首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

PR toxin is a well-known isoprenoid mycotoxin almost solely produced by Penicillium roqueforti after growth on food or animal feed. This mycotoxin has been described as the most toxic produced by this species. In this study, an in silico analysis allowed identifying for the first time a 22.4-kb biosynthetic gene cluster involved in PR toxin biosynthesis in P. roqueforti. The pathway contains 11 open reading frames encoding for ten putative proteins including the major fungal terpene cyclase, aristolochene synthase, involved in the first farnesyl-diphosphate cyclization step as well as an oxidoreductase, an oxidase, two P450 monooxygenases, a transferase, and two dehydrogenase enzymes. Gene silencing was used to study three genes (ORF5, ORF6, and ORF8 encoding for an acetyltransferase and two P450 monooxygenases, respectively) and resulted in 20 to 40% PR toxin production reductions in all transformants proving the involvement of these genes and the corresponding enzyme activities in PR toxin biosynthesis. According to the considered silenced gene target, eremofortin A and B productions were also affected suggesting their involvement as biosynthetic intermediates in this pathway. A PR toxin biosynthesis pathway is proposed based on the most recent and available data.

  相似文献   

2.
Different Penicillium roqueforti strains from the American Type Culture Collection were tested for the production of PR toxin. All four strains were able to produce the toxin on semisynthetic medium at 24 degrees C after certain periods of incubation. The yields were correlated with the pH of the medium. Timing of the harvest influenced both the yield and purification of the toxin.  相似文献   

3.
PR toxin production in different Penicillium roqueforti strains.   总被引:3,自引:3,他引:0       下载免费PDF全文
Different Penicillium roqueforti strains from the American Type Culture Collection were tested for the production of PR toxin. All four strains were able to produce the toxin on semisynthetic medium at 24 degrees C after certain periods of incubation. The yields were correlated with the pH of the medium. Timing of the harvest influenced both the yield and purification of the toxin.  相似文献   

4.
S C Chang  K L Lu    S F Yeh 《Applied microbiology》1993,59(4):981-986
PR toxin is a secondary metabolite of the fungus Penicillium roqueforti. It is lethal to rats, mice, and cats. Usually, the amount of PR toxin in the culture medium decreases from its maximum on day 15 to zero within 3 to 4 days. We found that two were secondary metabolites produced in the culture medium of this fungus while the production of PR toxin was decreasing. We isolated and purified the two compounds in pure and colorless crystalline form. On the basis of elemental analysis and mass, 1H and 13C nuclear magnetic resonance, infrared, and UV spectroscopies, the two compounds were identified as PR-imine (C17H21O5N) and PR-amide (C17H21O6N). The structures of both compounds and of PR toxin (C17H20O6) were closely related, and the peak production of PR toxin appeared earlier than those of PR-imine and PR-amide. Moreover, PR toxin was transformed to PR-imine when PR toxin was incubated with the culture medium on a given culture day. Thus, we propose that PR toxin is degraded into PR-imine and PR-amide in the culture medium of P. roqueforti.  相似文献   

5.
Preliminary results on the carcinogenic activity of a mycotoxin of Penicillium roqueforti (PR toxin) are reported. A squamous epithelioma and a uterine sarcoma were histologically confirmed in 2 of 10 albino rats fed PR toxin in a relatively short time (449 and 551 days respectively). Only an adenocarcinoma was histologically proven within a control group of 10 rats in a significantly longer (931 days) time span.  相似文献   

6.
7.
Eremofortin C (EC) and PR toxin are secondary metabolites of Penicillium roqueforti. Of 17 strains from the American Type Culture Collection that were studied for their ability to produce EC and PR toxin, 13 produced these metabolites. Toxin production by strains grown in solid media (10 cereals and 8 other agricultural products) was also investigated. Production of EC and PR toxin by fungi grown on cereals was greater than production of EC and PR toxin by fungi grown on legumes; fungi grown on corn produced the greatest amount of PR toxin. Addition of corn extracts to the culture medium greatly increased the production of EC and PR toxin in a coordinated manner, with no significant change in mycelial dry weight. The fungi produced the highest levels of EC and PR toxin at 20 to 24 degrees C depending on the strain. Toxin production was higher in stationary cultures than in cultures that were gently shaken at 120 rpm. The optimum pH for production of both EC and PR toxin was around pH 4.0. With regard to spore age, toxin levels did not change significantly when we used spores obtained from fungi that were grown at 24 degrees C for 3 up to 48 days.  相似文献   

8.
Eremofortin C (EC) and PR toxin are secondary metabolites of Penicillium roqueforti. Of 17 strains from the American Type Culture Collection that were studied for their ability to produce EC and PR toxin, 13 produced these metabolites. Toxin production by strains grown in solid media (10 cereals and 8 other agricultural products) was also investigated. Production of EC and PR toxin by fungi grown on cereals was greater than production of EC and PR toxin by fungi grown on legumes; fungi grown on corn produced the greatest amount of PR toxin. Addition of corn extracts to the culture medium greatly increased the production of EC and PR toxin in a coordinated manner, with no significant change in mycelial dry weight. The fungi produced the highest levels of EC and PR toxin at 20 to 24 degrees C depending on the strain. Toxin production was higher in stationary cultures than in cultures that were gently shaken at 120 rpm. The optimum pH for production of both EC and PR toxin was around pH 4.0. With regard to spore age, toxin levels did not change significantly when we used spores obtained from fungi that were grown at 24 degrees C for 3 up to 48 days.  相似文献   

9.
The development of the unique flavor of blue type cheese depends on the concerted action of numerous enzymes of Penicillium roqueforti involved in protein and lipid metabolism. Protease(s) by degrading casein modify the texture and background flavor of the ripening cheese. Lipase by hydrolyzing milk triglycerides provides flavorful fatty acids and precursors of methyl ketones. The enzyme complex involved in the partial oxidation of free fatty acids and the properties of β-ketoacyl decarboxylase which generates the major flavor components of blue cheese are discussed. Fermentation of P. roqueforti for the rapid production of methyl ketones is briefly reviewed.  相似文献   

10.
11.
12.
The alkaloid composition of mycelium and culture liquid filtrate of the fungus Penicillium roqueforti IBPM-F-141 was studied. The new metabolite--3,12-dihydroroquefortine, a derivative of roquefortine, the main component of the alkaloid fraction of this culture, has been isolated for the first time. The structure of 3,12-dihydroroquefortine was determined by chemical and physico-chemical methods. In addition to roquefortine and 3,12-dihydroroquefortine, representatives of a new alkaloid group, the clavine alkaloids, e. g. isofumigaclavine A, isofumigaclavine B and festuclavine, were also isolated and identified. The data on the content of these compounds in mycelium and culture medium are presented.  相似文献   

13.
PR toxin, a mycotoxin from Penicillium roqueforti, induces DNA—protein cross-links in chromatin of both cultured cells and isolated rat-liver nuclei. The presence of the aldehyde group in the PRT molecule is required for the induction of cross-linking; methylene bridges between nucleic acid and protein are presumably involved in the complex formation. The role of other functional groups of PR toxin is discussed.  相似文献   

14.
15.
Summary A study of the influence of temperature, aeration rate, and substrate water content on sporulation of Penicillium roqueforti on buckwheat seeds in a fixed bed reactor is described. Use of an experimental procedure based on a 23 factorial design allowed optimum to be determined as 23.5° C for temperature, 0.48 g/g dry matter for substrate water content and 4.42 VVH for aeration rate.  相似文献   

16.
When 1 μm sodium octanoate was the substrate for spores, most of the molecule was recovered as CO2 and no ketone was produced. However, when larger concentrations (20 μm) were used as substrate, part of the molecule was converted to methyl ketone and part was completely oxidized. Optimal conditions for the production of 2-heptanone were determined because of the importance of this compound in giving aroma and flavor to mold-ripened cheeses. Optimal ketone formation was not dependent upon the temperature and length of time at which the spores were stored. The spore suspensions were stored for over 36 months at 4 C without losing their ability to convert octanoic acid to 2-heptanone. The oxidation of octanoic acid was inhibited by cyanide, carbon monoxide, mercury, 2,3-dimercapto-1-propanol, and α, α-dipyridyl. No ketone was produced under anaerobic conditions. Although no intermediates of fatty acid oxidation were isolated, since an active cell-free preparation could not be obtained, this investigation has yielded some evidence for the beta oxidation of the fatty acids by spores of Penicillium roqueforti.  相似文献   

17.
Fungi exhibit substantial morphological and genetic diversity, often associated with cryptic species differing in ecological niches. Penicillium roqueforti is used as a starter culture for blue-veined cheeses, being responsible for their flavor and color, but is also a common spoilage organism in various foods. Different types of blue-veined cheeses are manufactured and consumed worldwide, displaying specific organoleptic properties. These features may be due to the different manufacturing methods and/or to the specific P. roqueforti strains used. Substantial morphological diversity exists within P. roqueforti and, although not taxonomically valid, several technological names have been used for strains on different cheeses (e.g., P. gorgonzolae, P. stilton). A worldwide P. roqueforti collection from 120 individual blue-veined cheeses and 21 other substrates was analyzed here to determine (i) whether P. roqueforti is a complex of cryptic species, by applying the Genealogical Concordance Phylogenetic Species Recognition criterion (GC-PSR), (ii) whether the population structure assessed using microsatellite markers correspond to blue cheese types, and (iii) whether the genetic clusters display different morphologies. GC-PSR multi-locus sequence analyses showed no evidence of cryptic species. The population structure analysis using microsatellites revealed the existence of highly differentiated populations, corresponding to blue cheese types and with contrasted morphologies. This suggests that the population structure has been shaped by different cheese-making processes or that different populations were recruited for different cheese types. Cheese-making fungi thus constitute good models for studying fungal diversification under recent selection.  相似文献   

18.
A method for the quantitative analysis of Penicillium roqueforti toxin using a high-performance liquid chromatography system is proposed.  相似文献   

19.
20.
Summary 53 strains of Penicillium roqueforti Thom obtained from culture collections, blue cheeses, sausages, and other sources are shown to grow abundantly on a Czapek Dox liquid medium supplemented with 0.5% acetic acid. None of 30 other strains (including P. charlesii, P. waksmani, P. rugulosum, P. brevi-compactum, P. herquei, P. viridicatum, P. cyclopium, P. velutinum, P. oxalicum, P. toxicarium, P. notatum, P. stoloniferum, P. chrysogenum, P. japonicum, P. casei, P. citreo-viride) exhibited this property. It is suggested that growth on acetic acid provides a simple tool for a rapid and preliminary identification of P. roqueforti Thom since growth can be observed as early as 3 days after inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号