首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypoglycemic effects of high dose salicylates in the treatment of diabetes were documented before the advent of insulin. However, the molecular mechanisms by which salicylates exert these anti-diabetic effects are not well understood. In this study, we analyzed the effects of aspirin (acetylsalicylic acid) on serine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells treated with tumor necrosis factor (TNF)-alpha. Phosphorylation of IRS-1 at Ser307, Ser267, and Ser612 was monitored by immunoblotting with phospho-specific IRS-1 antibodies. In 3T3-L1 and Hep G2 cells, phosphorylation of IRS-1 at Ser307 in response to TNF-alpha treatment correlated with phosphorylation of JNK, c-Jun, and degradation of IkappaBalpha. Moreover, phosphorylation of IRS-1 at Ser307 in embryo fibroblasts derived from either JNK or IKK knockout mice was reduced when compared with that in the wild-type controls. Taken together, these data suggest that serine phosphorylation of IRS-1 in response to TNF-alpha is mediated, in part, by JNK and IKK. Interestingly, aspirin treatment inhibited the phosphorylation of IRS-1 at Ser307 as well as the phosphorylation of JNK, c-Jun, and degradation of IkappaBalpha. Furthermore, other serine kinases including Akt, extracellular regulated kinase, mammalian target of rapamycin, and PKCzeta were also activated by TNF-alpha (as assessed by phospho-specific antibodies). Phosphorylation of IRS-1 at Ser267 and Ser612 correlated with the activation of these kinases. Phosphorylation of Akt and the mammalian target of rapamycin (but not extracellular regulated kinase or PKCzeta) in response to TNF-alpha was inhibited by aspirin treatment. Finally, aspirin rescued insulin-induced glucose uptake in 3T3-L1 adipocytes pretreated with TNF-alpha. We conclude that aspirin may enhance insulin sensitivity by protecting IRS proteins from serine phosphorylation catalyzed by multiple kinases.  相似文献   

2.
Proinflammatory cytokines are recently reported to inhibit insulin signaling causing insulin resistance. IL-1alpha is also one of the proinflammatory cytokines; however, it has not been clarified whether IL-1alpha may also cause insulin resistance. Here, we investigated the effects of IL-1alpha treatment on insulin signaling in 3T3-L1 adipocytes. IL-1alpha treatment up to 4 h did not alter insulin-stimulated insulin receptor tyrosine phosphorylation, whereas tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and the association with phosphatidylinositol 3-kinase were partially inhibited with the maximal inhibition in around 15 min. IRS-1 was transiently phosphorylated on some serine residues around 15 min after IL-1alpha stimulation, when several serine kinases, IkappaB kinase, c-Jun-N-terminal kinase, ERK, and p70S6K were activated. Chemical inhibitors for these kinases inhibited IL-1alpha-induced serine phosphorylation of IRS-1. Tyrosine phosphorylation of IRS-1 was recovered only by the IKK inhibitor or JNK inhibitor, suggesting specific involvement of these two kinases. Insulin-stimulated Akt phosphorylation and 2-deoxyglucose uptake were not inhibited only by IL-1alpha. Interestingly, Akt phosphorylation was synergistically inhibited by IL-1alpha in the presence of IL-6. Taken together, short-term IL-1alpha treatment transiently causes insulin resistance at IRS-1 level with its serine phosphorylation. IL-1alpha may suppress insulin signaling downstream of IRS-1 in the presence of other cytokines, such as IL-6.  相似文献   

3.
In the present study, we have examined whether IKKβ [IκB (inhibitor of nuclear factor κB) kinase β] plays a role in feedback inhibition of the insulin signalling cascade. Insulin induces the phosphorylation of IKKβ, in vitro and in vivo, and this effect is dependent on intact signalling via PI3K (phosphoinositide 3-kinase), but not PKB (protein kinase B). To test the hypothesis that insulin activates IKKβ as a means of negative feedback, we employed a variety of experimental approaches. First, pharmacological inhibition of IKKβ via BMS-345541 did not potentiate insulin-induced IRS1 (insulin receptor substrate 1) tyrosine phosphorylation, PKB phosphorylation or 2-deoxyglucose uptake in differentiated 3T3-L1 adipocytes. BMS-345541 did not prevent insulin-induced IRS1 serine phosphorylation on known IKKβ target sites. Secondly, adenovirus-mediated overexpression of wild-type IKKβ in differentiated 3T3-L1 adipocytes did not suppress insulin-stimulated 2-deoxyglucose uptake, IRS1 tyrosine phosphorylation, IRS1 association with the p85 regulatory subunit of PI3K or PKB phosphorylation. Thirdly, insulin signalling was not potentiated in mouse embryonic fibroblasts lacking IKKβ. Finally, insulin treatment of 3T3-L1 adipocytes did not promote the recruitment of IKKβ to IRS1, supporting our findings that IKKβ, although activated by insulin, does not promote direct serine phosphorylation of IRS1 and does not contribute to the feedback inhibition of the insulin signalling cascade.  相似文献   

4.
In the present study, we examined the effects of free fatty acids (FFAs) on insulin sensitivity and signaling cascades in the C2C12 skeletal muscle cell culture system. Our data clearly manifested that the inhibitory effects of PKC on insulin signaling may at least in part be explained by the serine/threonine phosphorylation of IRS-1. Both oleate and palmitate treatment were able to increase the Serine307 phosphorylation of IRS-1. IRS-1 Serine307 phosphorylation is inducible which causes the inhibition of IRS-1 tyrosine phosphorylation by either IκB-kinase (IKK) or c-jun N-terminal kinase (JNK) as seen in our proteomic kinases screen. Furthermore, our proteomic data have also manifested that the two FFAs activate the IKKα/β, the stress kinases S6 kinase p70 (p70SK), stress-activated protein kinase (SAPK), JNK, as well as p38 MAP kinase (p38MAPK). On the other hand, the antioxidant, Taurine at 10 mM concentrations was capable of reversing the oleate-induced insulin resistance in myocytes as manifested from the glucose uptake data. Our current data point out the importance of FFA-induced insulin resistance via multiple signaling mechanisms.  相似文献   

5.
《Phytomedicine》2015,22(9):837-846
PurposeThe current study investigated the efficacy of Cyclocarya paliurus chloroform extract (CPEC) and its two specific triterpenoids (cyclocaric acid B and cyclocarioside H) on the regulation of glucose disposal and the underlying mechanisms in 3T3-L1 adipocytes.MethodsMice and adipocytes were stimulated by macrophages-derived conditioned medium (Mac-CM) to induce insulin resistance. CPEC was evaluated in mice for its ability by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). To investigate the hypoglycemic mechanisms of CPEC and its two triterpenoids, glucose uptake, AMP-activated protein kinase (AMPK) activation, inhibitor of NF-κB kinase β (IKKβ) phosphorylation and insulin signaling transduction were detected in 3T3-L1 adipocytes using 2-NBDG uptake assay and Western blot analysis.ResultsMac-CM, an inflammatory stimulus which induced the glucose and insulin intolerance, increased phosphorylation of IKKβ, reduced glucose uptake and impaired insulin sensitivity. CPEC and two triterpenoids improved glucose consumption and increased AMPK phosphorylation under basal and inflammatory conditions. Moreover, CPEC and its two triterpenoids not only enhanced glucose uptake in an insulin-independent manner, but also restored insulin-mediated protein kinase B (Akt) phosphorylation by reducing the activation of IKKβ and regulating insulin receptor substrate-1 (IRS-1) serine/tyrosine phosphorylation. These beneficial effects were attenuated by AMPK inhibitor compound C, implying that the effects may be associated with AMPK activation.ConclusionsCPEC and its two triterpenoids promoted glucose uptake in the absence of insulin, as well as ameliorated IRS-1/PI3K/Akt pathway by inhibiting inflammation. These effects were related to the regulation of AMPK activity.  相似文献   

6.
Identification of enhanced serine kinase activity in insulin resistance   总被引:14,自引:0,他引:14  
Insulin receptor substrate (IRS) proteins play a crucial role as signaling molecules in insulin action. Serine phosphorylation of IRS proteins has been hypothesized as a cause of attenuating insulin signaling. The current study investigated serine kinase activity toward IRS-1 in several models of insulin resistance. An in vitro kinase assay was developed that used partially purified cell lysates as a kinase and glutathione S-transferase fusion proteins that contained various of IRS-1 fragments as substrates. Elevated serine kinase activity was detected in Chinese hamster ovary/insulin receptor (IR)/IRS-1 cells and 3T3-L1 adipocytes chronically treated with insulin, and in liver and muscle of obese JCR:LA-cp rats. It phosphorylated the 526-859 amino acid region of IRS-1, whereas phosphorylation of the 2-516 and 900-1235 amino acid regions was not altered. Phosphopeptide mapping of the 526-859 region of IRS-1 showed three major phosphopeptides (P1, P2, and P3) with different patterns of phosphorylation depending on the source of serine kinase activity. P1 and P2 were strongly phosphorylated when the kinase activity was prepared from insulin-resistant Chinese hamster ovary/IR/IRS-1 cells, weakly phosphorylated by the kinase activity from insulin-resistant 3T3-L1 adipocytes, and barely phosphorylated when the extract was derived from insulin-resistant liver. In contrast, P3 was phosphorylated by the serine kinase activity prepared from all insulin-resistant cells and tissues of animals. P1 and P2 phosphorylation can be explained by mitogen-activated protein kinase activity based on the phosphopeptide map generated by recombinant ERK2. In contrast, mitogen-activated protein kinase failed to phosphorylate the P3 peptide, suggesting that another serine kinase regulates this modification of IRS-1 in insulin-resistant state.  相似文献   

7.
Insulin stimulation produced a reliable 3-fold increase in glucose uptake in primary neonatal rat myotubes, which was accompanied by a similar effect on GLUT4 translocation to plasma membrane. Tumor necrosis factor (TNF)-alpha caused insulin resistance on glucose uptake and GLUT4 translocation by impairing insulin stimulation of insulin receptor (IR) and IR substrate (IRS)-1 and IRS-2 tyrosine phosphorylation, IRS-associated phosphatidylinositol 3-kinase activation, and Akt phosphorylation. Because this cytokine produced sustained activation of stress and proinflammatory kinases, we have explored the hypothesis that insulin resistance by TNF-alpha could be mediated by these pathways. In this study we demonstrate that pretreatment with PD169316 or SB203580, inhibitors of p38 MAPK, restored insulin signaling and normalized insulin-induced glucose uptake in the presence of TNF-alpha. However, in the presence of PD98059 or SP600125, inhibitors of p42/p44 MAPK or JNK, respectively, insulin resistance by TNF-alpha was still produced. Moreover, TNF-alpha produced inhibitor kappaB kinase (IKK)-beta activation and inhibitor kappaB-beta and -alpha degradation in a p38 MAPK-dependent manner, and treatment with salicylate (an inhibitor of IKK) completely restored insulin signaling. Furthermore, TNF-alpha produced serine phosphorylation of IR and IRS-1 (total and on Ser(307) residue), and these effects were completely precluded by pretreatment with either PD169316 or salicylate. Consequently, TNF-alpha, through activation of p38 MAPK and IKK, produces serine phosphorylation of IR and IRS-1, impairing its tyrosine phosphorylation by insulin and the corresponding activation of phosphatidylinositol 3-kinase and Akt, leading to insulin resistance on glucose uptake and GLUT4 translocation.  相似文献   

8.
G protein-coupled receptor kinases (GRKs) regulate seven-transmembrane receptors (7TMRs) by phosphorylating agonist-activated 7TMRs. Recently, we have reported that GRK2 can function as a negative regulator of insulin action by interfering with G protein-q/11 alpha-subunit (Galphaq/11) signaling, causing decreased glucose transporter 4 (GLUT4) translocation. We have also reported that chronic endothelin-1 (ET-1) treatment leads to heterologous desensitization of insulin signaling with decreased tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and Galphaq/11, and decreased insulin-stimulated glucose transport in 3T3-L1 adipocytes. In the current study, we have investigated the role of GRK2 in chronic ET-1-induced insulin resistance. Insulin-induced GLUT4 translocation was inhibited by pretreatment with ET-1 for 24 h, and we found that this inhibitory effect was rescued by microinjection of anti-GRK2 antibody or GRK2 short interfering RNA. We further found that GRK2 mediates the inhibitory effects of ET-1 by two distinct mechanisms. Firstly, adenovirus-mediated overexpression of either wild-type (WT)- or kinase-deficient (KD)-GRK2 inhibited Galphaq/11 signaling, including tyrosine phosphorylation of Galphaq/11 and cdc42-associated phosphatidylinositol 3-kinase activity. Secondly, ET-1 treatment caused Ser/Thr phosphorylation of IRS-1 and IRS-1 protein degradation. Overexpression of KD-GRK2, but not WT-GRK2, inhibited ET-1-induced serine 612 phosphorylation of IRS-1 and restored activation of this pathway. Taken together, these results suggest that GRK2 mediates ET-1-induced insulin resistance by 1) inhibition of Galphaq/11 activation, and this effect is independent of GRK2 kinase activity, and 2) GRK2 kinase activity-mediated IRS-1 serine phosphorylation and degradation.  相似文献   

9.
Impaired glucose tolerance precedes type 2 diabetes and is characterized by hyperinsulinemia, which develops to balance peripheral insulin resistance. To gain insight into the deleterious effects of hyperinsulinemia on skeletal muscle, we studied the consequences of prolonged insulin treatment of L6 myoblasts on insulin-dependent signaling pathways. A 24-h long insulin treatment desensitized the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB) and p42/p44 MAPK pathways toward a second stimulation with insulin or insulin-like growth factor-1 and led to decreased insulin-induced glucose uptake. Desensitization was correlated to a reduction in insulin receptor substrate (IRS)-1 and IRS-2 protein levels, which was reversed by the PI3K inhibitor LY294002. Co-treatment of cells with insulin and LY294002, while reducing total IRS-1 phosphorylation, increased its phosphotyrosine content, enhancing IRS-1/PI3K association. PDK1, mTOR, and MAPK inhibitors did not block insulin-induced reduction of IRS-1, suggesting that the PI3K serine-kinase activity causes IRS-1 serine phosphorylation and its commitment to proteasomal degradation. Contrarily, insulin-induced IRS-2 down-regulation occurred via a PI3K/mTOR pathway. Suppression of IRS-1/2 down-regulation by LY294002 rescued the responsiveness of PKB and MAPK toward acute insulin stimulation. Conversely, adenoviral-driven expression of constitutively active PI3K induced an insulin-independent reduction in IRS-1/2 protein levels. IRS-2 appears to be the chief molecule responsible for MAPK and PKB activation by insulin, as knockdown of IRS-2 (but not IRS-1) by RNA interference severely impaired activation of both kinases. In summary, (i) PI3K mediates insulin-induced reduction of IRS-1 by phosphorylating it while a PI3K/mTOR pathway controls insulin-induced reduction of IRS-2, (ii) in L6 cells, IRS-2 is the major adapter molecule linking the insulin receptor to activation of PKB and MAPK, (iii) the mechanism of IRS-1/2 down-regulation is different in L6 cells compared with 3T3-L1 adipocytes. In conclusion, the reduction in IRS proteins via different PI3K-mediated mechanisms contributes to the development of an insulin-resistant state in L6 myoblasts.  相似文献   

10.
目的探讨舒林酸通过调节IKK通路对分化成熟3T3-L1细胞胰岛素受体后信号转导蛋白胰岛素受体底物1(IRS-1)蛋白酪氨酸/丝氨酸(Tyr/Ser)残基磷酸化表达的影响。 方法用地塞米松、IBMX和胰岛素三联培养诱导3T3-L1前脂肪细胞分化为成熟脂肪细胞,油红O染色观察脂肪细胞形态。诱导分化成熟的脂肪细胞如下分组干预,实时荧光定量PCR检测不同浓度炎症因子IL-1 β(0,1,10,100 ng/ml)和(或)不同浓度IKK特异阻断剂舒林酸(0,0.1,1,10 mmol/L)对诱导分化成熟的脂肪细胞IKK通路激活状态的影响。Western Blot检测IL-1β和(或)舒林酸对诱导分化成熟的脂肪细胞IRS-1酪氨酸/丝氨酸残基磷酸化状态的影响。采用单因素方差分析进行统计学分析。 结果实时荧光定量PCR和Western Blot结果显示,IL-1β 10 ng/ml组诱导成熟脂肪细胞IKKβ mRNA较对照组相对表达水平增加,分别为[(2.85±0.16)﹪,(1.00±0.12)﹪,P < 0.01];而IRS-1酪氨酸的磷酸化相对表达量较对照组下降,分别为[(0.72±0.26)﹪,(1.00±0.24)﹪,P < 0.01]。进一步予舒林酸(1?mmol/?L、10?mmol/L)干预后较对照组显著逆转IL-1β诱导脂肪细胞IRS-1酪氨酸磷酸化的表达水平,分别为[(1.72±0.16)﹪,(1.90±0.08)﹪,(1.00±0.13)﹪,P < 0.01],同时下调IRS-1丝氨酸磷酸化的表达水平[(0.79±0.16)﹪,(0.66±0.08)﹪,(1.00±0.10)﹪,P < 0.05]。 结?论IL-1β通过促进诱导分化成熟脂肪细胞IKKβ的表达,激活脂肪细胞IKK炎症通路,抑制脂肪细胞IRS-1酪氨酸残基磷酸化的表达,舒林酸通过调节脂肪细胞IRS-1酪氨酸/丝氨酸残基磷酸化的表达,改善脂肪细胞胰岛素受体后信号转导。  相似文献   

11.
Tumor necrosis factor alpha (TNFalpha) inhibits insulin action, in part, through serine phosphorylation of IRS proteins; however, the phosphorylation sites that mediate the inhibition are unknown. TNFalpha promotes multipotential signal transduction cascades, including the activation of the Jun NH(2)-terminal kinase (JNK). Endogenous JNK associates with IRS-1 in Chinese hamster ovary cells. Anisomycin, a strong activator of JNK in these cells, stimulates the activity of JNK bound to IRS-1 and inhibits the insulin-stimulated tyrosine phosphorylation of IRS-1. Serine 307 is a major site of JNK phosphorylation in IRS-1. Mutation of serine 307 to alanine eliminates phosphorylation of IRS-1 by JNK and abrogates the inhibitory effect of TNFalpha on insulin-stimulated tyrosine phosphorylation of IRS-1. These results suggest that phosphorylation of serine 307 might mediate, at least partially, the inhibitory effect of proinflammatory cytokines like TNFalpha on IRS-1 function.  相似文献   

12.
Insulin resistance contributes importantly to the pathophysiology of type 2 diabetes mellitus. One mechanism mediating insulin resistance may involve the phosphorylation of serine residues in insulin receptor substrate-1 (IRS-1), leading to impairment in the ability of IRS-1 to activate downstream phosphatidylinositol 3-kinase-dependent pathways. Insulin-resistant states and serine phosphorylation of IRS-1 are associated with the activation of the inhibitor kappaB kinase (IKK) complex. However, the precise molecular mechanisms by which IKK may contribute to the development of insulin resistance are not well understood. In this study, using phosphospecific antibodies against rat IRS-1 phosphorylated at Ser(307) (equivalent to Ser(312) in human IRS-1), we observed serine phosphorylation of IRS-1 in response to TNF-alpha or calyculin A treatment that paralleled surrogate markers for IKK activation. The phosphorylation of human IRS-1 at Ser(312) in response to tumor necrosis factor-alpha was significantly reduced in cells pretreated with the IKK inhibitor 15 deoxy-prostaglandin J(2) as well as in cells derived from IKK knock-out mice. We observed interactions between endogenous IRS-1 and IKK in intact cells using a co-immunoprecipitation approach. Moreover, this interaction between IRS-1 and IKK in the basal state was reduced upon IKK activation and increased serine phosphorylation of IRS-1. Data from in vitro kinase assays using recombinant IRS-1 as a substrate were consistent with the ability of IRS-1 to function as a direct substrate for IKK with multiple serine phosphorylation sites in addition to Ser(312). Taken together, our data suggest that IRS-1 is a novel direct substrate for IKK and that phosphorylation of IRS-1 at Ser(312) (and other sites) by IKK may contribute to the insulin resistance mediated by activation of inflammatory pathways.  相似文献   

13.
Uncoupling protein 2 (UCP2) was reported to be involved in insulin-glucose homeostasis, based on well established event that inhibition of UCP2 stimulates insulin secretion in pancreatic β-cells. However, the role of UCP2 on insulin-stimulated glucose uptake in adipose tissue, which is an indispensable process in insulin-glucose homeostasis, remains unknown. In this study, UCP2 was inhibited by genipin in 3T3-L1 adipocytes, which increased mitochondrial membrane potential, intracellular ATP level and production of reactive oxygen species (ROS). Importantly, insulin-stimulated glucose uptake in 3T3-L1 adipocytes was largely impaired in the presence of genipin, and recovered by CCCP, a mitochondrial uncoupler. Furthermore, genipin leaded to suppression of insulin signal transduction through hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent serine phosphorylation of insulin receptor substrate-1 (IRS-1). These results suggest that mitochondrial uncoupling in adipocytes positively regulates insulin-stimulated glucose uptake in adipocytes, and UCP2 may play an important role in insulin resistance.  相似文献   

14.
Hyperglycemia and insulin resistance induced by acute injuries or critical illness are associated with increased mortality and morbidity, as well as later development of type 2 diabetes. The molecular mechanisms underlying the acute onset of insulin resistance following critical illness remain poorly understood. In the present studies, the roles of serine kinases, inhibitory κB kinase (IKK) and c-Jun NH(2)-terminal kinase (JNK), in the acute development of hepatic insulin resistance were investigated. In our animal model of critical illness diabetes, activation of hepatic IKK and JNK was observed as early as 15 min, concomitant with the rapid impairment of hepatic insulin signaling and increased serine phosphorylation of insulin receptor substrate 1. Inhibition of IKKα or IKKβ, or both, by adenovirus vector-mediated expression of dominant-negative IKKα or IKKβ in liver partially restored insulin signaling. Similarly, inhibition of JNK1 kinase by expression of dominant-negative JNK1 also resulted in improved hepatic insulin signaling, indicating that IKK and JNK1 kinases contribute to critical illness-induced insulin resistance in liver.  相似文献   

15.
Lipid infusion and high fat feeding are established causes of systemic and adipose tissue insulin resistance. In this study, we treated 3T3-L1 adipocytes with a mixture of free fatty acids (FFAs) to investigate the molecular mechanisms underlying fat-induced insulin resistance. FFA treatment impaired insulin receptor-mediated signal transduction and decreased insulin-stimulated GLUT4 translocation and glucose transport. FFAs activated the stress/inflammatory kinases c-Jun N-terminal kinase (JNK) and IKKbeta, and the suppressor of cytokine signaling protein 3, increased secretion of the inflammatory cytokine tumor necrosis factor (TNF)-alpha, and decreased secretion of adiponectin into the medium. RNA interference-mediated down-regulation of JNK blocked JNK activation and prevented most of the FFA-induced defects in insulin action. Blockade of TNF-alpha signaling with neutralizing antibodies to TNF-alpha or its receptors or with a dominant negative TNF-alpha peptide had a partial effect to inhibit FFA-induced cellular insulin resistance. We found that JNK activation by FFAs was not inhibited by blocking TNF-alpha signaling, whereas the FFA-induced increase in TNF-alpha secretion was inhibited by RNA interference-mediated JNK knockdown. Together, these results indicate that 1) JNK can be activated by FFAs through TNF-alpha-independent mechanisms, 2) activated JNK is a major contributor to FFA-induced cellular insulin resistance, and 3) TNF-alpha is an autocrine/paracrine downstream effector of activated JNK that can also mediate insulin resistance.  相似文献   

16.
17.
In 3T3-L1 adipocytes, insulin or anisomycin stimulated phosphorylation of IRS-1 at Ser(307) and Ser(636/639), both of which were partially reduced by the mTOR inhibitor, rapamycin, or the JNK inhibitor, SP600125, and were further inhibited by a combination of them. Interestingly, anisomycin-induced p70(S6K) phosphorylation was reduced by SP600125, while insulin-induced p70(S6K) phosphorylation was not. Furthermore, unlike insulin, anisomycin failed to elicit translocation or degradation of IRS-1. These results indicate that mTOR and JNK play roles in phosphorylating IRS-1 serine residues, and that insulin and anisomycin are different in terms of the relationship of activation between mTOR and JNK, and the effects on IRS-1 localization and stability.  相似文献   

18.
S6K1 (p70S6K) is a serine kinase downstream from Akt in the insulin signaling pathway that is involved in negative feedback regulation of insulin action. S6K1 is also activated by TNF-alpha, a pro-inflammatory cytokine. However, its role remains to be characterized. In the current study, we elucidated a mechanism for S6K1 to mediate TNF-alpha-induced insulin resistance in adipocytes and hepatocytes. S6K1 was phosphorylated at Thr-389 in response to TNF-alpha. This led to phosphorylation of IRS-1 by S6K1 at multiple serine residues including Ser-270, Ser-307, Ser-636, and Ser-1101 in human IRS-1 (Ser-265, Ser-302, Ser-632, and Ser-1097, in rodent IRS-1). Direct phosphorylation of these sites by S6K1 was observed in an in vitro kinase assay using purified IRS-1 and S6K1. Phosphorylation of all these serines was increased in the adipose tissue of obese mice. RNAi knockdown demonstrated an important role for S6K1 in mediating TNF-alpha-induced IRS-1 inhibition that led to impaired insulin-stimulated glucose uptake in adipocytes. A point mutant of IRS-1 (S270A) impaired association of IRS-1 with S6K1 resulting in diminished phosphorylation of IRS-1 at three other S6K1 phosphorylation sites (Ser-307, Ser-636, and Ser-1101). Expression of a dominant negative S6K1 mutant prevented TNF-induced Ser-270 phosphorylation and IRS-1 protein degradation. Moreover, in IKK2 (but not IKK1)-null cells, TNF-alpha treatment did not result in Thr-389 phosphorylation of S6K1. We present a new mechanism for TNF-alpha to induce insulin resistance that involves activation of S6K by an IKK2-dependent pathway. S6K directly phosphorylates IRS-1 on multiple serine residues to inhibit insulin signaling.  相似文献   

19.
TNFalpha, which activates three different MAPKs [ERK, p38, and jun amino terminal kinase (JNK)], also induces insulin resistance. To better understand the respective roles of these three MAPK pathways in insulin signaling and their contribution to insulin resistance, constitutively active MAPK/ERK kinase (MEK)1, MAPK kinase (MKK6), and MKK7 mutants were overexpressed in 3T3-L1 adipocytes using an adenovirus-mediated transfection procedure. The MEK1 mutant, which activates ERK, markedly down-regulated expression of the insulin receptor (IR) and its major substrates, IRS-1 and IRS-2, mRNA and protein, and in turn reduced tyrosine phosphorylation of IR as well as IRS-1 and IRS-2 and their associated phosphatidyl inositol 3-kinase (PI3K) activity. The MKK6 mutant, which activates p38, moderately inhibited IRS-1 and IRS-2 expressions and IRS-1-associated PI3K activity without exerting a significant effect on the IR. Finally, the MKK7 mutant, which activates JNK, reduced tyrosine phosphorylation of IRS-1 and IRS-2 and IRS-associated PI3K activity without affecting expression of the IR, IRS-1, or IRS-2. In the context of our earlier report showing down-regulation of glucose transporter 4 by MEK1-ERK and MKK6/3-p38, the present findings suggest that chronic activation of ERK, p38, or JNK can induce insulin resistance by affecting glucose transporter expression and insulin signaling, though via distinctly different mechanisms. The contribution of ERK is, however, the strongest.  相似文献   

20.
Increased serine/threonine phosphorylation of insulin receptor substrate-1 (IRS-1) is associated with cellular insulin resistance. We have recently identified serine 318 (Ser318) as a novel protein kinase C-zeta (PKC-zeta)-dependent phosphorylation site within IRS-1. As other kinases may phosphorylate at this serine residue as well, we aimed to identify such kinases in the present study. In C2C12 myotubes, exposure to insulin or phorbol ester markedly increased Ser318 phosphorylation. In contrast, high glucose, tumor necrosis factor-alpha, and free fatty acids did not provoke Ser318 phosphorylation. JNK and the PI 3-kinase/mTOR pathway were found to be implicated in insulin-induced Ser318 phosphorylation, but not in TPA-stimulated phosphorylation that was, at least partly, mediated by classical or novel PKC. In conclusion, with JNK and the PI 3-kinase/mTOR pathway as mediators of insulin-induced Ser318 phosphorylation, we have identified kinases that have previously been reported to play key roles in phosphorylation of other serine residues in IRS-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号