首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Signalling for increased cytoskeletal actin in neutrophils   总被引:3,自引:0,他引:3  
The addition of fMet-Leu-Phe, platelet-activating factor, leukotriene B4 or sodium propionate to rabbit neutrophils causes an increase in the amount of actin associated with the cytoskeletal actin. The increase is rapid, transient and inhibitable by pertussis toxin. On the other hand, the addition of phorbol 12-myristate 13-acetate or NH4Cl causes a pertussis toxin-insensitive increase in cytoskeletal actin. The effects of the phorbol ester and fMet-Leu-Phe are additive, and in the presence of the phorbol ester, the fMet-Leu-Phe induced effect declines to the level produced by the phorbol ester. These results suggest that: one of the signalling pathways for actin polymerization involves a guanine-nucleotide binding protein; actin polymerization mediated through this pathway is rapid, transient and inhibitable by pertussis toxin, and a second signalling pathway is independent of this guanine-nucleotide binding protein; actin polymerization, mediated by this second pathway, is somewhat slower, sustained and insensitive to pertussis toxin. These results are discussed in terms of a model which includes gelsolin, profilin and the pertussis toxin-sensitive guanine-nucleotide binding protein.  相似文献   

2.
Treatment of rabbit neutrophils with pertussis toxin, but not cholera toxin, inhibits the increases produced by formylmethionyl-leucyl-phenylalanine, leukotriene B4 and the calcium ionophore A23187 in the amounts of actin associated with the cytoskeletons. The increase in the cytoskeletal actin produced by phorbol 12-myristate, 13-acetate on the other hand is not affected by pertussis toxin. Incubation of the neutrophils with cholera toxin, unlike pertussis toxin, did not inhibit the fMet-Leu-Phe induced rise in the intracellular concentration of free calcium, and caused only a shift to the right of the dose-response curve of N-acetyl-beta-glucosaminidase release. This shift was more marked in the presence of 1-methyl-3-isobutylxanthine. In addition, the stimulated breakdown of phosphatidylinositol 4,5 bis-phosphate was inhibited by pertussis toxin. These results suggest that pertussis toxin acts at an early step in the signal transduction and does not affect the sequence of reactions initiated by the activation of the protein kinase C. Furthermore, the guanine nucleotide regulatory protein Gi, but not Gs, is closely involved in signal transduction in these cells.  相似文献   

3.
Following its addition to a suspension of rabbit neutrophils, leukotriene B4 is rapidly (less than 1 min) recovered from the cytoskeletal fraction (Triton X-100 insoluble pellet) of these cells. The association of leukotriene B4 with the cytoskeleton can be competed with by leukotriene B4 itself and by 20-OH leukotriene B4 but not by 20-COOH leukotriene B4. In addition, the preincubation of the cells with fMet-Leu-Phe or with phorbol 12-myristate 13-acetate, but not with 4 alpha-phorbol 12,13-didecanoate, results in a greatly decreased association of leukotriene B4 with the cytoskeleton. These results suggest that a specific association between the leukotriene B4 receptors and the cytoskeleton may be involved in signal transduction in the leukotriene B4 stimulated neutrophils.  相似文献   

4.
Stimulation of the neutrophils with fMet-Leu-Phe inhibits the rise in intracellular concentration of free calcium produced by the subsequent addition of platelet-activating factor. This deactivation is not observed in pertussis toxin treated cells. In addition, preincubation of the cells with the protein kinase C activator phorbol 12-myristate 13-acetate for three minutes abolishes completely the rise in calcium produced by platelet-activating factor. This inhibition is prevented by the addition of the protein kinase C inhibitor 1-(5-isoquinoline-sulfonyl)-2-methyl piperazine prior to the addition of the phorbol ester. Phorbol 12-myristate 13-acetate, at a concentration that does not produce significant inhibition, accelerates the rate of calcium removal from the cytoplasm, and this is abolished by the protein kinase C inhibitor. In contrast, the deactivation by fMet-Leu-Phe is not prevented by the protein kinase C inhibitor. The results presented here suggest that the protein kinase C system may regulate the opening by platelet-activating factor of possible plasma membrane associated pertussis toxin independent calcium channels and/or the binding of platelet-activating factor to the receptors. In addition, protein kinase C activation increases the rates of the calcium efflux pump and/or calcium sequestering by intracellular organelles. The most simple and straightforward explanation of the observed deactivation by fMet-Leu-Phe is that the addition of fMet-Leu-Phe to neutrophils stimulates the production of platelet-activating factor which then binds to and deactivates the receptors.  相似文献   

5.
The addition of the chemotactic factor fMet-Leu-Phe to cell homogenates causes a decrease in the pertussis toxin catalyzed ADP-ribosylation of a 41 kDa protein. The fMet-Leu-Phe induced decrease is not abolished in homogenates prepared from phorbol 12-myristate 13-acetate treated neutrophils. This decreased ribosylation probably reflects a dissociation of the GTP-binding protein oligomer that is not followed by association, possibly because of the release of the alpha-subunit into the suspending medium. Furthermore, fMet-Leu-Phe stimulates the binding of radiolabelled guanylylimidodiphosphate to membrane preparations. Again, the stimulated binding of guanylylimidodiphosphate is not affected by treating the intact neutrophils with phorbol 12-myristate 13-acetate. In addition leukotriene B4, platelet activating factor and fMet-Leu-Phe activate a high-affinity GTPase in membrane preparations. The basal level of this GTPase activity is dramatically inhibited in membrane preparations isolated from cells treated with phorbol 12-myristate 13-acetate. On the other hand, the fMet-Leu-Phe stimulated component is only marginally reduced. The present findings suggest that PMA does not prevent receptor G-protein interaction.  相似文献   

6.
The addition of pertussis toxin to rabbit neutrophils inhibits the rise in the intracellular concentration of free calcium induced by the chemotactic factors fMet-Leu-Phe and leukotriene B4. At high concentrations of fMet-Leu-Phe, the inhibitory effect of the toxin is more on the stimulus-induced increase in membrane permeability to calcium than on calcium mobilization from internal stores. These results suggest that the "G protein" system either directly or indirectly is involved in the regulation of the stimulus-induced changes in the calcium mobilization and/or gating systems.  相似文献   

7.
The control of cytoskeletal actin and exocytosis was examined in intact and digitonin-permeabilized chromaffin cells. Cytoskeletal actin was assayed by determining the actin content of Triton-insoluble cytoskeletons. The secretagogues nicotine, high K+ and Ba2+ resulted in a rapid reduction in the amount of actin associated with the cytoskeleton. The effect of nicotine but not high K+ on cytoskeletal actin was independent of external Ca2+ and the reduction in cytoskeletal actin was mimicked by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate suggesting a role for protein kinase C. In digitonin-permeabilized cells micromolar calcium produced both catecholamine secretion and a reduction in cytoskeletal actin. The reduction in cytoskeletal actin was transient. Secretion was enhanced by the GTP analogue guanosine 5'-(3-O-thio)triphosphate and the analogue also reduced cytoskeletal actin at low calcium levels. The effects of guanosine 5'-(3-O-thio)triphosphate were inhibited by the phospholipase C inhibitor neomycin and were mimicked by 12-O-tetradecanoylphorbol-13-acetate. An additional GTP analogue, guanyl-5'-yl imidodiphosphate, had no effect on cytoskeletal actin. These results provide further evidence for a requirement for reorganisation of cortical actin in the secretory processes and suggest that the reduction in actin associated with the cytoskeleton may be mediated by protein kinase C and/or calcium in intact and permeabilized chromaffin cells.  相似文献   

8.
We have addressed the important question as to if and how the cytosolic free Ca2+ concentration, [Ca2+]i, is involved in fMet-Leu-Phe induced actin polymerization in human neutrophils. Stimulation of human neutrophils with the chemotactic peptide (10(-7) M), known to result in a prompt rise of the [Ca2+]i to above 500 nM, also induced a rapid decrease of monomeric actin, G-actin, content (to 35% of basal) and increase of filamentous actin, F-actin, content (to 320% of basal). A reduction of the fMet-Leu-Phe induced [Ca2+]i transient to about 250 nM, resulted in a less pronounced decrease of G-actin content (to 80% of basal) and increase of F-actin content (to 235% of basal). A total abolishment of the chemotactic peptide induced [Ca2+]i rise, still led to a decrease of the G-actin content (to 85% of basal) and increase of F-actin (to 200% of basal). These results indicate that the [Ca2+]i rise is not an absolute requirement, but has a modulating role for the fMet-Leu-Phe induced actin polymerization. Another possible intracellular candidate for fMet-Leu-Phe induced actin polymerization is protein kinase C. However, direct activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) only resulted in a minor increase of F-actin content. The recent hypothesis that a metabolite of the polyphosphoinositide cycle, independently of [Ca2+]i and protein kinase C, is responsible for actin polymerization agrees well with these results and by the fact that preexposure to pertussis toxin totally abolished a subsequent increase of F-actin content induced by fMet-Leu-Phe.  相似文献   

9.
The addition of propionic acid to rabbit neutrophils causes cell acidification and increases the amount of actin associated with the cytoskeleton. Both responses are rapid, and while the cell acidification is somewhat long-lasting, the increase in cytoskeletal actin is transient. It reaches a maximum value within 15 seconds and then returns to the basal level. Unlike fMet-Leu-Phe, however, propionic acid does not cause a rise in the intracellular concentration of free calcium. Pretreatment of the cells with pertussis toxin inhibits the propionic acid-produced increase in cytoskeletal actin but not the decrease in intracellular pH. However, the rate of return to the base line of the cell acidification produced by propionic acid is diminished in cells pretreated with pertussis toxin. On the other hand, both the decrease in intracellular pH and the increase in cytoskeletal actin produced by fMet-Leu-Phe are inhibited by pertussis toxin treatment. The results presented here suggest two important points. First, while cell acidification may trigger directly or indirectly the association of actin with the cytoskeleton, it is certainly not sufficient. Second, a functional guanine-nucleotide regulatory protein is required for stimulated cytoskeletal actin. One or more components of the G-protein and/or their effects on phosphoinositide hydrolysis may increase the number of actin monomers and the availability of preexisting actin filaments to these monomers.  相似文献   

10.
Effect of botulinum D toxin on neutrophils   总被引:1,自引:0,他引:1  
Activated botulinum D toxin ADP-ribosylates a 22 kDa molecular weight protein in homogenates obtained by sonication of a suspension of rabbit peritoneal neutrophils. The ADP-ribosylation catalyzed by activated botulinum D toxin is inhibited in homogenates obtained from cells pretreated with the toxin, suggesting that it is able to enter into these cells and be activated by them. The rise in intracellular concentration of free calcium in toxin treated cells stimulated by fMet-Leu-Phe is similar to that found in control cells. The basal concentration of intracellular free calcium is significantly elevated in neutrophils treated with the intact but not with the activated form of the botulinum D toxin. Superoxide generation in control and native toxin treated cells stimulated with fMet-leu-Phe, phorbol 12-myristate 13-acetate or opsonized zymosan is the same. The release of beta-glucosaminidase produced by fMet-Leu-Phe or Concanavalin A in botulinum D toxin treated neutrophils was slightly higher than the corresponding release in control cells. Furthermore, the fMet-Leu-Phe-induced increase in the amount of actin associated with the cytoskeleton is not inhibited by botulinum D toxin. These results suggest that the 22 kDa protein which can be ADP-ribosylated by botulinum D toxin is not involved in these stimulated neutrophil responses.  相似文献   

11.
A monoclonal antibody directed against the Ca2+-requiring proteinase (calpain) of human neutrophils was employed to assess the role of this proteinase in mediating the responses to stimuli such as phorbol 12-myristate 13-acetate or fMet-Leu-Phe. In the presence of either phorbol 12-myristate 13-acetate or fMet-Leu-Phe the antibody is taken up by the neutrophils, and a marked inhibition of intracellular calpain is observed. The decreased calpain activity is accompanied by (a) a significant decrease in the proteolytic conversion of native protein kinase C (Ca2+/phospholipid-dependent enzyme) to the soluble form that does not require Ca2+ or phospholipids for activity; (b) a marked increase in the production of superoxide anion; and (c) a decrease in the exocytosis of granule contents. The increase in superoxide production can be attributed to a more prolonged association of native protein kinase C with the plasma membrane, thus enhancing the phosphorylation of membrane proteins that precedes O(2-) production (Pontremoli, S., Melloni, E., Salamino, F., Sparatore, B., Michetti, M., Sacco, O., and Horecker, B. L. (1986), Biochem. Biophys. Res. Commun. 140, 1121-1126). The decreased exocytosis can be attributed to a decreased phosphorylation of certain cytoskeletal proteins, catalyzed by the soluble form of protein kinase C (Pontremoli, S., Melloni, E., Michetti, M., Sparatore, B., Salamino, F., Sacco, O., and Horecker, B. L. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 3604-3608); the subsequent reorganization of the cytoskeleton appears to be related to degranulation. These effects of the monoclonal anti-calpain provide direct evidence for an essential role for calpain in the activation of human neutrophils.  相似文献   

12.
The co-carcinogenic compound phorbol 12-myristate 13-acetate but not its inactive analogue 4 alpha-phorbol 12,13-didecanoate causes the phosphorylation of several rabbit neutrophil polypeptides whose molecular weights and isoelectric points (pI) are as follows: Mr = 40,000, pI = 6.4; Mr = 50,000, pI = 4.9; Mr = 55,000, pI = 6.3; Mr = 64,000, pI = 6.0; Mr = 70,000, pI = 5.6; Mr = 90,000, pI = 6.0. Most of these phosphorylated proteins are located exclusively in the cytosol; the 64,000 molecular weight protein is found both in the cytosol and the cytoskeleton, and the 40,000 molecular weight protein is found in the nuclear pellet. The 50,000 molecular weight protein is also phosphorylated in whole cells by the chemotactic peptide fMet-Leu-Phe and in cell-free systems by protein kinase C. Using limited proteolysis, one phosphopeptide fragment was phosphorylated by the three stimuli. In addition, phorbol 12-myristate 13-acetate but not 4 alpha-phorbol 12,13-didecanoate causes cell aggregation and the exocytotic release of the specific granules of rabbit neutrophils. In contrast, both compounds increase the amount of actin associated with the cytoskeleton. The divalent cation ionophore A23187 at low concentration and the compound phorbol 12-myristate 13-acetate act synergistically in causing neutrophil degranulation. Lysosomal enzyme release and the phosphorylation of the 50,000 molecular weight polypeptide produced by phorbl 12-myristate 13-acetate are inhibited by trifluoperazine, and these two responses seem to be causally related. These results are discussed in terms of the role of 1,2-diacylglycerol and activation of protein kinase C in specific granule release from rabbit neutrophils.  相似文献   

13.
Protein tyrosine phosphorylation in rabbit peritoneal neutrophils was examined by immunoblotting with antibodies specific for phosphotyrosine. Stimulation of the neutrophils with chemotactic factor fMet-Leu-Phe (10 nM) caused rapid increases of tyrosine phosphorylation of several proteins with apparent molecular masses of (Group A) 54-58 kDa and 100-125 kDa and (Group B) 36-41 kDa. Stimulation of Group A proteins was observed by fMet-Leu-Phe (10 nM, maximum at 20 s) and A23187 (1 microM, 1 min). Stimulation of Group B proteins was observed by fMet-Leu-Phe (ED50 0.15 nM, 1 min), leukotriene B4 (ED50 0.15 nM, 1 min), phorbol 12-myristate 13-acetate (PMA) (ED50 25 ng/ml, 10 min) and partially by ionophore A23187 (1 microM, 1 min). Pretreatment of the cell with the protein kinase inhibitor H-7 (25 microM, 5 min) and PMA (0.1 microgram/ml, 3 min) partially inhibited the fMet-Leu-Phe effect. However, pretreatment of the cells with quin 2/AM (20 microM, 10 min) completely inhibited the fMet-Leu-Phe effect. The results indicate that rapid regulation of tyrosine phosphorylation is an early event occurring in stimulated neutrophils. Furthermore the effect of fMet-Leu-Phe on tyrosine phosphorylation may require Ca2+ mobilization and may partially require the activity of H-7-sensitive protein kinases.  相似文献   

14.
Phosphorylation of a 47 kDa protein in human neutrophils is induced by phorbol 12-myristate 13-acetate (PMA), opsonized latex beads, fMet-Leu-Phe, calcium ionophore A23187 and fluoride. All of these stimuli activate the specialized microbicidal respiratory burst of neutrophils, and in each case the kinetics of activation correspond with the kinetics of phosphorylation of the 47 kDa protein. Trifluoperazine (50 microM) and chlorpromazine (100 microM), inhibitors of calmodulin and protein kinase C, abolish the increase in oxygen consumption and selectively prevent phosphorylation of the 47 kDa protein after PMA stimulation. Treatment of neutrophils with pertussis toxin totally inhibits both superoxide production and phosphorylation of this protein in response to fMet-Leu-Phe, but not in response to PMA, indicating that a GTP-binding protein modulates the fMet-Leu-Phe receptor signal. Phosphorylation of the 47 kDa protein, a phenomenon absent from the neutrophils of subjects with autosomal recessive chronic granulomatous disease, which lack the respiratory burst, appears to be the common trigger for activation of the burst in normal neutrophils.  相似文献   

15.
Neutrophils pretreated with phorbol 12-myristate 13-acetate (1-10 nM) and stimulated with low concentrations of chemotactic agonists (1-10nM) exhibited a marked increase in respiratory burst activity that was characterized by regular oscillations. These were accompanied by parallel oscillations in turbidity having the same phase and period. Four different agonists, f-Met-Leu-Phe, complement fragment C5a, platelet-activating factor, and leukotriene B4, induced virtually identical oscillations, with mean periods of 7.9 +/- 0.6 s (respiratory burst) and 7.9 +/- 0.8 s (turbidity) at 37 degrees C. No burst oscillations were observed at high agonist concentrations (50-100 nM) unless the fungal metabolite 17-hydroxywortmannin was added prior to stimulation. In the absence of phorbol 12-myristate 13-acetate, the respiratory burst activity was inhibited by 17-hydroxywortmannin, the protein kinase C inhibitor staurosporine, and calcium depletion, while agonist-dependent turbidity changes including the oscillations were unaffected. Turbidity changes reflect corresponding changes in cell size and/or shape, suggesting that cyclic alterations in morphology such as lamellipod extension and retraction physically affect the catalytic efficiency of the membrane-bound burst enzyme NADPH-oxidase. The oscillations appear to be controlled via receptor-dependent activation mechanisms which do not involve PKC activation or the rise in internal calcium presumably derived from phospholipase C activation.  相似文献   

16.
Rabbit peritoneal neutrophils were stimulated with either the chemotactic factor, fMet-Leu-Phe (10(-8) M, 10 s) or the protein kinase C activator, phorbol-12-myristate-13-acetate (PMA), (0.1 microgram/ml, 3 min) at 37 degrees C, lysed with Triton X-100 at the indicated times and the histone H4 kinase activity of the lysate measured. The histone H4 protein kinase activity was increased severalfold by fMet-Leu-Phe but not PMA. The inclusion of the potent protein kinase C inhibitor, 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine (50 microM) inhibited little if any of the histone H4 protein kinase activity. The effect of fMet-Leu-Phe was transient, maximum stimulation occurring within 10 s and decaying thereafter. The soluble fraction (extract) of the Triton X-100 lysates from control and fMet-Leu-Phe-treated cells was found to contain both histone H4 protein kinase and calcium-phospholipid-activated protein kinase (protein kinase C) activities. The histone H4 protein kinase activity obtained after fMet-Leu-Phe treatment was very little affected by calcium, phospholipid, and PMA and preferred histone H4 but not H1 or H2A as its substrate. In contrast, the calcium-phospholipid-activated protein kinase activity of the extract preferred histones H1 or H2A as substrates and was strongly inhibited by 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine. The histone H4 protein kinase was partially separated from kinase C by DEAE-cellulose and phenyl-Sepharose 4B chromatography. It phosphorylated mostly serine in histone H4. The results indicate that the chemotactic factor, fMet-Leu-Phe, stimulates a protein kinase with substrate specificity and biochemical properties distinct from calcium-phospholipid-activated protein kinase C.  相似文献   

17.
The effects of pretreatment of rabbit neutrophils with phorbol 12-myristate 13-acetate on the ability of pertussis toxin to catalyze ADP-ribosylation and of fMet-Leu-Phe to activate a high-affinity GTPase in these cell homogenates were examined. The addition of phorbol 12-myristate 13-acetate, but not 4 alpha-phorbol 12,13-didecanoate, to intact cells was found to stimulate by more than 100% the pertussis toxin-dependent ribosylation of a 41 kDa protein (either the alpha-subunit of the 'inhibitory' guanine nucleotide-binding protein N or a closely analogous protein) and to inhibit by more than 60% the activation by fMet-Leu-Phe of the GTPase of the neutrophil homogenates. The addition of fMet-Leu-Phe to intact cells increases the ADP-ribosylation catalyzed by pertussis toxin of the 41 kDa protein. On the other hand, the exposure of neutrophil homogenates to fMet-Leu-Phe results in a decreased level of ADP-ribosylation. This decreased ribosylation reflects a dissociation of the GTP-binding protein oligomer that is not followed by association, possibly because of the release of the alpha-subunit into the suspending media. The implications of these results for the understanding of the mechanism of inhibition of cell responsiveness by phorbol esters and the heterologous desensitization phenomenon are discussed. Prominent among these are the possibilities that (i) the rate of dissociation of the Ni oligomer is affected by the degree of its phosphorylation by protein kinase C, and/or (ii) the dissociated phosphorylated alpha-subunit (the 41 kDa protein) is functionally less active than its dephosphorylated couterpart.  相似文献   

18.
The characteristics of the activation of a histone H4 kinase activity in Triton X-100 lysates of rabbit peritoneal neutrophils pretreated with fMet-Leu-Phe were studied: The activation of the kinase was a) inhibited by the antagonist of formylpeptide, t-Boc-(Phe-Leu)2(-)-Phe, b) completely inhibited by pertussis toxin pretreatment, c) not affected by the pretreatment of neutrophils with an activator of protein kinase C, phorbol-12-myristate-13-acetate, or an inhibitor of protein kinase C, 1-(5-isoquinoline-sulfonyl)-2-methyl-piperazine, and d) not inhibited in the cells preloaded with the intracellular calcium chelators, bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetra acetic acid acetoxymethyl-ester (BAPTA/AM). These results suggest that the stimulus-induced activation of H4 kinase requires functional receptor and GTP-binding protein but neither calcium mobilization nor protein kinase C activation.  相似文献   

19.
Propionic acid-induced calcium mobilization in human neutrophils   总被引:1,自引:0,他引:1  
The ability of propionic acid to elicit an increase in the level of cytoplasmic free calcium in human neutrophils was examined in detail. Propionic acid induced a rapid and dose-dependent mobilization of calcium that relied on both internal and external sources of calcium. The effects of propionic acid on the mobilization of calcium were inhibited by pertussis toxin, but not cholera toxin, implicating a guanine nucleotide binding protein. Furthermore, preincubation of the neutrophils with phorbol 12-myristate 13-acetate resulted in a decreased mobilization of calcium. This inhibitory activity of phorbol myristate acetate was antagonized by the protein kinase C inhibitor H-7. Preincubation of the cells with the synthetic chemotactic factor fMet-Leu-Phe caused a reduction in the magnitude of the calcium transient elicited by propionic acid. However, the calcium response to propionic acid was not affected by antagonists of fMet-Leu-Phe and platelet-activating factor binding or by an inhibitor of leukotriene synthesis. Propionic acid did not elicit a mobilization of calcium in monocytes, platelets, lymphocytes, or undifferentiated HL-60 cells. However, the treatment of the HL-60 cells with dimethylsulfoxide resulted in the appearance of a calcium response to propionic acid. The potential physiological significance of these findings are discussed.  相似文献   

20.
The hypothesis that protein kinase C (PKC) participates in agonist-mediated desensitization of formyl peptide receptors in HL-60 granulocytes was tested. fMet-Leu-Phe and leukotriene B4(LTB4) produced homologous desensitization of agonist-stimulated intracellular calcium transients. Pre-treatment with the PKC activator, phorbol myristate acetate (PMA; 10 nM), abolished both fMet-Leu-Phe and LTB4-stimulated calcium transients. Membranes prepared from control HL-60 granulocytes (NM) or cells treated with 10 nM PMA (PMA-M) demonstrated increased formyl peptide receptor and G protein density, as determined by radioligand binding and pertussis toxin- and cholera toxin-catalysed ADP ribosylation. fMet-Leu-Phe stimulation of guanosine 5′-[γ-thio]-triphosphate (GTPγS) binding and GTP hydrolysis and GDP inhibition of fMet-Leu-Phe binding were not different between NM and PMA-M. Pre-treatment with 10 nM PMA did not inhibit subsequent fMet-Leu-Phe-stimulated superoxide generation or phospholidase D activation. We conclude that PKC desensitizes fMet-Leu-Phe-stimulated phospholipase C, but not phospholipase D, responses and that PKC activation does not mediate agonist-induced desensitization of formyl peptide receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号