首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human parvovirus adeno-associated virus type 2 (AAV2) has many features that make it attractive as a vector for gene therapy. However, the broad host range of AAV2 might represent a limitation for some applications in vivo, because recombinant AAV vector (rAAV)-mediated gene transfer would not be specific for the tissue of interest. This host range is determined by the binding of the AAV2 capsid to specific cellular receptors and/or co-receptors. The tropism of AAV2 might be changed by genetically introducing a ligand peptide into the viral capsid, thereby redirecting the binding of AAV2 to other cellular receptors. We generated six AAV2 capsid mutants by inserting a 14-amino-acid targeting peptide, L14, into six different putative loops of the AAV2 capsid protein identified by comparison with the known three-dimensional structure of canine parvovirus. All mutants were efficiently packaged. Three mutants expressed L14 on the capsid surface, and one efficiently infected wild-type AAV2-resistant cell lines that expressed the integrin receptor recognized by L14. The results demonstrate that the AAV2 capsid tolerates the insertion of a nonviral ligand sequence. This might open new perspectives for the design of targeted AAV2 vectors for human somatic gene therapy.  相似文献   

2.
以纯化的重组AAV2病毒颗粒为抗原免疫小鼠,获得7株稳定分泌抗AAV2衣壳蛋白的单克隆抗体杂交瘤细胞株,其中B10和G4两株单克隆抗体具有中和活性,抗体亚型分别为IgG1和IgG2a型。对这两株单克隆抗体与rAAV病毒结合的特性进行了研究。单克隆抗体B10和G4对rAAV2病毒颗粒的结合均具有良好的血清型特异性,并且这种特异结合作用不被肝素阻断。这两株抗体都不阻断AAV2病毒与敏感细胞的结合,提示它们与病毒颗粒的结合位点都不处于AAV2病毒与主要受体结合的部位内。Western blotting检测结果显示,B10与AAV2的三种衣壳蛋白VP1、VP2和VP3均能结合,而G4不能与AAV2的这三种衣壳蛋白结合。这说明B10与AAV2结合的位点位于衣壳蛋白VP1、VP2和VP3的重叠部分处并且可能是线性表位,而G4则可能是针对AAV2病毒颗粒构象表位的抗体。这两种结合特性不同的单克隆抗体为研究AAV2病毒颗粒的表面特性和感染特性提供有用的工具。  相似文献   

3.
A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response.  相似文献   

4.
The AAV2.7m8 vector is an engineered capsid with a 10-amino acid insertion in adeno-associated virus (AAV) surface variable region VIII (VR-VIII) resulting in the alteration of an antigenic region of AAV2 and the ability to efficiently transduce retina cells following intravitreal administration. Directed evolution and in vivo screening in the mouse retina isolated this vector. In the present study, we sought to identify the structural differences between a recombinant AAV2.7m8 (rAAV2.7m8) vector packaging a GFP genome and its parental serotype, AAV2, by cryo-electron microscopy (cryo-EM) and image reconstruction. The structures of rAAV2.7m8 and AAV2 were determined to 2.91 and 3.02 Å resolution, respectively. The rAAV2.7m8 amino acid side-chains for residues 219–745 (the last C-terminal residue) were interpretable in the density map with the exception of the 10 inserted amino acids. While observable in a low sigma threshold density, side-chains were only resolved at the base of the insertion, likely due to flexibility at the top of the loop. A comparison to parental AAV2 (ordered from residues 217–735) showed the structures to be similar, except at some side-chains that had different orientations and, in VR-VIII containing the 10 amino acid insertion. VR-VIII is part of an AAV2 antigenic epitope, and the difference is consistent with rAAV2.7m8′s escape from a known AAV2 monoclonal antibody, C37-B. The observations provide valuable insight into the configuration of inserted surface peptides on the AAV capsid and structural differences to be leveraged for future AAV vector rational design, especially for retargeted tropism and antibody escape.  相似文献   

5.
For all adeno-associated virus (AAV) serotypes, 60 monomers of the Vp1, Vp2, and Vp3 structural proteins assemble via an unknown mechanism to form an intact capsid. In an effort to better understand the properties of the capsid monomers and their role in viral entry and infection, we evaluated whether monomers from distinct serotypes can be mixed to form infectious particles with unique phenotypes. This transcapsidation approach consisted of the transfection of pairwise combinations of AAV serotype 1 to 5 helper plasmids to produce mosaic capsid recombinant AAV (rAAV). All ratios (19:1, 3:1, 1:1, 1:3, and 1:19) of these mixtures were able to replicate the green fluorescent protein transgene and to produce capsid proteins. A high-titer rAAV was obtained with mixtures that included either serotype 1, 2, or 3, whereas an rAAV of intermediate titer was obtained from serotype 5 mixtures. Only mixtures containing the AAV4 capsid exhibited reduced packaging capacity. The binding profiles of the mixed-virus preparations to either heparin sulfate (HS) or mucin agarose revealed that only AAV3-AAV5 mixtures at the 3:1 ratio exhibited duality in binding. All other mixtures displayed either an abrupt shift or a gradual alteration in the binding profile to the respective ligand upon increase of a capsid component that conferred either HS or mucin binding. The transduction of cell lines was used to further evaluate the phenotypes of these transcapsidated virions. Three transduction profiles were observed: (i) small to no change regardless of ratio, (ii) a gradual increase in transduction consistent with titration of a second capsid component, or (iii) an abrupt increase in transduction (threshold effect) dependent on the specific ratios used. Interestingly, an unexpected synergistic effect in transduction was observed when AAV1 helper constructs were combined with type 2 or type 3 recipient helpers. Further studies determined that at least two components contributed to this observed synergy: (i) heparin-mediated binding from AAV2 and (ii) an unidentified enhancement activity from AAV1 structural proteins. Using this procedure of mixing different AAV helper plasmids to generate "cross-dressed" AAV virions, we propose an additional means of classifying new AAV serotypes into subgroups based on functional approaches to analyze AAV capsid assembly, receptor-mediated binding, and virus trafficking. Exploitation of this approach in generating custom-designed AAV vectors should be of significant value to the field of gene therapy.  相似文献   

6.
Adeno-associated virus type 2 (AAV2) provokes a DNA damage response that mimics a stalled replication fork. We have previously shown that this response is dependent on ataxia telangiectasia-mutated and Rad3-related kinase and involves recruitment of DNA repair proteins into foci associated with AAV2 DNA. Here, we investigated whether recombinant AAV2 (rAAV2) vectors are able to produce a similar response. Surprisingly, the results show that both single-stranded and double-stranded green fluorescent protein-expressing rAAV2 vectors are defective in producing such a response. We show that the DNA damage signaling initiated by AAV2 was not due to the virus-encoded Rep or viral capsid proteins. UV-inactivated AAV2 induced a response similar to that of untreated AAV2. This type of DNA damage response was not provoked by other DNA molecules, such as single-stranded bacteriophage M13 or plasmid DNAs. Rather, the results indicate that the ability of AAV2 to produce a DNA damage response can be attributed to the presence of cis-acting AAV2 DNA sequences, which are absent in rAAV2 vectors and could function as origins of replication creating stalled replication complexes. This hypothesis was tested by using a single-stranded rAAV2 vector containing the p5 AAV2 sequence that has previously been shown to enhance AAV2 replication. This vector was indeed able to trigger DNA damage signaling. These findings support the conclusion that efficient formation of AAV2 replication complexes is required for this AAV2-induced DNA damage response and provide an explanation for the poor response in rAAV2-infected cells.  相似文献   

7.
Adeno-associated virus (AAV) vectors are associated with relatively mild host immune responses in vivo. Although AAV induces very weak innate immune responses, neutralizing antibodies against the vector capsid and transgene still occur. To understand further the basis of the antiviral immune response to AAV vectors, studies were performed to characterize AAV interactions with macrophages. Primary mouse macrophages and human THP-1 cells transduced in vitro using an AAV serotype 2 (AAV2) vector encoding green fluorescent protein did not result in measurable transgene expression. An assessment of internalized vector genomes showed that AAV2 vector uptake was enhanced in the presence of normal but not heat-inactivated or C3-depleted mouse/human serum. Enhanced uptake in the presence of serum coincided with increased macrophage activation as determined by the expression of NF-κB-dependent genes such as macrophage inflammatory protein 2 (MIP-2), interleukin-1β (IL-1β), IL-8, and MIP-1β. AAV vector serotypes 1 and 8 also activated human and mouse macrophages in a serum-dependent manner. Immunoprecipitation studies demonstrated the binding of iC3b complement protein to the AAV2 capsid in human serum. AAV2 did not activate the alternative pathway of the complement cascade and lacked cofactor activity for factor I-mediated degradation of C3b to iC3b. Instead, our results suggest that the AAV capsid also binds complement regulatory protein factor H. In vivo, complement receptor 1/2- and C3-deficient mice displayed impaired humoral immunity against AAV2 vectors, with a delay in antibody development and significantly lower neutralizing antibody titers. These results show that the complement system is an essential component of the host immune response to AAV.  相似文献   

8.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

9.
Dendritic cells (DC) are antigen-presenting cells pivotal for inducing immunity or tolerance. Gene transfer into DC is an important strategy for developing immunotherapeutic approaches against infectious pathogens and cancers. One of the vectors previously described for the transduction of human monocytes or DC is the recombinant adeno-associated virus (rAAV), with a genome conventionally packaged as a single-stranded (ss) molecule. Nevertheless, its use is limited by the poor and variable transduction efficiency of DC. In this study, AAV type 1 (AAV1) and AAV2 vectors, which expressed the enhanced green fluorescent protein and were packaged as ss or self-complementary (sc) duplex strands, were used to transduce different DC subsets generated ex vivo and the immunophenotypes, states of differentiation, and functions of the subsets were carefully examined. We show here for the first time that a single exposure of monocytes (M(o)) or CD34(+) progenitors (CD34) to sc rAAV1 or sc rAAV2 leads to high transduction levels (5 to 59%) of differentiated M(o)-DC, M(o)-Langerhans cells (LC), CD34-LC, or CD34-plasmacytoid DC (pDC), with no impact on their phenotypes and functional maturation of these cells, compared to those of exposure to ss rAAV. Moreover, we show that all these DC subpopulations can also be efficiently transduced after commitment to their differentiation pathways. Furthermore, these DC subsets transduced with sc rAAV1 expressing a tumor antigen were potent activators of a CD8(+)-T-cell clone. Altogether, these results show the high potential of sc AAV1 and sc AAV2 vectors to transduce ex vivo conventional DC, LC, or pDC or to directly target them in vivo for the design of new DC-based immunotherapies.  相似文献   

10.
Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy. Recent isolations of novel AAV serotypes have led to significant advances by broadening the tropism and increasing the efficiency of gene transfer to the desired target cell. However, a major concern that remains is the strong preexisting immune responses to several vectors. In this paper, we describe the isolation and characterization of AAV12, an AAV serotype with unique biological and immunological properties. In contrast to those of all other reported AAVs, AAV12 cell attachment and transduction do not require cell surface sialic acids or heparan sulfate proteoglycans. Furthermore, rAAV12 is resistant to neutralization by circulating antibodies from human serum. The feasibility of rAAV12 as a vector was demonstrated in a mouse model in which muscle and salivary glands were transduced. These characteristics make rAAV12 an interesting candidate for gene transfer applications.  相似文献   

11.
Adeno-associated viral vectors (AAV) have been shown to be safe in the treatment of retinal degenerations in clinical trials. Thus, improving the efficiency of viral gene delivery has become increasingly important to increase the success of clinical trials. In this study, structural domains of different rAAV serotypes isolated from primate brain were combined to create novel hybrid recombinant AAV serotypes, rAAV2/rec2 and rAAV2/rec3. The efficacy of these novel serotypes were assessed in wild type mice and in two models of retinal degeneration (the Abca4−/− mouse which is a model for Stargardt disease and in the Pde6brd1/rd1 mouse) in vivo, in primate tissue ex-vivo, and in the human-derived SH-SY5Y cell line, using an identical AAV2 expression cassette. We show that these novel hybrid serotypes can transduce retinal tissue in mice and primates efficiently, although no more than AAV2/2 and rAAV2/5 serotypes. Transduction efficiency appeared lower in the Abca4−/− mouse compared to wild type with all vectors tested, suggesting an effect of specific retinal diseases on the efficiency of gene delivery. Shuffling of AAV capsid domains may have clinical applications for patients who develop T-cell immune responses following AAV gene therapy, as specific peptide antigen sequences could be substituted using this technique prior to vector re-treatments.  相似文献   

12.
Recombinant adeno-associated viral (rAAV) vectors based on serotype 2 are currently being evaluated most extensively in animals and human clinical trials. rAAV vectors constructed from other AAV serotypes (serotypes 1, 3, 4, 5, and 6) can transduce certain tissues more efficiently and with different specificity than rAAV2 vectors in animal models. Here, we describe reagents and methods for the production and purification of AAV2 inverted terminal repeat-containing vectors pseudotyped with AAV1 or AAV5 capsids. To facilitate pseudotyping, AAV2rep/AAV1cap and AAV2rep/AAV5cap helper plasmids were constructed in an adenoviral plasmid backbone. The resultant plasmids, pXYZ1 and pXYZ5, were used to produce rAAV1 and rAAV5 vectors, respectively, by transient transfection. Since neither AAV5 nor AAV1 binds to the heparin affinity chromatography resin used to purify rAAV2 vectors, purification protocols were developed based on anion-exchange chromatography. The purified vector stocks are 99% pure with titers of 1 x 10(12) to 1 x 10(13)vector genomes/ml.  相似文献   

13.
While recombinant adeno-associated virus (rAAV) vectors promote long-term transgene expression in the lungs and other organs, the goal of correcting chronic inherited lung diseases such as cystic fibrosis with this type of viral gene transfer vector is limited by the requirement of achieving stable potent transgene expression, potentially requiring vector readministration. Here we evaluated the abilities of rAAV type 5/5 (rAAV5/5) vectors based on the genome and capsid of AAV5 to efficiently transduce the lungs and nasal epithelium of mice after repeated administration. Transduction efficiency as judged by reporter gene expression was markedly reduced on a second rAAV5/5 administration and effectively abolished on a third. Varying the period between administrations from 8 to 36 weeks did not allow efficient repeated administration. A rapid rise in anti-AAV5 antibodies was noted after rAAV5/5 vector administration that was sustained for the entire period of investigation (in some cases exceeding 9 months). Furthermore, this antibody response and subsequent failure to repeatedly administer the vector were not rescued by the in vivo expression of CTLA4Ig from an rAAV5/5 vector. These results suggest that without the development of an effective and clinically acceptable immunosuppression strategy, treatments for chronic diseases that require repeated administration of rAAV5/5 vectors will be unsuccessful.  相似文献   

14.
Efficient local expression from recombinant adeno-associated virus (rAAV)-cystic fibrosis (CF) transmembrane conductance regulator (CFTR) vectors has been observed in the airways of rabbits and monkeys for up to 6 months following a single bronchoscopic delivery. However, it is likely that repeated administrations of rAAV vectors will be necessary for sustained correction of the CF defect in the airways. The current study was designed to test the feasibility of repeated airway delivery of rAAV vectors in the rabbit lung. After two doses of rAAV-CFTR to the airways, rabbits generated high titers of serum anti-AAV neutralizing antibodies. Rabbits then received a third dose of a rAAV vector containing the green fluorescent protein (GFP) reporter gene packaged in either AAV serotype 2 (AAV2) or serotype 3 (AAV3) capsids. Each dose consisted of 1 ml containing 5 x 10(9) DNase-resistant particles of rAAV vector, having no detectable replication-competent AAV or adenovirus. Three weeks later, GFP expression was observed in airway epithelial cells despite high anti-AAV neutralizing titers at the time of delivery. There was no significant difference in the efficiency of DNA transfer or expression between the rAAV3 and rAAV2 groups. No significant inflammatory responses to either repeated airway exposure to rAAV2-CFTR vectors or to GFP expression were observed. These experiments demonstrate that serum anti-AAV neutralizing antibody titers do not predict airway neutralization in vivo and that repeated airway delivery rAAV allows for safe and effective gene transfer.  相似文献   

15.
Adeno-associated viruses (AAV) have been developed and evaluated as recombinant vectors for gene therapy in many preclinical studies, as well as in clinical trials. However, only a few approaches have used recombinant AAV (rAAV) to deliver vaccine antigens. We generated an rAAV encoding the major capsid protein L1 (L1h) from the human papillomavirus type 16 (HPV16), aiming to develop a prophylactic vaccine against HPV16 infections, which are the major cause of cervical cancer in women worldwide. A single dose of rAAV5 L1h administered intranasally was sufficient to induce high titers of L1-specific serum antibodies, as well as mucosal antibodies in vaginal washes. Seroconversion was maintained for at least 1 year. In addition, a cellular immune response was still detectable 60 weeks after immunization. Furthermore, lyophilized rAAV5 L1h successfully evoked a systemic and mucosal immune response in mice. These data clearly show the efficacy of a single-dose intranasal immunization against HPV16 based on the recombinant rAAV5L1h vector without the need of an adjuvant.  相似文献   

16.
J Li  R J Samulski    X Xiao 《Journal of virology》1997,71(7):5236-5243
Recent success achieving long-term in vivo gene transfer without a significant immune response by using adeno-associated virus (AAV) vectors (X. Xiao, J. Li, and R. J. Samulski, J. Virol. 70:8098-8108, 1996) has encouraged further development of this vector for human gene therapy. Currently, studies focus on the generation of high-titer vectors by using the two-plasmid helper-vector system in adenovirus (Ad)-infected cells. To examine the effects of the AAV replication (rep) genes on recombinant AAV (rAAV) vector production, we have constructed a series of AAV helper plasmids that contain strong heterologous promoters in place of the endogenous p5 promoter. Although high-level rep gene expression was achieved, rAAV DNA failed to replicate in the absence of Ad infection. Moreover, unregulated overexpression of Rep78/68 led to substantially lower rAAV yields in the presence of Ad (10(4-5) versus 10(7-8)). In contrast, under similar conditions, reduced Rep78/68 expression resulted in much higher rAAV yields (10(9)). Molecular characterization showed that overexpression of the rep gene decreased rAAV DNA replication and severely inhibited capsid (cap) gene expression. Interestingly, a reduced rep level enhanced cap gene expression and supported normal rAAV DNA replication. These studies suggest a critical role for regulated rep gene expression in rAAV production and have facilitated the development of a new AAV helper plasmid that increases vector production eightfold over currently used constructs.  相似文献   

17.
Direct insertion of amino acid sequences into the adeno-associated virus type 2 (AAV) capsid open reading frame (cap ORF) is one strategy currently being developed for retargeting this prototypical gene therapy vector. While this approach has successfully resulted in the formation of AAV particles that have expanded or retargeted viral tropism, the inserted sequences have been relatively short, linear receptor binding ligands. Since many receptor-ligand interactions involve nonlinear, conformation-dependent binding domains, we investigated the insertion of full-length peptides into the AAV cap ORF. To minimize disruption of critical VP3 structural domains, we confined the insertions to residue 138 within the VP1-VP2 overlap, which has been shown to be on the surface of the particle following insertion of smaller epitopes. The insertion of coding sequences for the 8-kDa chemokine binding domain of rat fractalkine (CX3CL1), the 18-kDa human hormone leptin, and the 30-kDa green fluorescent protein (GFP) after residue 138 failed to lead to formation of particles due to the loss of VP3 expression. To test the ability to complement these insertions with the missing capsid proteins in trans, we designed a system for producing AAV vectors in which expression of one capsid protein is isolated and combined with the remaining two capsid proteins expressed separately. Such an approach allows for genetic modification of a specific capsid protein across its entire coding sequence leaving the remaining capsid proteins unaffected. An examination of particle formation from the individual components of the system revealed that genome-containing particles formed as long as the VP3 capsid protein was present and demonstrated that the VP2 capsid protein is nonessential for viral infectivity. Viable particles composed of all three capsid proteins were obtained from the capsid complementation groups regardless of which capsid proteins were supplied separately in trans. Significant overexpression of VP2 resulted in the formation of particles with altered capsid protein stoichiometry. The key finding was that by using this system we successfully obtained nearly wild-type levels of recombinant AAV-like particles with large ligands inserted after residue 138 in VP1 and VP2 or in VP2 exclusively. While insertions at residue 138 in VP1 significantly decreased infectivity, insertions at residue 138 that were exclusively in VP2 had a minimal effect on viral assembly or infectivity. Finally, insertion of GFP into VP1 and VP2 resulted in a particle whose trafficking could be temporally monitored by using confocal microscopy. Thus, we have demonstrated a method that can be used to insert large (up to 30-kDa) peptide ligands into the AAV particle. This system allows greater flexibility than current approaches in genetically manipulating the composition of the AAV particle and, in particular, may allow vector retargeting to alternative receptors requiring interaction with full-length conformation-dependent peptide ligands.  相似文献   

18.
 以RT PCR法从大鼠脑组织中克隆bcl XL 基因 ,将其定向插入带rep cap基因和neu基因的三功能腺相关病毒 (AAV)载体 ,转染HeLa细胞并以G4 18筛选 ,然后用腺病毒感染筛选后的细胞克隆 ,包装成重组腺相关病毒 .用带rep cap基因的C12细胞筛选和滴定产生重组腺相关病毒的细胞克隆 ,粗制细胞裂解物中病毒滴度最高只有 3× 10 5IU ml.从产病毒量较高的克隆大量制备重组病毒 ,经肝素柱高压液相亲和层析法纯化、浓缩病毒后获得了高达 4× 10 11IU ml的重组病毒 .为研究脑缺血动物模型中BCL XL 的抗脑细胞凋亡作用打下了基础  相似文献   

19.
Dendritic cells (DCs) are pivotal antigen-presenting cells for regulating immune responses. A major focus of contemporary vaccine research is the genetic modification of DCs to express antigens or immunomodulatory molecules, utilizing a variety of viral and nonviral vectors, to induce antigen-specific immune responses that ameliorate disease states as diverse as malignancy, infection, autoimmunity, and allergy. The present study has evaluated adeno-associated virus (AAV) type 2 as a vector for ex vivo gene transfer to human peripheral blood monocyte (MO)-derived DCs. AAV is a nonpathogenic parvovirus that infects a wide variety of human cell lineages in vivo and in vitro, for long-term transgene expression without requirements for cell proliferation. The presented data demonstrate that recombinant AAV (rAAV) can efficiently transduce MOs as well as DCs generated by MO culture with granulocyte-macrophage colony-stimulating factor plus interleukin in vitro. rAAV transgene expression in MO-derived DCs could be enhanced by etoposide, previously reported to enhance AAV gene expression. rAAV transduction of freshly purified MO followed by 7 days of culture with cytokines to generate DCs, and subsequent sorting for coexpression of DC markers CD1a and CD40, showed robust transgene expression as well as evidence of nuclear localization of the rAAV genome in the DC population. Phenotypic analyses using multiple markers and functional assays of one-way allogeneic mixed leukocyte reactions indicated that rAAV-transduced MO-derived DCs were as equivalent to nontransduced DCs. These results support the utility of rAAV vectors for future human DC vaccine studies.  相似文献   

20.
ObjectivesGene therapy based on recombinant adeno‐associated viral (rAAV) vectors has been proved to be clinically effective for genetic diseases. However, there are still some limitations, including possible safety concerns for high dose delivery and a decreasing number of target patients caused by the high prevalence of pre‐existing neutralizing antibodies, hindering its application. Herein, we explored whether there was an engineering strategy that can obtain mutants with enhanced transduction efficiency coupled with reduced immunogenicity.MethodsWe described a new strategy for AAV capsids engineering by combining alterations of N‐linked glycosylation and the mutation of PLA2‐like motif. With this combined strategy, we generated novel variants derived from AAV8 and AAVS3.ResultsThe variants mediated higher transduction efficiency in human liver carcinoma cell lines and human primary hepatocytes as well as other human tissue cell lines. Importantly, all the variants screened out showed lower sensitivity to neutralizing antibody in vitro and in vivo. Moreover, the in vivo antibody profiles of variants were different from their parental AAV capsids.ConclusionsOur work proposed a new combined engineering strategy and engineered two liver‐tropic AAVs. We also obtained several AAV variants with a higher transduction efficiency and lower sensitivity of neutralizing antibodies. By expanding the gene delivery toolbox, these variants may further facilitate the success of AAV gene therapy.

Transduction efficiency and immune responses hinder the application of recombinant adeno‐associated viral (rAAV) vectors in gene therapy. Here, Han et al. describe a new combined strategy for AAV capsid engineering and obtain several AAV variants with higher liver transduction efficiency and less immune activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号