首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Errata     
Rat peritoneal macrophages when incubated with leukotriene C exhibited a dose dependent increase of PGE2 and 6-keto-PGF. Nordihydroguaiaretic acid, an inhibitor of lipoxygenase, prevented the stimulation of prostaglandin release by lipopolysaccharide, but did not affect the release of prostaglandins from non-stimulated cells. Indomethacin, in contrast to nordihydroguaiaretic acid, inhibited the release of prostaglandins from both stimulated and non-stimulated cells. These findings suggest that endogenous leukotrienes are involved in the stimulation of macrophages by lipopolysaccharide.  相似文献   

2.
The action of prostaglandins and indomethacin on gastric mucosal cyclic nucleotide concentrations was evaluated in 18 anesthetized mongrel dogs. Prostaglandins E1 (PGE1) and E2 (PGE2) (25 μg/kg bolus, then 2 μg/kg/min) were administered both intravenously (4 experiments; femoral vein) and directly into the gastric mucosal circulation (10 experiments; superior mesenteric artery). The possible synergistic effect of pre-treatment and continuous arterial infusion of indomethacin (5 mg/kg bolus for 5 min, then 5 mg/min), a prostaglandin synthetase inhibitor, with PGE2 was studied in 4 experiments. Antral and fundic mucosa were biopsied and measured by radioimmunoassay for cyclic nucleotides. Doses of PGE1 and PGE2 which inhibited histamine-stimulated canine gastric acid secretion did not significantly alter antral or fundic mucosal cyclic nucleotide concentrations. Concomitant infusion of PGE2 with indomethacin did not potentiate the mucosal nucleotide response compared to PGE2 alone. These studies fail to implicate cyclic nucleotides as mediators of the inhibitory acid response induced by PGE1 or PGE2 in intact dog stomach.  相似文献   

3.
In gastrointestinal research the in vitro release of prostaglandins from incubated or cultured biopsies is a widely used method to estimate prostaglandin synthesis. We therefore investigated the rate limiting mechanisms of PGE2 release in organ cultured gastric mucosa of the rabbit, determining PGE2 secretion from organ cultured mucosal biopsies by radioimmunoassay and prostaglandin synthesizing capacity by in vitro incubation of mucosal homogenate or microsomes with [14C]-arachidonic acid.Freshly taken biopsies secreted PGE2 at an initial high rate, that decreased during the following 4 hrs of culture. This PGE2 release was dose dependently reduced by inhibitors of the prostaglandin cyclooxygenase. 5mM acetylsalicylic acid (ASA) maximally suppressed PGE2 secretion to 7% of controls, and the inhibition by ASA was quantitatively similar at every given culture period. PGE2 release was markedly increased by carbenoxolone but was only slightly activated by extracellular calcium and the Ca++-ionophore A23187. However, Ca++/A23187 were unable to maintain PGE2 secretion at the initial rate.PGE2 secretion was undisturbed in calcium-free medium but was reduced to 50–60% of controls by excess EDTA. The intracellular calcium chelator 1,2-bis-(2-aminophenoxy)-ethane-N,N,N′,N′,-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) similarly inhibited PGE2 release to 72% of controls. In contrast, PGE2 release was unaffected by the intracellular calcium antagonist 3,4,5-trimethylene-bis(4-formylpyridinium bromide) dioxime (TMB-8), the calmodulin antagonists N-(6-aminohexyl)-1-5-chloro-1-naphthalenesulfonamide (W-7) and calmidazolium (compound R24571) or various direct inhibitors of endogenous arachidonic acid release like tetracaine, bromophenacyl bromid, neomycine or low dose quinacrine, indicating that the reduction of PGE2 release by EDTA or BAPTA may be mediated by mechanisms different from substrate release. In contrast, an inhibition of PGE2 secretion by quinacrine at high concentrations (≥ 0.8mM) was attributed to a direct inhibition of the prostaglandin cyclooxygenase, similar to ASA. Finally, the reduction of the prostaglandin synthesizing capacity by ASA was strongly correlated with the inhibition of PGE2 secretion, also at low concentrations and minor degrees of inhibition.From these data we conclude, that the activity of the prostaglandin cyclooxygenase is rate limiting for PGE2 secretion from organ cultured mucosal biopsies rather than arachidonic acid release by a phospholipase A2. This should be considered for interpretation of studies based on prostaglandin release from cultured mucosa.  相似文献   

4.
The influence of methyl esterification of the carboxyl group of PGE1 on the gastric antisecretory and antiulcer activities were studied. The gastric antisecretory effects of PGE1 free acid and PGE1 methyl ester (PGE1ME) were studied in the Heidenhain pouch dog. Secretion was stimulated with constant intravenous infusion of histamine dihydrochloride. When a steady-state plateau of gastric secretion had been reached, the prostaglandins were administered either by a single intravenous bolus (10.0 μg/kg) or by continuous infusion (1.0 μg/kg/min). PGE1ME was found to be slightly more potent and longer-acting than PGE1 when administered by a single i.v. bolus. PGE1ME was also shown to be more potent than PGE1 when infused intravenously for a two-hour period. PGE1ME caused a significant alteration in gastric juice concentration of hydrogen and sodium ions in an inverse relationship. Potassium and chloride concentration were not altered from pre-existing steady-state values following administration of either form of prostaglandin. Similarly, PGE1ME was also found to possess significantly greater antiulcer activity in the rat forced-exertion ulcer test. These findings support the hypothesis that methyl esterification of the prostaglandin molecule will increase some of the biological actions of PGE1 through inhibition of metabolic β-oxidation of the carboxylic side chain.  相似文献   

5.
The influence of methyl esterification of the carboxyl group of PGE1 on the gastric antisecretory and antiulcer activities were studied. The gastric antisecretory effects of PGE1 free acid and PGE1 methyl ester (PGE1ME) were studied in the Heidenhain pouch dog. Secretion was stimulated with constant intravenous infusion of histamine dihydrochloride. When a steady-state plateau of gastric secretion had been reached, the prostaglandins were administered either by a single intravenous bolus (10.0 μg/kg) or by continuous infusion (1.0 μg/kg/min). PGE1ME was found to be slightly more potent and longer-acting than PGE1 when administered by a single i.v. bolus. PGE1ME was also shown to be more potent than PGE1 when infused intravenously for a two-hour period. PGE1ME caused a significant alteration in gastric juice concentration of hydrogen and sodium ions in an inverse relationship. Potassium and chloride concentration were not altered from pre-existing steady-state values following administration of either form of prostaglandin. Similarly, PGE1ME was also found to possess significantly greater antiulcer activity in the rat forced-exertion ulcer test. These findings support the hypothesis that methyl esterification of the prostaglandin molecule will increase some of the biological actions of PGE1 through inhibition of metabolic β-oxidation of the carboxylic side chain.  相似文献   

6.
The plausible mechanism by which dexamethasone makes the gastric mucosa susceptible to ulceration has been studied. As acid aggravates ulcer, the role of dexamethasone on acid secretion was first investigated. Dexamethasone stimulates both basal and drug (mercaptomethylimidazole)-induced gastric acid secretion by 100 and 50% respectively in male Wister rats 24 h after intramuscular administration at the dose of 1 mg/kg body wt. This stimulated acid secretion is 93% blocked by cimetidine indicating increased liberation of histamine in the process. Pretreatment of dexamethasone before 24 h produces ulcer in 30% of the pylorus- ligated rats and aggravates the ulcer index by 82% in both pylorus and esophagus ligated rats. The incidence of ulceration in the latter cases is also increased by 25%. As mucosal prostaglandin synthetase and peroxidase play an important role in gastroprotection through biosynthesis of prostaglandin and by scavenging endogenous H2O2 respectively, the effect of dexamethasone on the activities of these gastroprotective enzymes were studied. Prostaglandin synthetase and peroxidase activities of the mucosa are significantly inhibited by 87 and 83% respectively by 24-h pretreatment with dexamethasone. The results indicate that dexamethasone makes the mucosa prone to ulceration by inhibiting the activity of prostaglandin synthetase to block the gastroprotective action of prostaglandin and also by inhibiting the peroxidase, thereby elevating the endogenous H2O2 level to generate more reactive hydroxyl radical responsible for the mucosal damage.  相似文献   

7.
IT is known that prostaglandins of the ? series (PGEs) inhibit gastric acid secretion1–4, but the relative potencies of prostaglandin E1 and prostaglandin E2 have not been evaluated. We report observations which indicate that orally administered PGE2 has a considerably longer duration of action than an equipotent oral dose of PGE1 in inhibiting pentagastrin-induced gastric acid secretion in the rat and that this inhibitory action appears to be due to a local action on the gastro-intestinal wall rather than to absorption of prostaglandins into the systemic circulation.  相似文献   

8.
The effects of orally administered prostaglandin E2, 16,16-dimethyl prostaglandin E2 and U-46619, an analogue of the prostaglandin endoperoxide PGH2, on gastric secretory volume, acid and mucus were studied in the rat. All of the compounds significantly increased the volume of gastric secretion, mucus secretion, measured as N-acetylneuraminic acid and mucus synthesis measured as the incorporation of [3H]-glucosamine into mucosal glycoprotein; however, only PGE2 and 16,16-dimethyl PGE2 inhibited acid secretion. U-46619, 1.5 mg/kg provided significant protection against ethanol-induced gastric ulcers, an effect that has been previously shown for the other two compounds. These studies provide additional evidence that prostaglandin induced mucosal protection may by related to an effect on mucus and on stimulation of nonparietal cell gastric secretion. Further study of these parameters may be important in the development of antiulcer drugs for long term clinical use.  相似文献   

9.
The hypothesis that prostaglandins have a modulatory role in adrenergic neurotransmitter release was tested in the anesthetized dog. Inhibition of prostaglandin synthesis with indomethacin (10 mg/kg, i.v.) did not alter positive chronotropic responses to cardioaccelerator nerve stimulation or blood pressure responses to exogenous norepinephrine. In the presence of indomethacin, infusions of PGE2 (0.01 and 0.1 μg kg−1 min−1) also failed to influence the responses to cardioaccelerator nerve stimulation although the blood pressure responses to exogenous norepinephrine were reduced in a dose-related manner. It was concluded that endogenous prostaglandins and exogenous PGE2, the purported physiological inhibitor of neurotransmitter release in cardiac tissue, do not play a role in modulating chronotropic responses during cardioaccelerator nerve stimulation in the anesthetized dog.  相似文献   

10.
The effect of oral prostaglandin E2 (PGE2) on gastric acid secretion was examined in healthy subjects. The gastic secretion was stimulated by a modified shamfeeding procedure. Each subject underwent one control test and three tests with intragastrically administered graded doses of PGE2: 0.5, 1.0 and 2.0 mg.Oral PGE2 significantly suppressed the peak and total acid response to vagal stimulation. The total acid output in controls was 27.5 ± 3.2 mol/90 min and 20.8 ± 2.8, 15.8 ± 2.2 (p<0.01) and 15.9±3.8 (p<0.005)mol/90 min in test series with 0.5, 1.0 and 2.0 mg PGE2 respectively. The two higher doses were equally inhibitory to an average 40%. Gastric outputs on sodium and potassium in response to modified shamfeeding were reduced by PGE2.In controls there was a significant release of plasma-gastrin in response to shamfeeding. Plasma-gastrin was apparently suppressed after the two lower doses of PGE2 but 2.0 mg PGE2 gave an elevation similar to controls.Thus the study demonstrates that the oral natural PGE2 suppresses the gastric acid secretion in man. The absence of such an effect in prior studies has been one of the objections against an acid regulatory action of endogenously formed prostaglandins. The present results do not support this argument.  相似文献   

11.
The protective effect of endogenous prostaglandins on the fish gastric mucosa was evaluated by studying the effect of indomethacin and aspirin, known cyclooxigenase inhibitors, on the mucosal ulceration in the isolated gastric sacs of Anguilla anguilla. Gastric sacs devoid of muscle layers were incubated in the presence of indomethacin (10−4 mol · l−1) or aspirin (10−4 mol · l−1) in different experimental conditions. Both the anti-inflammatory drugs produced ulcers, but the effects were more severe in the presence of histamine and in the absence of HCO3 in the incubation bath. The effects of prostaglandin E2 (PGE2) on acid secretion rate (JH) and on alkaline secretion rate (JOH) were evaluated (with the aid of the pH stat method) in isolated gastric mucosa mounted in Ussing chambers. We found that PGE2 (10−8–10−5 mol · l−1) increased JH in a dose-dependent manner. In tissues pretreated with luminal omeprazole (10−4 mol · l−1), PGE2 stimulated gastric alkaline secretion. It was nullified by serosal removal of HCO3 or Na+ and by serosal ouabain (10−4 mol · l−1). These results suggested that prostaglandins also exert their protective effects in fish gastric mucosa. This protection seems partially due to a stimulation of exogenous HCO3 transport from the serosal to the mucosal side. It is likely that this transport is an active transcellular mechanism coupled to Na+ transport. Accepted: 14 April 2000  相似文献   

12.
Much of the research on gastric mucosal protection has concerned prostaglandins. Some of the recent studies consolidate aspects first investigated a few years ago, but whose importance is now becoming established more clearly. This short review will mention some of the more recent work demonstrating the importance of prostaglandins in preventing stasis of gastric mucosal blood flow, effects on cell senescence and exfoliation, and the protection of a severe mucosal lesion by a mucus-containing plug which facilitates healing. The leukotrienes are other substances formed in the gastric mucosa from the same precursors as the prostaglandins. Their roles are not well understood, but may include participation in gastric inflammation, and in mucosal damage by nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol. The NSAIDs may damage the gastric mucosa not only by reducing the formation of protective prostaglandins, but also by increasing the metabolism of prostaglandin precursors into leukotrienes. Another factor is thromboxane A2, a substance that is damaging to the gastric mucosa but whose synthesis is inhibited by NSAIDs. The prostaglandin analogues produced for the treatment of peptic ulcer may find a major use in the protection against damage by NSAIDs. Not only may they act as 'replacement therapy' for the inhibited prostaglandins, but they protect against damage from substances that do not inhibit prostaglandin synthesis. In doses that raise the gastric pH, the prostaglandins reduce the local absorption of NSAIDs by increasing their ionisation. In rats, paracetamol protects against damage by aspirin, but whether this occurs in man is controversial. Work not previously published demonstrates that paracetamol does not affect the inhibition of prostaglandin formation by indomethacin in human isolated gastric mucosa.  相似文献   

13.
Oral prostaglandin E2 (PGE2) has specific protective effects so called cytoprotection on the gastrointestinal mucosa that are independent of the acid secretion. This has recently been documented in man. A clinical study was performed to test whether this mucosal reinforcing property also could be used to accelerate duodenal ulcer healing. Twenty-eight patients with endoscopically confirmed duodenal ulcers were randomized to treatment with PGE2 0.5 mg three times daily and 1 mg at night or to placebo under double-blind conditions during a four week period. To reduce antacid consumption a fluid placebo antacid was given regularly. An active antacid could be used for pain relief. Healing rate was assessed with repeated endoscopies after 2 and 4 weeks. The treatment groups were comparable with respect to age, duration of ulcer history and present ulcer symptoms, smoking habits, family history, gastric acid secretory rate and number of patients with blood group 0. There was a slight difference in sex distribution. 2 mg PGE2 did not reduce pentagastrin-stimulated acid secretion in five of the patients. After the treatment significantly more in the PGE2-group ( , 86%) had healed than in the placebo-group . There was no difference in pain relief between PGE2 and placebo-treated. The antacid consumption was very low in both PGE2 and placebo-treated. No significant side effects or changes in laboratory test-results were recorded. It is suggested that the cytoprotective effect of PGE2 can be used to accelerate healing of duodenal ulcer.  相似文献   

14.
The stomach is in a state of continuous exposure to potentially hazardous agents. Hydrochloric acid together with pepsin constitutes a major and serious threat to the gastric mucosa. Reflux of alkaline duodenal contents containing bile and pancreatic enzymes are additional important injurious factors of endogenous origin. Alcohol, cigarette smoking, drugs and particularly aspirin and aspirin-like drugs, and steroids are among exogenous mucosal irritants that can inflict mucosal injury. The ability of the stomach to defend itself against these noxious agents has been ascribed to a number of factors constituting the gastric mucosal defense. These include mucus and bicarbonate secreted by surface epithelial cells, prostaglandins, sulfhydryl compounds and gastric mucosal blood flow. The latter is considered by several researchers to be of paramount importance in maintaining gastric mucosal integrity. The aim of this paper is to review the experimental and clinical data dealing with the role of mucosal blood flow and in particular the microcirculation in both damage and protection of the gastric mucosa.  相似文献   

15.
The effects of prostacyclin (PGI2) and its breakdown product 6-oxo-PGF on various aspects of gastric function were investigated in the rat. PGI2 increased mucosal blood flow when infused intravenously. PGI2 was a more potent inhibitor of gastric acid secretion in vivo than PGE2. Like PGE2, PGI2 inhibited acid secretion from the rat stomach in vitro. PGI2 had comparable activity to PGE2 in inhibiting indomethacin-induced gastric erosions. Thus prostacyclin shares several of the activities of PGE2, and may be involved in the regulation of gastric mucosal function.  相似文献   

16.
Cervical dilatation and softening after pretreatment with mifepristone are well documented. As this effect is similar to that observed after local application of prostaglandin E2 (PGE2) it is tempting to speculate that the effect of mifepristone is mediated via an increase of the endogenous secretion of prostaglandins from the cervical mucosa. Eighteen healthy women in the first trimester of pregnancy were treated with oral mifepristone (200 mg) 48 and 24 hours before legal abortion by vacuum aspiration and 18 women in the same age of gestation without any pretreatment served as controls. Cervical mucus was collected for measurement of prostaglandins by radioimmunoassay before administration of the drug and in connection with vacuum aspiration. The cervical dilatation at the time of surgery was significantly increased in women given mifepristone as compared with untreated women (7.6 versus 5.8 mm). The wet weight of collected cervical mucus was significantly increased in mifepristone treated women. The amount of PGE2 and prostaglandin F per sample was unchanged in mifepristone-treated women, whereas the concentration was lower as an effect of dilution due to an increased yield in cervical secretion observed after mifepristone treatment. The present observation does not give any support to the hypothesis that mifepristone-induced cervical maturation is mediated via an increase in cervical prostaglandin production.  相似文献   

17.
When the barrier to acid back-diffusion is disrupted, there is a protective increase in gastric mucosal blood flow to help remove the back-diffusing acid. Only recently has the mechanism for calling forth this protective hyperemia been determined. The gastric mucosa and submucosa are innervated by many capsaicin-sensitive sensory nerve fibers containing vasodilator peptides. The gastric mucosal sensory neurons monitor for acid back-diffusion, and, when this process occurs, signal for a protective increase in blood flow via release of calcitonin gene-related peptide from the submucosal periarteriolar fibers. The endothelium-derived vasodilator, nitric oxide, plays an important role both in the maintenance of basal gastric mucosal blood flow and in the increase in blood flow that accompanies pentagastrin-stimulated gastric acid secretion. It also interacts with the capsaicin-sensitive sensory nerves in the modulation of the microcirculation to maintain mucosal integrity. Finally, it has been shown that neutrophils play an important role in various forms of mucosal injury. The leukocytes adhere to the vascular endothelium and contribute to injury by reducing blood flow via occlusion of microvessels, as well as by releasing mediators of tissue damage.  相似文献   

18.
Filling of the gastric lumen of rats with 1.0 M NaCl solution (5 ml) for 10 min under urethane anesthesia caused an increase in the gastric fluid concentrations of prostaglandin (PG) E2, 13, 14-dihydro-15-keto-PGE2 and 6-keto-PGF as determined by radioimmunoassay. PGE2 was the major PG generated. The levels of PGE2 in the gastric fluid were increased dose-dependently after filling the lumen with 0.3, 0.5, 0.7 or 1.0 M NaCl solutions. The pH of the gastric fluid increased similarly after 0.5 to 1.0 M NaCl solutions. Indomethacin (10 mg/kg, i.p.) suppressed the PGE2 increase caused by 1.0 M NaCl solution, but did not prevent the increase of the pH of the gastric fluid induced by intragastric 1.0 M NaCl. Infusion of tetragastrin (62.5 μg/kg/hr, i.v., for 10 min) caused a marked increase of acid secretion without modifying intragastic concentration of PGE2. The acid secretion due to tetragastrin was completely inhibited after intragastric administration of 1.0 M NaCl solution, while indomethacin restored the tetragastrin-induced acid secretion, with prevention of a rise of intragastric PGE2 levels. These observations suggest that 1.0 M NaCl solutions suppress basal intragastric acid through a mechanism which is independent of prostaglandins. In contrast, the suppression of tetragastrin-induced acid secretion by intragastric 1.0 M NaCl solution appears to be mediated through a release of prostaglandins  相似文献   

19.
In humans eicosapentaenoic acid can be converted to 3-series prostaglandins (PGF, PGI3, and PGE3). Whether 3-series prostaglandins can protect the gastric mucosa from injury as effectively as their 2-series analogs is unknown. Therefore, we compared the protective effects of PGF and PGF against gross and microscopic gastric mucosal injury in rats. Animals received a subcutaneous injection of either PGF or PGF in doses raning from 0 (vehicle) to 16.8 μmol/kg and 30 min later they received intragastric administration of 1 ml of absolute ethanol. Whether mucosal injury was assessed 60 min or 5 min after ethanol, PGF was significantly less protective against ethanol-induced damage than PGF. These findings indicate that the presence of a third double bond in the prostaglandin F molecule between carbons 17 and 18 markedly reduces the protective effects of this prostaglandin on the gastric mucosa.  相似文献   

20.
Bombesin, acetylcholine, prostaglandins and somatostatin are all thought to be involved in the regulation of gastrin release and gastric secretion. We have studied the effects of low doses of atropine, 16-16(Me)2-prostaglandin E2 (PGE2) and somatostatin-14 on bombesin-stimulated gastrin release and gastric acid and pepsin secretion in conscious fistula dogs. For reference, synthetic gastrin G-17 was studied with and without somatostatin. Bombesin, in a dose-related manner, increased serum gastrin, which in turn stimulated gastric acid and pepsin secretion in a serum gastrin, concentration-dependent manner. Somatostatin inhibited gastrin release by bombesin as well as the secretory stimulation by G-17; the combination of sequential effects resulted in a marked inhibition of bombesin-stimulated gastric acid and pepsin secretion. PGE2 also strongly inhibited gastrin release and acid and pepsin secretion. Atropine had no significant effect on gastrin release, but greatly inhibited gastric secretion. Thus somatostatin and PGE2 inhibited at two sites, gastrin release and gastrin effects, while atropine affected only the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号