首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Half-life (t12), volume of distribution (Vd)_and total body clearance (TBC) of 13, 14-dihydro-15-keto PGF (PGFM) were measured in order to determine optimal sampling frequency for accurate measurement of PGFM. Three yearling Holstein bulls (349.2 ± 6.7 kg) and 3 yearling Holstein steers (346.7 ± 7.0 kg) were utilized in a 3 × 3 Latin square design. Animals were given 0, 25 or 50 μg PGF I.V.; blood samples collected every 2 min and plasma PGFM determined. The t12, Vd and TBC of PGFM were 2.3 ± .2 min, 43.3 ± 3.3 liters and 13.7 ± 1.9 liters/min, respectively and were similar for 25 and 50 μg doses. To determine the relationship between endogenous PGFM and LH secretion in bulls, blood samples were collected every 2 min for 12 h in 4 yearling Angus bulls (489.1 ± 11.6 kg). All animals elicited at least one LH surge and PGFM concentrations were measured in samples coincident with the LH surge. Mean plasma PGFM concentrations were greater prior to the LH surge than during the LH surge. In addition, mean plasma PGFM concentration and frequency of PGFM peaks appeared to increase prior to the LH surge suggesting an association between PGFM and pulsatile LH secretion in the bull.  相似文献   

5.
6.
Plasma tyrosine concentrations in twelve normal, fasting human subjects were significantly elevated 2–8 hours after they ingested 100 mg/kg or 150 mg/kg tyrosine. Mean plasma tyrosine levels were maximal after 2 hours, rising from 69 ± 3.9 to 154 ± 9.5 nmols/ml(X ± SEM) after the 100 mg/kg dose and to 203 ± 31.5 nmols/ml after the 150 mg/kg dose (p ≤ 0.001 for both doses). The mean tyrosine ratio (defined as the ratio of plasma tyrosine concentration to the sum of the concentrations of six other neutral amino acids that compete for the same blood-brain barrier uptake system) increased from 0.10 ± 0.02 to 0.28 ± 0.04 (X ± SEM) 2 hours after the 100 mg/kg dose (p ≤ 0.001) and to 0.35 ± 0.05 2 hours after the 150 mg/kg dose (p ≤ 0.005). No side effects of orally-administered L-tyrosine were noted.  相似文献   

7.
8.
Injections of 1 mg PGI2 directly into the bovine corpus luteum significantly increased peripheral plasma progesterone concentrations within 5 min. Concentrations were higher in the PGI2-treated heifers than in saline-injected controls between 5 and 150 min and at 3.5, 4, 5, and 7 h post-treatment. Levels tended to remain elevated through 14 h. Saline and 6-keto-PGF were without effect on plasma progesterone levels. The luteotrophic effect of PGI2 was not due to alterations in circulating LH concentrations. An in vitro experiment assessed the effects of either PGI2 alone or in combination with LH on progesterone production by dispersed luteal cells. Progesterone accumulation over 2 h for control, 5 ng LH, 1 μg PGI2, 10 μg PGI2, and 10 μg PGI2 plus 5 ng LH averaged 99 ± 42, 353 ± 70, 152 ± 35, 252 ± 45, and 287 ± 66 ng/ml (n=4), respectively. Thus PGI2 has luteotrophic effects on the bovine CL both in vivo and in vitro.  相似文献   

9.
10.
11.
12.
13.
The detailed elimination kinetics of theophylline were studied in 27 rabbits. Each received a 10 mg/kg intravenous bolus of aminophylline. The theophylline half-life (T12) was 3.8 ± 0.63 hr. The apparent volume of distribution (VD) and total body clearance (TBC) for theophylline were 439 ± 60 ml/kg and 81.0 ± 17.3 ml/kg·hr respectively. Theophylline protein binding was determined in 10 animals. The mean bound fraction was 74.3 ± 3.9% (range, 68.3–78.0%); the fraction bound was concentration indifferent over a serum concentration range of 5–20 μgm/ml.  相似文献   

14.
The activity of prostaglandins (PG) in producing vascular permeability was quantitated by dye extraction method in skin of anaesthetized rabbits. PGE1 and PGE2 (0.01–10 μg) produced increase in vascular permeability. Activity was approximately equal to that of histamine (Hist) and 120 of that of bradykinin (BK) on a weight basis. The activity of PGF and PGF was only 120 of that of PGE1 or PGE2.In spite of the relatively low potency of PGE1 and PGE2 in the rabbit, near threshold doses (0.1 or 1 μg) of PGE2 could potentiate permeability responses to bradykinin (0.1 μg) by 10 or 100-fold, respectively. Equivalent doses (0.1 or 1 μg) of histamine could not potentiate the bradykinin responses. Arachidonic acid (AA) at 1 μg, produced a 10-fold potentiation in the permeability response to bradykinin (0.1 μg). Pretreatment of the rabbits with indomethacin (20 mg/kg, i.p.) reduced the responses of BK (0.1 μg) + AA (1 μg) down to a similar magnitude of those seen with bradykinin alone. However, indomethacin did not block responses to either, BK alone, BK + PGE2, or BK + Hist. Various doses (1, 10, 100 and 300 μg) of arachidonic acid alone also produced increase in cutaneous vascular permeability, although its potency was only 1318 of that of PGE2. This activity of arachidonic acid was attributed in part to its bioconversion to PGE2, since its activity was significantly reduced by the prostaglandin antagonist, diphloretin phosphate (DPP) (60 mg/kg, i.v.) and by indomethacin (20 mg/kg, i.p.), which blocks conversion of arachidonic acid to prostaglandins. Arachidonic acid may owe some of its permeability increaseing effects to histamine release, since its effects were also reduced by the antihistamine, pyrilamine (2.5 mg/kg, i.v.).  相似文献   

15.
The Coomassie brilliant blue G assay for proteins described by Bradford (1976) (Anal. Biochem.72, 248) was reexamined. It was found that the extinction coefficient of the dye-protein complex solution remained constant over the protein concentration range of 0.8 to 10 μg/ml of solution. This unchanging extinction coefficient, A595 = 0.60 ± 0.0110 μg of protein/ml of solution, enhances both the sensitivity and versatility of the assay. Selection of a volume of dye-reagent (0.5 to 5.0 ml) which dilutes the protein sample to a final concentration of 0.8 to 10 μg/ml permits the application of Beer's Law for accurate determinations of ≤0.5 to 50 μg of protein. A combination of Bradford's study and the present one indicates that most common laboratory reagents and chemicals exert little or no influence on the A595 of the dye-reagent.  相似文献   

16.
17.
18.
The effect of various sub-inhibitory concentrations of isoniazid on tryptophan uptake by Mycobacterium tuberculosis H37Rv grown in vitro and in vivo was studied. Uptake, measured after 3 minutes of drug exposure was inhibited mildly by 0.1 μg/ml and 0.2 μg/ml concentration and completely by 0.3 μg/ml. However, with the minimal inhibitory concentration (MIC)7 of 0.5 μg/ml, not only inhibition but also a strong efflux of the preformed tryptophan pool were observed. The results are discussed in the light of the theory that isoniazid interferes with the cell wall mycolate synthesis.  相似文献   

19.
(1) Alkyl sugar inhibition of d-allose uptake into adipocytes has been used to explore the spatial requirements of the external sugar transport site in insulin-treated cells. α-methyl and β-methyl glucosides show low affinity indicating very little space around C-1. The high affinity of d-glucosamine (Ki = 9.05 ± 0.66 mM) is lost by N-acetylation. N-Acetyl-d-glucosamine shows no detectable affinity, indicating that a bulky group at C-2 is not accepted. Similarly 2,3-di-O-methyl-d-glucose (Ki = 42.1 ± 7.5 mM) has lower affinity than 3-O-methyl-d-glucose (Ki = 5.14 ± 0.32 mM) indicating very little space around C-2 but much more around C-3. A reduction in affinity does occur if a propyl group is introduced into the C-3 position. The Ki for 3-O-propyl-d-glucose is 11.26 ± 2.12 mM. 6-O-Methyl-d-galactose (Ki = 87.2 ± 17.9 mM) and 6-O-propyl-d-glucose (Ki = 78.07 ± 12.6 mM) show low affinity compared with d-galactose and d-glucose, indicating steric constraints around C-6. High affinity is restored in 6-O-pentyl-d-galactose (Ki = 4.66 ± 0.23 mM) possibly indicating a hydrophobic binding site around C-6). (2) In insulin treated cells 4,6-O-ethylidene-d-glucose (Ki = 6.11 ± 0.5 mM) and maltose (Ki = 23.5 ± 2.1 mM) are well accommodated by the site but trehalose shows no detectable inhibition. These results indicate that the site requires a specific orientation of the sugar as it approaches the transporter from the external solution. C-1 faces the inside while C-4 faces the external solution. (3) To determine the spatial and hydrogen bonding requirements for basal cells 40 μM 3-O-methyl-d-glucose was used as the substrate. Poor hydrogen bonding analogues and analogues with sterically hindering alkyl groups showed similar Ki values to those determined for insulin-treated cells. These results indicate that insulin does not change the specificity of the adipocyte transport system.  相似文献   

20.
Corneas were mounted in flux chambers and endothelial bicarbonate fluxes were determined following sensitization of endothelial cells with 5 · 10?6 M rose bengal and exposure to light. Corneas exposed to light demonstrated an increased passive bicarbonate flux compared to corneas not photosensitized. Active bicarbonate flux was reduced after 5 min of light exposure, but not after 1 min of light exposure. The increase in passive bicarbonate flux was prevented by the addition of 200 μg/ml catalase to the bathing solution; however, catalase had no effect on the photodynamic alteration of active flux. Neither 10 mM ascorbic acid nor 1.012 g/l glutathione prevented the photodynamically induced increase in passive flux. Perfusion of corneas with 5 · 10?6 M rose bengal dissolved in a sucrose-substituted Krebs-Ringer bicarbonate solution with a po2 of 124 ± 4.0 mmHg and exposed to light swelled at rates more rapid than corneas treated in a similar fashion but perfused with a solution with a Po2 of 20 ± 4.6 mmHg. This study demonstrates that photodynamically induced corneal endothelial cell alteration results in increased passive bicarbonate flux, a time-dependent decrease in active bicarbonate flux, is oxygen dependent, and is at least in part secondary to H2O2 produced by the dismutation reaction of the superoxide free radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号