首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This is the first report of a novel serine/threonine kinase, rabbit death-associated protein (DAP) kinase-related apoptosis-inducing protein kinase 1 (rDRAK1), involved in osteoclast apoptosis. We searched for osteoclast-specific genes from a cDNA library of highly enriched rabbit osteoclasts cultured on ivory. One of the cloned genes has a high homology with human DRAK1 (hDRAK1), which belongs to the DAP kinase subfamily of serine/threonine kinases. By screening a rabbit osteoclast cDNA library and 5'-RACE (rapid amplification of cDNA ends), we obtained a full length of this cDNA, termed rDRAK1. The sequencing data indicated that rDRAK1 has 88.0, 44.6, 38.7, and 42.3% identity with hDRAK1, DAP kinase, DRP-1, and ZIP (zipper-interacting protein) kinase, respectively. To clarify the role of DRAK1 in osteoclasts, we examined the effect of three osteoclast survival factors (interleukin-1, macrophage colony-stimulating factor, and osteoclast differentiation-inducing factor) on rDRAK1 mRNA expression and the effect of rDRAK1 overexpression on osteoclast apoptosis. The results suggested that these three survival factors were proved to inhibit rDRAK1 expression in rabbit osteoclasts. After transfection of a rDRAK1 expression vector into cultured osteoclasts, overexpressed rDRAK1 was localized exclusively to the nuclei and induced apoptosis. Hence, rDRAK1 may play an important role in the core apoptosis program in osteoclast.  相似文献   

2.
The death-associated protein (DAP) kinase family includes three protein kinases, DAP kinase, DAP kinase-related protein 1, and ZIP kinase, which display 80% amino acid identity within their catalytic domains and are functionally linked to common subcellular changes occurring during cell death, such as the process of membrane blebbing. Here we show physical and functional cross talk between DAP kinase and ZIP kinase. The two kinases display strong synergistic effects on cell death when coexpressed and physically bind each other via their catalytic domains. Furthermore, DAP kinase phosphorylates ZIP kinase at six specific sites within its extracatalytic C-terminal domain. ZIP kinase localizes to both the nucleus and the cytoplasm and fractionates as monomeric and trimeric forms. Significantly, modification of the DAP kinase phosphorylation sites influences both the localization and oligomerization status of ZIP kinase. A mutant ZIP kinase construct, in which the six serine/threonine residues were mutated to aspartic acid to mimic the phosphorylated state, was found predominantly in the cytoplasm as a trimer and possessed greater cell death-inducing potency. This suggests that DAP kinase and ZIP kinase function in a biochemical pathway in which DAP kinase activates the cellular function of ZIP kinase through phosphorylation, leading to amplification of death-promoting signals.  相似文献   

3.
Death-associated protein kinase is a calcium/calmodulin serine/threonine kinase, which positively mediates programmed cell death in a variety of systems. Here we addressed its mode of regulation and identified a mechanism that restrains its apoptotic function in growing cells and enables its activation during cell death. It involves autophosphorylation of Ser(308) within the calmodulin (CaM)-regulatory domain, which occurs at basal state, in the absence of Ca(2+)/CaM, and is inversely correlated with substrate phosphorylation. This type of phosphorylation takes place in growing cells and is strongly reduced upon their exposure to the apoptotic stimulus of C(6)-ceramide. The substitution of Ser(308) to alanine, which mimics the ceramide-induced dephosphorylation at this site, increases Ca(2+)/CaM-independent substrate phosphorylation as well as binding and overall sensitivity of the kinase to CaM. At the cellular level, it strongly enhances the death-promoting activity of the kinase. Conversely, mutation to aspartic acid reduces the binding of the protein to CaM and abrogates almost completely the death-promoting function of the protein. These results are consistent with a molecular model in which phosphorylation on Ser(308) stabilizes a locked conformation of the CaM-regulatory domain within the catalytic cleft and simultaneously also interferes with CaM binding. We propose that this unique mechanism of auto-inhibition evolved to impose a locking device, which keeps death-associated protein kinase silent in healthy cells and ensures its activation only in response to apoptotic signals.  相似文献   

4.
DAP-kinase (DAPk) is a Ca(2+)/calmodulin (CaM)-regulated Ser/Thr kinase that functions as a positive mediator of programmed cell death. It associates with actin microfilament and has a unique multidomain structure. One of the substrates of DAPk was identified as myosin light chain (MLC), the phosphorylation of which mediates membrane blebbing. Four additional kinases have been identified based on the high homology of their catalytic domain to that of DAPk. Yet, they differ in the structure of their extracatalytic domains and in their intracellular localization. One member of this family, DRP-1, also shares with DAPk both the property of activation by Ca(2+)/CaM and a specific phosphorylation-based regulatory mechanism. The latter involves an inhibitory type of autophosphorylation on a conserved serine at position 308, in the CaM regulatory domains of these two kinases. This phosphorylation, which occurs in growing cells, restrains the death-promoting effects of these kinases, and is specifically removed upon exposure of cells to various apoptotic stimuli. The dephosphorylation at this site increases the binding and sensitivity of each of these two kinases to their common activator-CaM. In DAPk, the dephosphorylation of serine 308 also increases the Ca(2+)/CaM-independent substrate phosphorylation. In DPR-1, it also promotes the formation of homodimers necessary for its full activity. These results are consistent with a molecular model in which phosphorylation on serine 308 stabilizes a locked conformation of the CaM regulatory domain within the catalytic cleft and simultaneously also interferes with CaM binding. In DRP-1, it introduces an additional locking device by preventing homodimerization. We propose that this unique mechanism of autoinhibition, evolved to keep these death-promoting kinases silent in healthy cells and ensures their activation only in response to apoptotic signals.  相似文献   

5.
DRP-1 is a pro-apoptotic Ca2+/calmodulin (CaM)-regulated serine/threonine kinase, recently isolated as a novel member of the DAP-kinase family of proteins. It contains a short extra-catalytic tail required for homodimerization. Here we identify a novel regulatory mechanism that controls its pro-apoptotic functions. It comprises a single autophosphorylation event mapped to Ser308 within the CaM regulatory domain. A negative charge at this site reduces both the binding to CaM and the formation of DRP-1 homodimers. Conversely, the dephosphorylation of Ser308, which takes place in response to activated Fas or tumour necrosis factor-alpha death receptors, increases the formation of DRP-1 dimers, facilitates the binding to CaM and activates the pro-apoptotic effects of the protein. Thus, the process of enzyme activation is controlled by two unlocking steps that must work in concert, i.e. dephosphorylation, which probably weakens the electrostatic interactions between the CaM regulatory domain and the catalytic cleft, and homodimerization. This mechanism of negative autophosphorylation provides a safety barrier that restrains the killing effects of DRP-1, and a target for efficient activation of the kinase by various apoptotic stimuli.  相似文献   

6.
Protein phosphorylation is one of the major mechanisms by which eukaryotic cells transduce extracellular signals into intracellular responses. Calcium/calmodulin (Ca(2+)/CaM)-dependent protein phosphorylation has been implicated in various cellular processes, yet little is known about Ca(2+)/CaM-dependent protein kinases (CaMKs) in plants. From an Arabidopsis expression library screen using a horseradish peroxidase-conjugated soybean calmodulin isoform (SCaM-1) as a probe, we isolated a full-length cDNA clone that encodes AtCK (Arabidopsis thaliana calcium/calmodulin-dependent protein kinase). The predicted structure of AtCK contains a serine/threonine protein kinase catalytic domain followed by a putative calmodulin-binding domain and a putative Ca(2+)-binding domain. Recombinant AtCK was expressed in E. coli and bound to calmodulin in a Ca(2+)-dependent manner. The ability of CaM to bind to AtCK was confirmed by gel mobility shift and competition assays. AtCK exhibited its highest levels of autophosphorylation in the presence of 3 mM Mn(2+). The phosphorylation of myelin basic protein (MBP) by AtCK was enhanced when AtCK was under the control of calcium-bound CaM, as previously observed for other Ca(2+)/CaM-dependent protein kinases. In contrast to maize and tobacco CCaMKs (calcium and Ca(2+)/CaM-dependent protein kinase), increasing the concentration of calmodulin to more than 3 microgram suppressed the phosphorylation activity of AtCK. Taken together our results indicate that AtCK is a novel Arabidopsis Ca(2+)/CaM-dependent protein kinase which is presumably involved in CaM-mediated signaling.  相似文献   

7.
Death-associated protein kinase 2 (DAPK2/DRP-1) belongs to a family of five related serine/threonine kinases that mediate a range of cellular processes, including membrane blebbing, apoptosis, and autophagy, and possess tumour suppressive functions. The three most conserved family members DAPK1/DAPK, DAPK2 and DAPK3/ZIPK share a high degree of homology in their catalytic domain, but differ significantly in their extra-catalytic structures and tissue-expression profiles. Hence, each orthologue binds to various unique interaction partners, localizes to different subcellular regions and controls some dissimilar cellular functions. In recent years, mechanistic studies have broadened our knowledge of the molecular mechanisms that activate DAPK2 and that execute DAPK2-mediated apoptosis, autophagy and inflammation. In this “molecules in focus” review on DAPK2, the structure, modes of regulation and various cellular functions of DAPK2 will be summarized and discussed.  相似文献   

8.
DAP kinase-related apoptosis-inducing kinase 2 (DRAK2) is a serine/threonine kinase of the death-associated protein kinase family. DRAK2 mediates apoptosis induced by extracellular stimuli, including UV irradiation and interleukin-2, and also regulates T-cell receptor sensitivity in developing thymocytes. During these events, the subcellular localization of DRAK2 changes between the nucleus and cytoplasm. We found that DRAK2 has a putative nuclear-localization signal (NLS) sequence. Mutations in this sequence interfered with DRAK2 localization to the nucleus. Furthermore, green fluorescence protein fused to the putative NLS accumulated in the nucleus, indicating that the putative sequence functions as an NLS. We also found that the function of the NLS was regulated by phosphorylation. Phorbol myristate acetate (PMA) induced the accumulation of DRAK2 in the cytoplasm of NIH3T3 cells, whereas in the absence of PMA, DRAK2 was localized to the nucleus. Ectopic expression of PKC-gamma induced cytoplasmic localization of DRAK2 and PKC-gamma phosphorylated Ser350 flanking the NLS. DRAK2, but not the Ser350Asp mutant, accumulated in the nuclei of ACL-15 cells in response to UV-irradiation. These results suggest that phosphorylation of Ser350 plays an essential role in regulating translocation of DRAK2 to the nucleus from the cytoplasm, possibly by affecting the activity of the NLS.  相似文献   

9.
The DAP (Death Associated Protein) kinase family is a novel subfamily of pro-apoptotic serine/threonine kinases. All five DAP kinase family members identified to date are ubiquitously expressed in various tissues and are capable of inducing apoptosis. The sequence homology of the five kinases is largely restricted to the N-terminal kinase domain. In contrast, the adjacent C-terminal regions are very diverse and link individual family members to specific signal transduction pathways. There is increasing evidence that DAP kinase family members are involved in both extrinsic and intrinsic pathways of apoptosis and may play a role in tumor progression. This review will focus on structural composition and subcellular localization of DAP kinase family members and on signal transduction pathways leading to their activation. Potential mechanisms of DAP kinase family-mediated apoptosis will be discussed. BioEssays 23:352-358, 2001.  相似文献   

10.
11.
Calmodulin (CaM) is a ubiquitous calcium (Ca(2+)) sensor which binds and regulates protein serine/threonine kinases along with many other proteins in a Ca(2+)-dependent manner. For this multi-functionality, conformational plasticity is essential; however, the nature and magnitude of CaM's plasticity still remains largely undetermined. Here, we present the 1.8 A resolution crystal structure of Ca(2+)/CaM, complexed with the 27-residue synthetic peptide corresponding to the CaM-binding domain of the nematode Caenorhabditis elegans Ca(2+)/CaM-dependent kinase kinase (CaMKK). The peptide bound in this crystal structure is a homologue of the previously NMR-derived complex with rat CaMKK, but benefits from improved structural resolution. Careful comparison of the present structure to previous crystal structures of CaM complexed with unrelated peptides derived from myosin light chain kinase and CaM kinase II, allow a quantitative analysis of the differences in the relative orientation of the N and C-terminal domains of CaM, defined as a screw axis rotation angle ranging from 156 degrees to 196 degrees. The principal differences in CaM interaction with various peptides are associated with the N-terminal domain of CaM. Unlike the C-terminal domain, which remains unchanged internally, the N-terminal domain of CaM displays significant differences in the EF-hand helix orientation between this and other CaM structures. Three hydrogen bonds between CaM and the peptide (E87-R336, E87-T339 and K75-T339) along with two salt bridges (E11-R349 and E114-K334) are the most probable determinants for the binding direction of the CaMKK peptide to CaM.  相似文献   

12.
13.
Protein phosphatases regulated by calmodulin (CaM) mediate the action of intracellular Ca2+ and modulate functions of various target proteins by dephosphorylation. In plants, however, the role of Ca2+ in the regulation of protein dephosphorylation is not well understood due to a lack of information on characteristics of CaM-regulated protein phosphatases. Screening of a cDNA library of the moss Physcomitrella patens by using 35S-labeled calmodulin as a ligand resulted in identification of a gene, PCaMPP, that encodes a protein serine/threonine phosphatase with 373 amino acids. PCaMPP had a catalytic domain with sequence similarity to type 2C protein phosphatases (PP2Cs) with six conserved metal-associating amino acid residues and also had an extra C-terminal domain. Recombinant GST fusion proteins of PCaMPP exhibited Mn2+-dependent phosphatase activity, and the activity was inhibited by pyrophosphate and 1 mm Ca2+ but not by okadaic acid, orthovanadate, or beta-glycerophosphate. Furthermore, the PCaMPP activity was increased 1.7-fold by addition of CaM at nanomolar concentrations. CaM binding assays using deletion proteins and a synthetic peptide revealed that the CaM-binding region resides within the basic amphiphilic amino acid region 324-346 in the C-terminal domain. The CaM-binding region had sequence similarity to amino acids in one of three alpha-helices in the C-terminal domain of human PP2Calpha, suggesting a novel role of the C-terminal domains for the phosphatase activity. These results provide the first evidence showing possible regulation of PP2C-related phosphatases by Ca2+/CaM in plants. Genes similar to PCaMPP were found in genomes of various higher plant species, suggesting that PCaMPP-type protein phosphatases are conserved in land plants.  相似文献   

14.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) is a member of the serine/threonine protein phosphatases and shares 29% sequence identity with protein phosphatase 2Calpha (PP2Calpha) in its catalytic domain. To investigate the functional domains of CaMKP, mutational analysis was carried out using various recombinant CaMKPs expressed in Escherichia coli. Analysis of N-terminal deletion mutants showed that the N-terminal region of CaMKP played important roles in the formation of the catalytically active structure of the enzyme, and a critical role in polycation stimulation. A chimera mutant, a fusion of the N-terminal domain of CaMKP and the catalytic domain of PP2Calpha, exhibited similar substrate specificity to CaMKP but not to PP2Calpha, suggesting that the N-terminal region of CaMKP is crucial for its unique substrate specificity. Point mutations at Arg-162, Asp-194, His-196, and Asp-400, highly conserved amino acid residues in the catalytic domain of PP2C family, resulted in a significant loss of phosphatase activity, indicating that these amino acid residues may play important roles in the catalytic activity of CaMKP. Although CaMKP(1-412), a C-terminal truncation mutant, retained phosphatase activity, it was found to be much less stable upon incubation at 37 degrees C than wild type CaMKP, indicating that the C-terminal region of CaMKP is important for the maintenance of the catalytically active conformation. The results suggested that the N- and C-terminal sequences of CaMKP are essential for the regulation and stability of CaMKP.  相似文献   

15.
TESK1 (testis-specific protein kinase 1) is a protein kinase with a structure composed of an N-terminal protein kinase domain and a C-terminal proline-rich domain. Whereas the 3.6-kilobase TESK1 mRNA is expressed predominantly in the testis, a faint 2.5-kilobase TESK1 mRNA is expressed ubiquitously. The kinase domain of TESK1 contains in the catalytic loop in subdomain VIB an unusual DLTSKN sequence, which is not related to the consensus sequence of either serine/threonine kinases or tyrosine kinases. In this study, we show that TESK1 has kinase activity with dual specificity on both serine/threonine and tyrosine residues. In an in vitro kinase reaction, the kinase domain of TESK1 underwent autophosphorylation on serine and tyrosine residues and catalyzed phosphorylation of histone H3 and myelin basic protein on serine, threonine, and tyrosine residues. Site-directed mutagenesis analyses revealed that Ser-215 within the "activation loop" of the kinase domain is the site of serine autophosphorylation of TESK1. Replacement of Ser-215 by alanine almost completely abolished serine autophosphorylation and histone H3 kinase activities. In contrast, replacement of Ser-215 by glutamic acid abolished serine autophosphorylation activity but retained histone H3 kinase activity. These results suggest that autophosphorylation of Ser-215 is an important step to positively regulate the kinase activity of TESK1.  相似文献   

16.
We have isolated the full-length cDNA of a novel human serine threonine protein kinase gene. The deduced protein sequence contains two cysteine-rich motifs at the N terminus, a pleckstrin homology domain, and a catalytic domain containing all the characteristic sequence motifs of serine protein kinases. It exhibits the strongest homology to the serine threonine protein kinases PKD/PKCmicro and PKCnu, particularly in the duplex zinc finger-like cysteine-rich motif, in the pleckstrin homology domain and in the protein kinase domain. In contrast, it shows only a low degree of sequence similarity to other members of the PKC family. Therefore, the new protein has been termed protein kinase D2 (PKD2). The mRNA of PKD2 is widely expressed in human and murine tissues. It encodes a protein with a molecular mass of 105 kDa in SDS-polyacrylamide gel electrophoresis, which is expressed in various human cell lines, including HL60 cells, which do not express PKCmicro. In vivo phorbol ester binding studies demonstrated a concentration-dependent binding of [(3)H]phorbol 12,13-dibutyrate to PKD2. The addition of phorbol 12,13-dibutyrate in the presence of dioleoylphosphatidylserine stimulated the autophosphorylation of PKD2 in a synergistic fashion. Phorbol esters also stimulated autophosphorylation of PKD2 in intact cells. PKD2 activated by phorbol esters efficiently phosphorylated the exogenous substrate histone H1. In addition, we could identify the C-terminal Ser(876) residue as an in vivo phosphorylation site within PKD2. Phosphorylation of Ser(876) of PKD2 correlated with the activation status of the kinase. Finally, gastrin was found to be a physiological activator of PKD2 in human AGS-B cells stably transfected with the CCK(B)/gastrin receptor. Thus, PKD2 is a novel phorbol ester- and growth factor-stimulated protein kinase.  相似文献   

17.
Mal TK  Skrynnikov NR  Yap KL  Kay LE  Ikura M 《Biochemistry》2002,41(43):12899-12906
Calmodulin-regulated serine/threonine kinases (CaM kinases) play crucial roles in Ca2+-dependent signaling transduction pathways in eukaryotes. Despite having a similar overall molecular architecture of catalytic and regulatory domains, CaM kinases employ different binding modes for Ca2+/CaM recruitment which is required for their activation. Here we present a residual dipolar coupling (RDC)-based NMR approach to characterizing the molecular recognition of CaM with five different CaM kinases. Our analyses indicate that CaM kinase I and likely IV use the same CaM binding mode as myosin light chain kinase (1-14 motif), distinct from those of CaM kinase II (1-10 motif) and CaM kinase kinase (1-16- motif). This NMR approach provides an efficient experimental guide for homology modeling and structural characterization of CaM-target complexes.  相似文献   

18.
A Ca(2+)/calmodulin-dependent protein kinase (CaMK) gene was cloned and characterized from Arthrobotrys dactyloides, a nematode-trapping fungus. The resulting 373-amino-acid protein, FCaMK, has significant homology to mammalian CaMKs. FCaMK contains a serine/threonine kinase domain followed by a calmodulin-binding domain. The activation loop in FCaMK (amino acids 184-199) contains a phosphorylation site at threonine-188, which could be the target of a kinase activator. Truncated FCaMK mutants revealed that amino acids 296-324 are essential for calmodulin binding. An oligopeptide designed from residues 297-324 formed a stable peptide-calmodulin complex of 1:1 stoichiometry. Southern blot analysis detected a single copy of the fcamk gene, suggesting that FCaMK plays an important role in Ca(2+)/calmodulin signaling in A. dactyloides.  相似文献   

19.
Syntaxin-1 is a key component of the synaptic vesicle docking/fusion machinery that binds with VAMP/synaptobrevin and SNAP-25 to form the SNARE complex. Modulation of syntaxin binding properties by protein kinases could be critical to control of neurotransmitter release. Using yeast two-hybrid selection with syntaxin-1A as bait, we have isolated a cDNA encoding the C-terminal domain of death-associated protein (DAP) kinase, a calcium/calmodulin-dependent serine/threonine protein kinase. Expression of DAP kinase in adult rat brain is restricted to particular neuronal subpopulations, including the hippocampus and cerebral cortex. Biochemical studies demonstrate that DAP kinase binds to and phosphorylates syntaxin-1 at serine 188. This phosphorylation event occurs both in vitro and in vivo in a Ca2+-dependent manner. Syntaxin-1A phosphorylation by DAP kinase or its S188D mutant, which mimics a state of complete phosphorylation, significantly decreases syntaxin binding to Munc18-1, a syntaxin-binding protein that regulates SNARE complex formation and is required for synaptic vesicle docking. Our results suggest that syntaxin is a DAP kinase substrate and provide a novel signal transduction pathway by which syntaxin function could be regulated in response to intracellular [Ca2+] and synaptic activity.  相似文献   

20.
We have cloned and characterized a novel mammalian serine/threonine protein kinase WNK1 (with no lysine (K)) from a rat brain cDNA library. WNK1 has 2126 amino acids and can be detected as a protein of approximately 230 kDa in various cell lines and rat tissues. WNK1 contains a small N-terminal domain followed by the kinase domain and a long C-terminal tail. The WNK1 kinase domain has the greatest similarity to the MEKK protein kinase family. However, overexpression of WNK1 in HEK293 cells exerts no detectable effect on the activity of known, co-transfected mitogen-activated protein kinases, suggesting that it belongs to a distinct pathway. WNK1 phosphorylates the exogenous substrate myelin basic protein as well as itself mostly on serine residues, confirming that it is a serine/threonine protein kinase. The demonstration of activity was striking because WNK1, and its homologs in other organisms lack the invariant catalytic lysine in subdomain II of protein kinases that is crucial for binding to ATP. A model of WNK1 using the structure of cAMP-dependent protein kinase suggests that lysine 233 in kinase subdomain I may provide this function. Mutation of this lysine residue to methionine eliminates WNK1 activity, consistent with the conclusion that it is required for catalysis. This distinct organization of catalytic residues indicates that WNK1 belongs to a novel family of serine/threonine protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号