To explore this, we arrested live HeLa cells expressing the Fucci probes at various cell cycle stages and observed the fluorescence, in conjunction with flow cytometric analysis. X-irradiation, HU (hydroxyurea) and nocodazole arrest cells at G2/M boundary, early S-phase and early M-phase, respectively. Although X-irradiation and HU treatment induced similar accumulation kinetics of green fluorescent cells, nocodazole treatment induced an abnormal red fluorescence at M phase, followed by accumulation of both red and green fluorescent cells with 4N DNA content. We conclude that certain agents that disrupt normal cell cycle regulation could cause unexpected fluorescence kinetics in the Fucci system.  相似文献   

15.
Evans Blue staining indicated that actively growing tobacco BY‐2 cells in the exponential phase died more rapidly than quiescent cells in the stationary phase when the cells cultured under agitation were placed under still conditions. Fifty percent cell death was induced at about 18, 26, 80 and 140 h for early, mid, late exponential‐ and stationary‐phase cells, respectively. Actively growing cells became TUNEL (transferase‐mediated dUTP nick end labelling)‐positive more rapidly than quiescent cells, suggesting that the cell death evaluated by Evans Blue is accompanied by DNA cleavages. Electrophoresis of genomic DNA showed a typical ‘DNA laddering' pattern formed by multiples of about 200 bp internucleosomal units. Chromatin condensation was first detected at least within 24 h by light microscopy, and then cell shrinkage followed. These findings suggest that the death of BY‐2 cells induced by still conditions is PCD (programmed cell death).  相似文献   

16.
The structure and dynamics of microtubular cytoskeleton and of callose walls in normal pollen mother cells (PMC) of tobacco N. tabacum L. and in cells with intercellular translocation of nuclear material (cytomictic) was studied in the course of the cell cycle. The microtubular cytoskeleton was established as playing no obvious role in the process of cytomixis. The elevated level of cytomictic seems to be due to disturbances of synthesis of callose walls as a result of their attenuation and perforation. Possible causes of cytomictic in tobacco PMC at the cellular level are discussed.  相似文献   

17.
The relationship between cellular growth and aluminium (Al) uptake was examined by applying brefeldin A, a vesicle transport inhibitor, to cultured tobacco (Nicotiana tabacum L. cv. BY-2) cells. Cultured cells almost completely lost the capacity for Al uptake when pre-incubated for 1–3 h in a minimal medium. Pre-incubation also diminished subsequent growth in a culture medium. However, competency for Al uptake (20 μm, pH 4.5) was sustained in a dose-dependent and reversible manner when cells were treated with brefeldin A (10 μm), an inhibitor of Golgi-mediated secretion, prior to and during the incubation in minimal medium. Received: 24 September 1998 / Revision received: 24 November 1998 / Accepted: 5 December 1998  相似文献   

18.
The role of the actin cytoskeleton in plant development is intimately linked to its dynamic behavior. Therefore it is essential to continue refining methods for studying actin organization in living plant cells. The discovery of green fluorescent protein (GFP) has popularized the use of translational fusions of GFP with actin filament (F-actin) side-binding proteins to visualize in vivo actin organization in plants. The most recent of these live cell F-actin reporters are GFP fusions to the actin-binding domain 2 (ABD2) of Arabidopsis fimbrin 1 (ABD2-GFP). To improve ABD2-GFP fluorescence for enhanced in vivo F-actin imaging, transgenic Arabidopsis plants were generated expressing a construct with GFP fused to both the C- and N-termini of ABD2 under the control of the CaMV 35S promoter (35S::GFP-ABD2-GFP). The 35S::GFP-ABD2-GFP lines had significantly increased fluorescence compared with the original 35S::ABD2-GFP lines. The enhanced fluorescence of the 35S::GFP-ABD2-GFP-expressing lines allowed the acquisition of highly resolved images of F-actin in different plant organs and stages of development because of the reduced confocal microscope excitation settings needed for data collection. This simple modification to the ABD2-GFP construct presents an important tool for studying actin function during plant development.  相似文献   

19.
The effect of chitosan on the development of infection caused by Tobacco mosaic virus(TMV) in leaves of Nicotiana tabacum L. cv. Samsun has been studied. It was shown that the infectivity and viral coat protein content in leaves inoculated with a mixture of TMV(2 μg/mL) and chitosan(1 mg/mL) were lower in the early period of infection(3 days after inoculation), by 63% and 66% respectively, than in leaves inoculated with TMV only. Treatment of leaves with chitosan 24 h before inoculation with TMV also caused the antiviral effects, but these were less apparent than when the virus and polysaccharide were applied simultaneously. The inhibitory effects of the agent decreased as the infection progressed. Inoculation of leaves with TMV together with chitosan considerably enhanced the activity of hydrolases(proteases, RNases) in the leaves, in comparison with leaves inoculated with TMV alone. Electron microscope assays of phosphotungstic acid(PTA)-stained suspensions from infected tobacco leaves showed that, in addition to the normal TMV particles(18 nm in diameter, 300 nm long), these suspensions contained abnormal(swollen, "thin" and "short") virions. The highest number of abnormal virions was found in suspensions from leaves inoculated with a mixture of TMV and chitosan. Immuno-electron microscopy showed that "thin" virus particles, in contrast to the particles of normal diameter, lost the ability to bind to specific antiserum. It seems that the chitosan-induced activation of hydrolases stimulates the intracellular degradation of TMV particles and hence hydrolase activation may be considered to be one of the polysaccharide-mediated cellular defense mechanisms that limit virus accumulation in cells.  相似文献   

20.
利用绿色荧光蛋白(GFP)基因结合鼠Talin基因表达技术及水稻(Oryza sativa L.)转基因技术,筛选出表达稳定和具等位基因型的第三代转基因水稻。在其活体花粉的4个发育阶段(Ⅰ.小孢子晚期;Ⅱ.二细胞早期;Ⅲ.二细胞晚期;Ⅳ.三细胞阶段),观察了细胞内微丝骨架的分布和结构形态的变化。发现在这4个花粉发育阶段,花粉内的营养核、生殖核、生殖细胞和精细胞都在不同的发育阶段出现位移。而这些位移与微丝骨架的结构变化和运动有密切关系。在胞质中央的微丝网络以及细胞周质的网络不断变化和互动,导致营养核、生殖核或生殖细胞和精细胞的定向位移。在活体生殖细胞和精细胞内,存有一股与细胞纵轴平行排列的微丝骨架。这些微丝骨架对生殖细胞及精细胞可以提供移动的动力,这对生殖细胞或精细胞在花管内以及胚囊内的运动(包括独自游动)提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号