共查询到20条相似文献,搜索用时 0 毫秒
1.
G K Ostrander E H Holmes 《Comparative biochemistry and physiology. B, Comparative biochemistry》1991,98(1):87-95
1. The rainbow trout (Oncorhynchus mykiss) CMPNeuAc:lactosylceramide alpha 2----3sialytransferase enzyme from RTH-149 cells has been characterized. 2. Transfer of sialic acid to lactosylceramide was optimal at a pH of 5.9, temperature of 25 degrees C, and in the pressure of 0.3% CF-54, 10 mM Mn2+, 0.1 M sodium cacodylate, and 2 mM ATP. 3. Golgi-rich membrane fractions of RTH-149 cells were found to be enriched in sialidase activity and as such the addition of 40 microM 2,3-dehydro-2-deoxy-N-acetylneuraminic acid was necessary to assay alpha 2----3sialyltransferase activity optimally. 4. Apparent Km for donor (CMPNeuAc) and acceptor (lactosylceramide) were found to be 243 microM and 34 microM, respectively. 5. The alpha 2----3sialyltransferase characterized was found to be primarily specific for lactosylceramide though minor activity with other glycolipid acceptors was observed. 6. The presence of another sialyltransferase with differing substrate specificity was noted. 7. Properties of this enzyme, compared to analogous mammalian enzymes, are discussed. 相似文献
2.
We have studied the effects of heavy metals (Hg2+, Cu2+, Cd2+) on growth hormone (GH) activation of tyrosine kinase and Ca2+ signaling in the trout (Oncorhynchus mykiss) hepatoma cell line RTH-149. Molecular cloning techniques using primer designed on Oncorhynchus spp. growth hormone receptor (GHR) genes allowed to isolate a highly homologous cDNA fragment from RTH-149 mRNA. Thereafter, cells were analysed by Western blotting or, alternatively, with Ca2+ imaging using fura-2/AM. Exposure of cells to ovine GH alone produced a stimulation of the JAK2/STAT5 pathway and intracellular free Ca2+ variations similar to what has been observed in mammalian models. Cell pre-exposure to Cu2+, Hg2+ or Cd2+ affected cell response to GH by enhancing (Cu2+) or inhibiting (Cd2+) the phosphorylation of JAK2 and STAT5. Heavy metals induced the activation of the MAP kinase p38, and pre-exposure to Hg2+ or Cu2+ followed by GH enhanced the effect of metal alone. Image analysis of fura2-loaded cells indicated that pre-treatment with Hg2+ prior to GH produced a considerable increase of the [Ca2+]i variation produced by either element, while using Cu2+ or Cd2+ the result was similar but much weaker. Data suggest that heavy metals interfere with GH as follows: Hg2+ is nearly ineffective on JAK/STAT and strongly synergistic on Ca2+ signaling; Cu2+ is activatory on JAK/STAT and slightly activatory on Ca2+; Cd2+ is strongly inhibitory on JAK/STAT and slightly activatory on Ca2+; heavy metals could partially activate STAT via p38 independently from GH interaction.Published online: March 2005 相似文献
3.
Differential effects of superoxide and hydroxyl radical on intracellular calcium were investigated in trout hepatoma cells (RTH-149). [Ca2+]i variations were recorded using confocal imaging, fluo-3 loading, and exposure to various mixtures consisting of hypoxanthine/xanthine oxidase (HX/XO), and of sub-stimulatory concentrations of H2O2 and Cu2+ . No [Ca2+]i variation was found with HX/XO, a slight [Ca2+]i rise with a mixture of Cu2+ and HX/XO, a sustained rise with Cu2+ and H2O2, and the highest rise with Cu2+, H2O2 and HX/XO. Fluorimetric assay using dihydrorhodamine 123 revealed a correlation between the oxidizing power of a mixture and its effect on [Ca2+]i. The [Ca2+]i rise induced by Cu2+, H2O2 and HX/XO, was partially reduced in Ca2+ free medium or in the presence of SOD, converted into Ca2+ transient by verapamil, and almost abolished by the PLC inhibitor U73122 or in the presence of the hydroxyl radical quencher TEMPOL. Data indicate that Ca2+ is mobilized by hydroxyl radical but not by superoxide. The mechanism consists of PLC activation causing intracellular Ca2+ release, while Ca2+ entry potentiates Ca2+ release thus leading to sustained [Ca2+]i rise. A role of hydroxyl radicals in the oxidative switching-on of Ca2+ signaling is discussed. 相似文献
4.
The sulphydryl reagent thimerosal (50 microM) released Ca2+ from a non-mitochondrial intracellular Ca2+ pool in a dose-dependent manner in permeabilized insulin-secreting RINm5F cells. This release was reversed after addition of the reducing agent dithiothreitol. Ca2+ was released from an Ins(1,4,5)P3-insensitive pool, since release was observed even after depletion of the Ins(1,4,5)P3-sensitive pool by a supramaximal dose of Ins(2,4,5)P3 or thapsigargin. The Ins(1,4,5)P3-sensitive pool remained essentially unaltered by thimerosal. Thimerosal-induced Ca2+ release was potentiated by caffeine. These findings suggest the existence of Ca(2+)-induced Ca2+ release also in insulin-secreting cells. 相似文献
5.
Subpopulation of store-operated Ca2+ channels regulate Ca2+-induced Ca2+ release in non-excitable cells 总被引:2,自引:0,他引:2
Ca2+-induced Ca2+ release (CICR) is a well characterized activity in skeletal and cardiac muscles mediated by the ryanodine receptors. The present study demonstrates CICR in the non-excitable parotid acinar cells, which resembles the mechanism described in cardiac myocytes. Partial depletion of internal Ca2+ stores leads to a minimal activation of Ca2+ influx. Ca2+ influx through this pathway results in an explosive mobilization of Ca2+ from the majority of the stores by CICR. Thus, stimulation of parotid acinar cells in Ca2+ -free medium with 0.5 microm carbachol releases approximately 5% of the Ca2+ mobilizable by 1 mm carbachol. Addition of external Ca2+ induced the same Ca2+ release observed in maximally stimulated cells. Similar results were obtained by a short treatment with 2.5-10 microm cyclopiazonic acid, an inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase pump. The Ca2+ release induced by the addition of external Ca2+ was largely independent of IP(3)Rs because it was reduced by only approximately 30% by the inhibition of the inositol 1,4,5-trisphosphate receptors with caffeine or heparin. Measurements of Ca2+ -activated outward current and [Ca2+](i) suggested that most CICR triggered by Ca2+ influx occurred away from the plasma membrane. Measurement of the response to several concentrations of cyclopiazonic acid revealed that Ca2+ influx that regulates CICR is associated with a selective portion of the internal Ca2+ pool. The minimal activation of Ca2+ influx by partial store depletion was confirmed by the measurement of Mn2+ influx. Inhibition of Ca2+ influx with SKF96365 or 2-aminoethoxydiphenyl borate prevented activation of CICR observed on addition of external Ca2+. These findings provide evidence for activation of CICR by Ca2+ influx in non-excitable cells, demonstrate a previously unrecognized role for Ca2+ influx in triggering CICR, and indicate that CICR in non-excitable cells resembles CICR in cardiac myocytes with the exception that in cardiac cells Ca2+ influx is mediated by voltage-regulated Ca2+ channels whereas in non-excitable cells Ca2+ influx is mediated by store-operated channels. 相似文献
6.
Ca2+ ions play an important role during rhythmic bursting of thalamocortical neurons within sleep. The function of Ca2+ during the tonic relay mode of these neurons during wakefulness is less clear. Here, we report that tonic activity in thalamocortical cells results in an increase in the intracellular Ca2+ concentration and subsequent release of Ca2+ from intracellular stores mediated via ryanodine receptors (RyRs). Blockade of Ca2+ release shifted the regular firing of single action potentials toward the generation of spike clusters. Regular spike firing and intracellular Ca2+ release thus appear to be functionally coupled in a positive feedback manner, thereby supporting the relay mode of thalamocortical cells during wakefulness. Regulatory influences may be coupled to this system via the cyclic ADP ribose pathway. 相似文献
7.
Modes of propagation of Ca(2+)-induced Ca2+ release in bullfrog sympathetic ganglion cells 总被引:1,自引:0,他引:1
How depolarization-induced Ca2+ entry or caffeine activates Ca(2+)-induced Ca2+ release (CICR) in the cytoplasm and nucleoplasm was studied by recording intracellular Ca2+ ([Ca2+]i) with a confocal microscope in cultured bullfrog sympathetic ganglion cells. The amplitude and propagation speed of voltage pulse-induced rises in [Ca2+]i were greater in the submembrane (< 5 microns depth) region than in the core region, and delayed and smaller, but significant, in the nucleus. Ryanodine and dantrolene reduced the rises in [Ca2+]i in both the cytoplasm and nucleus. A rapid application of high K+ solution induced global rises in [Ca2+]i in both the cytoplasm and nucleoplasm, which were decreased by dantrolene. Caffeine produced a slow, small rise in [Ca2+]i which grew into a global, regenerative rise both in the cytoplasm and nucleoplasm with some inward gradient in the cytoplasm. Each of the high [Ca2+]i phases during caffeine-induced [Ca2+]i oscillation began in the submembrane region, while low [Ca2+]i phases started in the core region. These results suggest that CICR activated by Ca2+ entry or caffeine occurs predominantly in the submembrane region causing an inwardly spreading Ca2+ wave or [Ca2+]i oscillations, and that the nuclear envelope can cause CICR in the nucleoplasm, which is delayed due to Ca2+ diffusion barrier at the nuclear pores. 相似文献
8.
Respiring rat liver mitochondria are known to spontaneously release the Ca2+ taken up when they have accumulated Ca2+ over a certain threshold, while Sr2+ and Mn2+ are well tolerated and retained. We have studied the interaction of Sr2+ with Ca2+ release. When Sr2+ was added to respiring mitochondria simultaneously with or soon after the addition of Ca2+, the release was potently inhibited or reversed. On the other hand, when Sr2+ was added before Ca2+, the release was stimulated. Ca2+-induced mitochondrial damage and release of accumulated Ca2+ is generally believed to be due to activation of mitochondrial phospholipase A (EC 3.1.1.4.) by Ca2+. However, isolated mitochondrial phospholipase A activity was little if at all inhibited by Sr2+. The Ca2+ -release may thus be triggered by some Ca2+ -dependent function other than phospholipase. 相似文献
9.
10.
We consider a simple, minimal model for signal-induced Ca2+ oscillations based on Ca(2+)-induced Ca2+ release. The model takes into account the existence of two pools of intracellular Ca2+, namely, one sensitive to inositol 1,4,5 trisphosphate (InsP3) whose synthesis is elicited by the stimulus, and one insensitive to InsP3. The discharge of the latter pool into the cytosol is activated by cytosolic Ca2+. Oscillations in cytosolic Ca2+ arise in this model either spontaneously or in an appropriate range of external stimulation; these oscillations do not require the concomitant, periodic variation of InsP3. The following properties of the model are reviewed and compared with experimental observations: (a) Control of the frequency of Ca2+ oscillations by the external stimulus or extracellular Ca2+; (b) correlation of latency with period of Ca2+ oscillations obtained at different levels of stimulation; (c) effect of a transient increase in InsP3; (d) phase shift and transient suppression of Ca2+ oscillations by Ca2+ pulses, and (e) propagation of Ca2+ waves. It is shown that on all these counts the model provides a simple, unified explanation for a number of experimental observations in a variety of cell types. The model based on Ca(2+)-induced Ca2+ release can be extended to incorporate variations in the level of InsP3 as well as desensitization of the InsP3 receptor; besides accounting for the phenomena described by the minimal model, the extended model might also account for the occurrence of complex Ca2+ oscillations. 相似文献
11.
Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum 总被引:28,自引:0,他引:28
G Meissner 《The Journal of biological chemistry》1984,259(4):2365-2374
Rabbit skeletal muscle sarcoplasmic reticulum was fractionated into a Ca2+-release and control fraction by differential and sucrose gradient centrifugation. External Ca2+ (2-20 microM) caused the release of 40 nmol of 45Ca2+/mg of protein/s from Ca2+-release vesicles passively loaded at pH 6.8 with an internal half-saturation Ca2+ concentration of 10-20 mM. Ca2+-induced Ca2+ release had an approximate pK value of 6.6 and was half-maximally inhibited at an external Ca2+ concentration of 2 X 10(-4) M and Mg2+ concentration of 7 X 10(-5) M. 45Ca2+ efflux from control vesicles was slightly inhibited at external Ca2+ concentrations that stimulated the rapid release of Ca2+ from Ca2+-release vesicles. Adenine, adenosine, and derived nucleotides caused stimulation of Ca2+-induced Ca2+ release in media containing a physiological free Mg2+ concentration of 0.6 mM. At a concentration of 1 mM, the order of effectiveness was AMP-PCP greater than cAMP approximately AMP approximately ADP greater than adenine greater than adenosine. Other nucleoside triphosphates and caffeine were minimally effective in increasing 45Ca2+ efflux from passively loaded Ca2+-release vesicles. La3+, ruthenium red, and procaine inhibited Ca2+-induced Ca2+ release. Ca2+ flux studies with actively loaded vesicles also indicated that a subpopulation of sarcoplasmic reticulum vesicles contains a Ca2+ permeation system that is activated by adenine nucleotides. 相似文献
12.
Zhang Q Köhler M Yang SN Zhang F Larsson O Berggren PO 《Molecular endocrinology (Baltimore, Md.)》2004,18(7):1658-1669
Elevation in cytoplasmic free Ca2+ concentration ([Ca2+]i) is a common mechanism in signaling events. An increased [Ca2+]i induced by GH, has been observed in relation to different cellular events. Little is known about the mechanism underlying the GH effect on Ca2+ handling. We have studied the molecular mechanisms underlying GH-induced rise in [Ca2+]i in BRIN-BD11 insulin-secreting cells. GH (500 ng/ml, 22 nm) induced a sustained increase in [Ca2+]i. The effect of GH on [Ca2+]i was prevented in the absence of extracellular Ca2+ and was inhibited by the ATP-sensitive K(+)-channel opener diazoxide and the voltage-dependent Ca(2+)-channel inhibitor nifedipine. However, GH failed to induce any changes in Ca2+ current and membrane potential, evaluated by patch-clamp recordings and by using voltage-sensitive dyes. When the intracellular Ca2+ pools had been depleted using the Ca(2+)-ATPase inhibitor thapsigargin, the effect of GH was inhibited. In addition, GH-stimulated rise in [Ca2+]i was completely abolished by ruthenium red, an inhibitor of mitochondrial Ca2+ transport, and caffeine. GH induced tyrosine phosphorylation of ryanodine receptors. The effect of GH on [Ca2+]i was completely blocked by the tyrosine kinase inhibitors genistein and lavendustin A. Interestingly, treatment of the cells with GH significantly enhanced K(+)-induced rise in [Ca2+]i. Hence, GH-stimulated rise in [Ca2+]i is dependent on extracellular Ca2+ and is mediated by Ca(2+)-induced Ca2+ release. This process is mediated by tyrosine phosphorylation of ryanodine receptors and may play a crucial role in physiological Ca2+ handling in insulin-secreting cells. 相似文献
13.
Christoph A. Blomeyer Jason N. Bazil David F. Stowe Ranjan K. Pradhan Ranjan K. Dash Amadou K. S. Camara 《Journal of bioenergetics and biomembranes》2013,45(3):189-202
In cardiac mitochondria, matrix free Ca2+ ([Ca2+]m) is primarily regulated by Ca2+ uptake and release via the Ca2+ uniporter (CU) and Na+/Ca2+ exchanger (NCE) as well as by Ca2+ buffering. Although experimental and computational studies on the CU and NCE dynamics exist, it is not well understood how matrix Ca2+ buffering affects these dynamics under various Ca2+ uptake and release conditions, and whether this influences the stoichiometry of the NCE. To elucidate the role of matrix Ca2+ buffering on the uptake and release of Ca2+, we monitored Ca2+ dynamics in isolated mitochondria by measuring both the extra-matrix free [Ca2+] ([Ca2+]e) and [Ca2+]m. A detailed protocol was developed and freshly isolated mitochondria from guinea pig hearts were exposed to five different [CaCl2] followed by ruthenium red and six different [NaCl]. By using the fluorescent probe indo-1, [Ca2+]e and [Ca2+]m were spectrofluorometrically quantified, and the stoichiometry of the NCE was determined. In addition, we measured NADH, membrane potential, matrix volume and matrix pH to monitor Ca2+-induced changes in mitochondrial bioenergetics. Our [Ca2+]e and [Ca2+]m measurements demonstrate that Ca2+ uptake and release do not show reciprocal Ca2+ dynamics in the extra-matrix and matrix compartments. This salient finding is likely caused by a dynamic Ca2+ buffering system in the matrix compartment. The Na+- induced Ca2+ release demonstrates an electrogenic exchange via the NCE by excluding an electroneutral exchange. Mitochondrial bioenergetics were only transiently affected by Ca2+ uptake in the presence of large amounts of CaCl2, but not by Na+- induced Ca2+ release. 相似文献
14.
15.
The 45Ca2+ uptake and 45Ca2+ release in saponin-permeabilized human lymphocytes were studied. An ATP-dependent Ca2+ uptake into a nonmitochondrial, intracellular Ca2+ store is observed which is approx. 2 orders of magnitude greater than the ATP-independent Ca2+ uptake. The Ca2+ uptake is inhibited by vanadate, but it is insensitive to oligomycin and ruthenium red. IP3 induces dose-dependent 45Ca2+ release. For half-maximum Ca2+ release 0.25-0.5 microM IP3 is required. The results of our studies suggest that 45Ca2+ is predominantly stored within the endoplasmic reticulum of the lymphocytes. 相似文献
16.
We reported earlier that the two ryanodine receptor (RyR) isoforms (alpha- and beta-RyR) purified from frog skeletal muscle were equipotent in the Ca(2+)-induced Ca(2+) release (CICR) activity (Murayama, T., Kurebayashi, N., and Ogawa, Y. (2000) Biophys. J. 78, 1810-1824). Whether this is also the case with the native Ca(2+) release channel in the sarcoplasmic reticulum (SR), however, remains to be determined. Taking advantage of the facts that [(3)H]ryanodine binds only to the open form of the channels and that it is practically irreversible at 4 degrees C, we devised a method to separate the total binding to contributions of alpha- and beta-RyR, using immunoprecipitation with an alpha-RyR-specific monoclonal antibody. Surprisingly, the binding of alpha-RyR was strongly suppressed to as low as approximately 4% that of beta-RyR in the SR vesicles. The two isoforms, however, showed no difference in sensitivity to Ca(2+), adenine nucleotides, or caffeine. This reduced binding of alpha-RyR was ascribed to the low affinity for [(3)H]ryanodine, with no change in the maximal binding sites. Solubilization of SR with 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonic acid partly remedied this nonequivalence, whereas 1 m NaCl was ineffective. 12-kDa FK506-binding protein (FKBP12), however, could not be responsible for it, because FK506 treatment did not eliminate the suppression, in contrast to marked removal of 12-kDa FK506-binding protein from alpha-RyR. These results suggest that alpha-RyR in the SR may serve Ca(2+) release in a mode other than CICR, being selectively suppressed in CICR. 相似文献
17.
Kasri NN Sienaert I Parys JB Callewaert G Missiaen L Jeromin A De Smedt H 《The Journal of biological chemistry》2003,278(30):27548-27555
Intracellular Ca2+ release is involved in setting up Ca2+ signals in all eukaryotic cells. Here we report that an increase in free Ca2+ concentration triggered the release of up to 41 +/- 3% of the intracellular Ca2+ stores in permeabilized A7r5 (embryonic rat aorta) cells with an EC50 of 700 nm. This type of Ca2+-induced Ca2+ release (CICR) was neither mediated by inositol 1,4,5-trisphosphate receptors nor by ryanodine receptors, because it was not blocked by heparin, 2-aminoethoxydiphenyl borate, xestospongin C, ruthenium red, or ryanodine. ATP dose-dependently stimulated the CICR mechanism, whereas 10 mm MgCl2 abolished it. CICR was not affected by exogenously added calmodulin (CaM), but CaM1234, a Ca2+-insensitive CaM mutant, strongly inhibited the CICR mechanism. Other proteins of the CaM-like neuronal Ca2+-sensor protein family such as Ca2+-binding protein 1 and neuronal Ca2+ sensor-1 were equally potent for inhibiting the CICR. Removal of endogenous CaM, using a CaM-binding peptide derived from the ryanodine receptor type-1 (amino acids 3614-3643) prevented subsequent activation of the CICR mechanism. A similar CICR mechanism was also found in 16HBE14o-(human bronchial mucosa) cells. We conclude that A7r5 and 16HBE14o-cells express a novel type of CICR mechanism that is silent in normal resting conditions due to inhibition by CaM but becomes activated by a Ca2+-dependent dissociation of CaM. This CICR mechanism, which may be regulated by members of the family of neuronal Ca2+-sensor proteins, may provide an additional route for Ca2+ release that could allow amplification of small Ca2+ signals. 相似文献
18.
Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. II. Releases involving a Ca2+-induced Ca2+ release channel 总被引:6,自引:0,他引:6
P Palade 《The Journal of biological chemistry》1987,262(13):6142-6148
Calcium ions that have been preloaded into isolated sarcoplasmic reticulum subfractions in the presence of ATP and pyrophosphate may be released upon addition of a large number of diverse pharmacologic substances. We report here that not only caffeine, but also Ca2+ ions, thymol, quercetin, menthol, halothane, chloroform, 1-ethyl-2-methylbenzimidazole, ryanodine, tetraphenylboron, ketoconazole, miconazole, clotrimazole, W-7, doxorubicin, 5,5'-dithiobis-(2-nitrobenzoic acid), p-chloromercuribenzoic acid, and low concentrations of Ag+ induce Ca2+ release from such triadic sarcoplasmic reticulum. All these drugs induce increased undirectional Ca2+ efflux. We believe all these drug-induced Ca2+ releases are mediated by Ca2+ efflux through the same ion channel since these releases are all greatly attenuated when light sarcoplasmic reticulum is substituted for triads and are even more pronounced when transverse tubule-free terminal cisternae are substituted for triads, and all these forms of drug-induced Ca2+ release are inhibited by submicromolar concentrations of ruthenium red, and by submillimolar concentrations of tetracaine, 9-aminoacridine, and Ba2+, yet they are not affected by nifedipine even at a concentration of 50 microM. 相似文献
19.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing nucleotide essentially involved in T cell activation. Using combined microinjection and single cell calcium imaging, we demonstrate that co-injection of NAADP and the D-myo-inositol 1,4,5-trisphosphate antagonist heparin did not inhibit Ca2+ mobilization. In contrast, co-injection of the ryanodine receptor antagonist ruthenium red efficiently blocked NAADP induced Ca2+ signalling. This pharmacological approach was confirmed using T cell clones stably transfected with plasmids expressing antisense mRNA targeted specifically against ryanodine receptors. NAADP induced Ca2+ signaling was strongly reduced in these clones. In addition, inhibition of Ca2+ entry by SK&F 96365 resulted in a dramatically decreased Ca2+ signal upon NAADP injection. Gd3+, a known blocker of Ca2+ release activated Ca2+ entry, only partially inhibited NAADP mediated Ca2+ signaling. These data indicate that in T cells (i) ryanodine receptor are the major intracellular Ca2+ release channels involved in NAADP induced Ca2+ signals, and that (ii) such Ca2+ release events are largely amplified by Ca2+ entry. 相似文献
20.
Drug-induced Ca2+ release from isolated sarcoplasmic reticulum. III. Block of Ca2+-induced Ca2+ release by organic polyamines 总被引:6,自引:0,他引:6
P Palade 《The Journal of biological chemistry》1987,262(13):6149-6154
Calcium ions that have been preloaded into isolated SR subfractions in the presence of ATP and pyrophosphate may be released upon addition of a large number of diverse pharmacologic substances in a manner that is effectively blocked by ruthenium red and other organic polyamines. Effective blocking substances include certain antibiotics (neomycin, gentamicin, streptomycin, clindamycin, kanamycin, and tobramycin), naturally occurring polyamines (spermine and spermidine), and a number of basic polypeptides and proteins (polylysine, polyarginine, certain histones, and protamine). These agents have only one feature in common: the presence of several amino groups. Ruthenium red, neomycin, spermine, and protamine all appear to act by blocking SR Ca2+ channels since unidirectional 45Ca2+ efflux from the vesicles is strongly inhibited by these agents. Functions ascribable to the SR Ca2+ pump are largely unaffected by these agents. Since inositol 1,4,5-trisphosphate is ineffective at inducing Ca2+ release under these conditions, we conclude that these polyamines may directly block SR Ca2+ channels at very low concentrations by a mechanism unrelated to effects on inositol 1,4,5-trisphosphate production. 相似文献