首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutagenicity of 2-acetylaminofluorene (AAF) in S. typhimurium TA 1538 was investigated using Ames' test and activation systems based upon rat- or cotton rat-liver post-mitochondrial supernatant (S9) fractions. Part of this study involved sub-fractionation of S9 into microsomes (M) and 100,000 X g supernatant (S100) fractions. With a rat liver-derived fractions, mos activity was associated with S100; M-activating potential was never greater than that achieved with S9. In cotton rats, most activating potential was associated with S9. This activity was greater than could be accounted for by the separated cotton-rat M and S100 components. Reconstituted, cross-species 'S9' fraction studies showed that the dominant determinant of S9 properties was the M fraction in both rats and cotton rats. The principal co-factor required in the activation reactions was NADPH, but it could be largely replaced by NADH. 7,8-Benzoflavone inhibited activation both in M and S100 whereas paraoxon had no effect upon rat S100 activation, but had a marked effect upon cotton-rat M activation.  相似文献   

2.
G88R emerged as a compensatory mutation in matrix protein 1 (M1) of influenza virus A/WSN/33 when its nuclear localization signal (NLS) was disrupted by R101S and R105S substitutions. The resultant M1 triple mutant M(NLS-88R) regained replication efficiency in vitro while remaining attenuated in vivo with the potential of being a live vaccine candidate. To understand why G88R was favored by the virus as a compensatory change for the NLS loss and resultant replication deficiency, three more M1 triple mutants with an alternative G88K, G88V, or G88E change in addition to R101S and R105S substitutions in the NLS were generated. Unlike the other M1 triple mutants, M(NLS-88R) replicated more efficiently in vitro and in vivo. The G88R compensatory mutation not only restored normal functions of M1 in the presence of a disrupted NLS but also resulted in a strong association of M1 with viral ribonucleoprotein. Under a transmission electron microscope, only the M1 layer of the M(NLS-88R) virion exhibited discontinuous fingerprint-like patterns with average thicknesses close to that of wild-type A/WSN/33. Computational modeling suggested that the compensatory G88R change could reestablish the integrity of the M1 layer through new salt bridges between adjacent M1 subunits when the original interactions were interrupted by simultaneous R101S and R105S replacements in the NLS. Our results suggested that restoring the normal functions of M1 was crucial for efficient virus replication.  相似文献   

3.
1. Cholesterol exchanges between isolated rat liver microsomes and mitochondria and between erythrocytes and microsomes or mitochondria during incubation in vitro. The exchange process is temperature dependent and is no accompanied by a net movement of sterol. 2. cholesterol exchange between the membranes was enhanced by the addition of 105 000 x g supernatant fraction (S105) from rat liver. The degree to which sterol exchange was enhanced was dependent on the amount of this supernatant fraction present in the incubation. 3. enhancement of sterol exchange was not observed with heated S105 fraction, but activity was retained after dialysis or aging at 10 degrees C; these results suggest the presence of a cholesterol-exchange protein in the cytosol from rat liver.  相似文献   

4.
The human hyaluronan (HA) receptor for endocytosis (HARE; the 190-kDa C terminus of Stab2) is a major clearance receptor for multiple circulating ligands including HA, heparin (Hep), acetylated LDL (AcLDL), dermatan sulfate (DS), apoptotic debris, and chondroitin sulfate types A, C, D, and E. We previously found that HARE contains an N-glycan in the HA binding Link domain (at Asn2280), and cells expressing membrane-bound HARE(N2280A) bind and endocytose HA normally (Harris, E. N., Parry, S., Sutton-Smith, M., Pandey, M. S., Panico, M., Morris, H. R., Haslam, S. M., Dell, A., and Weigel, P. H. (2010) Glycobiology 20, 991–1001). Also, NF-κB-mediated signaling is activated by HARE-mediated endocytosis of HA, Hep, AcLDL, or DS but not by chondroitin sulfates (Pandey, M. S., and Weigel, P. H. (2014) J. Biol. Chem. 289, 1756–1767). Here we investigated the role of Link N-glycans in ligand uptake and NF-κB and ERK1/2 signaling. HA·HARE-mediated ERK1/2 activation was HA size- dependent, as found for NF-κB activation. HARE(N2280A) cells internalized HA, Hep, AcLDL, and DS normally. No ERK1/2 activation occurred during HA endocytosis by HARE(N2280A) cells, but activation did occur with Hep. Dual-luciferase recorder assays showed that NF-κB-mediated gene expression occurred normally in HARE(N2280A) cells endocytosing Hep, AcLDL, or DS but did not occur with HA. Activation of NF-κB by endogenous degradation of IκB-α was observed for HARE(N2280A) cells endocytosing Hep, AcLDL, or DS but not HA. We conclude that a Link domain complex N-glycan is required specifically for HARE·HA-mediated activation of ERK1/2 and NF-κB-mediated gene expression and that this initial activation mechanism is different from and independent of the initial mechanisms for HARE-mediated signaling in response to Hep, AcLDL, or DS uptake.  相似文献   

5.
RP105 is a member of the toll-like receptor family of proteins that transmits an activation signal in B cells, playing a role in regulation of B cell growth and death; in macrophages and dendritic cells, RP105 is a specific inhibitor of TLR4 signaling. RP105 is uniquely important for regulating TLR4-dependent signaling. It also proved that RP105 is closely related to TLR2 in macrophage activation by Mycobacterium tuberculosis lipoproteins. The aim of our study is to investigate the role of RP105 in mouse macrophages activation of TLR4 and TLR2 signaling by lipopolysaccharides (LPS) and Pam3CysSerLys4 (Pam3CSK4) alone or in combination, and the interaction between TLR2 and TLR4 signaling through RP105. Our results indicate that besides exhibiting negative regulation of TNF-α and IL12-p40 secretion in macrophage activated by LPS, RP105 is also involved in macrophages activation by Pam3CSK4 through TLR2 signaling and exhibited regulation to IL-10 and RANTES production by mouse peritoneal macrophage activated by Pam3CSK4. In macrophages activation by LPS and Pam3CSK4 in combination, TLR2 signaling can overcome RP105-mediated regulation of TLR4 signaling. Thus, our data demonstrate that not only TLR4 signaling, but also RP105 appears to be an essential accessory for immune responses through TLR2 signaling. The function of TLR2 and TLR4 in response to TLR ligands could be associated with each other by RP105. These results can help us understanding the unique role of RP105 in macrophages response to TLR ligands.  相似文献   

6.
In an effort to determine the subcellular localization of sodium- and potassium-activated adenosine triphosphatase (Na+, K+-ATPase) in the pseudobranch of the pinfish Lagodon rhomboides, this tissue was fractionated by differential centrifugation and the activities of several marker enzymes in the fractions were measured. Cytochrome c oxidase was found primarily in the mitochondrial-light mitochondrial (M+L) fraction. Phosphoglucomutase appeared almost exclusively in the soluble (S) fraction. Monoamine oxidase was concentrated in the nuclear (N) fraction, with a significant amount also in the microsomal (P) fraction but little in M+L or S. Na+, K+-ATPase and ouabain insensitive Mg2+-ATPase were distributed in N, M+L, and P, the former having its highest specific activity in P and the latter in M+L. Rate sedimentation analysis of the M+L fraction indicated that cytochrome c oxidase and Mg2+-ATPase were associated with a rapidly sedimenting particle population (presumably mitochondria), while Na+, K+-ATPase was found primarily in a slowly sedimenting component. At least 75% of the Na+, K+-ATPase in M+L appeared to be associated with structures containing no Mg2+-ATPase. Kinetic properties of the two ATPases were studied in the P fraction and were typical of these enzymes in other tissues. Na+, K+-ATPase activity was highly dependent on the ratio of Na+ and K+ concentrations but independent of absolute concentrations over at least a fourfold range.  相似文献   

7.
Following simple homogenization, substantial desmolase activity is recovered in rat adrenal 105 000 × g supernatant. The desmolase complex sediments at 3–4 S on sucrose gradients, is found in the clear cytosol, requires NADPH, is derived from mitochondria and is inhibited by aminoglutethimide and pregnenolone. The lipid fraction contains little or no desmolase activity but greatly enhances pregnenolone synthesis in soluble desmolase preparations, presumably by supplying free cholesterol substrate. Prior adrenocorticotropin (ACTH) administration enhances pregnenolone synthesis in the 105 000 × g supernatant, and cycloheximide, an inhibitor of adrenal protein synthesis, does not block this effect of ACTH (but rather potentiates it). The ACTH effect may be largely explained by an increase in free cholesterol, which enhances the activity of both the lipid fraction and clear cytosol, since: free cholesterol levels are increased by ACTH, particularly with cycloheximide pretreatment; type I and inverted type I difference spectrum changes, indicating greater cholesterol availability for binding to cytochrome P-450, are enhanced by ACTH with or without cycloheximide treatment; cholesterol-rich lipid fraction enhances such spectral changes and obliterates the differences in spectral and pregnenolone-synthesizing activities betwen control and ACTH-stimulated soluble desmolase preparations; and desmolase stimulatory properties of clear cytosol co-chromatographs with [14C]cholesterol. Since cycloheximide blocks ACTH-induced effects in intact mitochondria but not in the soluble desmolase preparation, it is postulated that the labile protein required during ACTH action functions to overcome a ?restraining influence’ which is present in intact mitochondria but not in the soluble desmolase system. The ‘restraining influence’ may be due to limited cholesterol-desmolase interaction.  相似文献   

8.
《Mutation Research Letters》1993,301(2):113-119
The ability of the mussel postmitochondrial fraction (S9) to activate benzo[a]pyrene (BaP) and 2-aminoanthracene (2AA) to mutagenic metabolites towards Salmonella typhimurium strain TA98 was tested. The mechanisms involved in this activation were investigated and mussel cytochrome P-450-dependent monooxygenases and its NADPH cytochrome c reductase were found to contribute to the activation of BaP. This activation was improved by treating the mussel with 4,5,4′,5′-tetrachlorobiphenyl (TCB) (a 3-methylcholanthrene-type inducer of cytochrome P-450-dependent monooxygenase in marine fish) and was inhibited by α-naphthoflavone (ANF), a cytochrome P-450 inhibitor. However, both BaP activation and cytchrome P-450-related metabolic activities are much weaker in mussels than in vertebrates. Mussel S9 activates aromatic amines more effectively than BaP. Pretreatment of mussels with TCB or addition of ANF in the incubation medium has no effect on 2AA activation. As suggested by Kurelec (1985), aromatic amine metabolism may be supported by a flavoprotein mixed-function amine oxidase which is NADPH-dependent.  相似文献   

9.
In the present study, we have investigated potential cardioprotective properties of Isosteviol analogue we recently synthesized and named JC105. Treatment of heart embryonic H9c2 cells with JC105 (10 μM) significantly increased survival of cells exposed to hypoxia‐reoxygenation. JC105 (10 μM) activated ERK1/2, DRP1 and increased levels of cardioprotective SUR2A in hypoxia‐reoxygenation, but did not have any effects on ERK1/2, DRP1 and/or SUR2A in normoxia. U0126 (10 μM) inhibited JC105‐mediated phosphorylation of ERK1/2 and DRP1 without affecting AKT or AMPK, which were also not regulated by JC105. Seahorse bioenergetic analysis demonstrated that JC105 (10 μM) did not affect mitochondria at rest, but it counteracted all mitochondrial effects of hypoxia‐reoxygenation. Cytoprotection afforded by JC105 was inhibited by U0126 (10 μM). Taken all together, these demonstrate that (a) JC105 protects H9c2 cells against hypoxia‐reoxygenation and that (b) this effect is mediated via ERK1/2. The unique property of JC105 is that selectively activates ERK1/2 in cells exposed to stress, but not in cells under non‐stress conditions.  相似文献   

10.
The activity of 5′-nucleotidase (5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) was examined in membrane fractions isolated by hypotonic shock-LiBr treatment (fraction HL) and sucrose gradient separation (fraction S) of rat ventricle homogenate. The enzyme activity in these two fractions differed significantly in several respects. In fraction HL, 5′-nucleotidase had a high affinity for AMP (Km 35 μM), and ATP was a potent competitive inhibitor. In contrast, the 5′-nucleotidase displayed by fraction S showed a low substrate affinity (Km 130 μM) and less sensitivity to ATP. Treatment of membranes with trypsin and neuraminidase markedly stimulated 5′-nucleotidase in fraction HL, whereas only a modest effect was observed in fraction S. Exposure of the membranes to Triton X-100 resulted in a 60% and 10% increase in the enzyme activity in fractions HL and S, respectively. The characteristic activity ratios of 5′-nucleotidase at 200 μM relative to 50 μM AMP in fractions HL and S were modified by alamethicin in an opposite way and became identical. Although concanavalin A almost completely inhibited the 5′-nucleotidase activity in both membrane preparations at a concentration of 2 μM, Hill plots of the data on concanavalin A inhibition revealed a coefficient of 2.2 for fraction S and 1.1 for fraction HL. The differences in 5′-nucleotidase activity of the two membrane fractions are considered to be due to differences in the orientation of the vesicles of the sarcolemmal preparations. These results suggest that two distinct catalytic sites for 5′-nucleotidase are present at the intra and extracellular surface of the rat heart sarcolemma.  相似文献   

11.
Soybean (Glycine max L.) plants were grown with sulfate at 2 (S2) or 20 [mu]M (S20) and treated with [35S]sulfate between d 36 and 38. Growth was continued with or without 20 [mu]M sulfate (i.e. S2 -> S0, S2 -> S20, etc.). When the leaves of S20 -> S20 plants were 70% expanded, they exported S and 35S label from the soluble fraction, largely as sulfate, to new expanding leaves. However, 35S label in the insoluble fraction was not remobilized. Very little of the 35S label in the soluble fraction of the leaves of S20 -> S0 plants was redistributed; most was incorporated into the insoluble fraction. The low levels of S remobilization from the insoluble fraction were attributed to the high level of N in the nutrient solution (15 mM). Most of the 35S label in S2 plants at d 38 occurred in the soluble fraction of the roots. In S2 -> S0 plants the 35S label was incorporated into the insoluble fraction of the roots, but in S2 -> S20 plants 35S label was rapidly exported to leaves 3 to 6. It was concluded that the soluble fraction of roots contains a small metabolically active pool of S and another larger pool that is in slow equilibrium with the small pool.  相似文献   

12.
The evolution of mitogenic pathways has led to the parallel requirement for negative control mechanisms, which prevent aberrant growth and the development of cancer. Principally, such negative control mechanisms are represented by tumor suppressor genes, which normally act to constrain cell proliferation (Macleod, K. 2000. Curr. Opin. Genet. Dev. 10:81-93). Tuberous sclerosis complex (TSC) is an autosomal-dominant genetic disorder, characterized by mutations in either TSC1 or TSC2, whose gene products hamartin (TSC1) and tuberin (TSC2) constitute a putative tumor suppressor complex (TSC1-2; van Slegtenhorst, M., M. Nellist, B. Nagelkerken, J. Cheadle, R. Snell, A. van den Ouweland, A. Reuser, J. Sampson, D. Halley, and P. van der Sluijs. 1998. Hum. Mol. Genet. 7:1053-1057). Little is known with regard to the oncogenic target of TSC1-2, however recent genetic studies in Drosophila have shown that S6 kinase (S6K) is epistatically dominant to TSC1-2 (Tapon, N., N. Ito, B.J. Dickson, J.E. Treisman, and I.K. Hariharan. 2001. Cell. 105:345-355; Potter, C.J., H. Huang, and T. Xu. 2001. Cell. 105:357-368). Here we show that loss of TSC2 function in mammalian cells leads to constitutive S6K1 activation, whereas ectopic expression of TSC1-2 blocks this response. Although activation of wild-type S6K1 and cell proliferation in TSC2-deficient cells is dependent on the mammalian target of rapamycin (mTOR), by using an S6K1 variant (GST-DeltaC-S6K1), which is uncoupled from mTOR signaling, we demonstrate that TSC1-2 does not inhibit S6K1 via mTOR. Instead, we show by using wortmannin and dominant interfering alleles of phosphatidylinositide-3-OH kinase (PI3K) that increased S6K1 activation is contingent upon the suppression of TSC2 function by PI3K in normal cells and is PI3K independent in TSC2-deficient cells.  相似文献   

13.
When attached to specific sites near the S4 segment of the nonconducting (W434F) Shaker potassium channel, the fluorescent probe tetramethylrhodamine maleimide undergoes voltage-dependent changes in intensity that correlate with the movement of the voltage sensor (Mannuzzu, L.M., M.M. Moronne, and E.Y. Isacoff. 1996. Science. 271:213–216; Cha, A., and F. Bezanilla. 1997. Neuron. 19:1127–1140). The characteristics of this voltage-dependent fluorescence quenching are different in a conducting version of the channel with a different pore substitution (T449Y). Blocking the pore of the T449Y construct with either tetraethylammonium or agitoxin removes a fluorescence component that correlates with the voltage dependence but not the kinetics of ionic activation. This pore-mediated modulation of the fluorescence quenching near the S4 segment suggests that the fluorophore is affected by the state of the external pore. In addition, this modulation may reflect conformational changes associated with channel opening that are prevented by tetraethylammonium or agitoxin. Studies of pH titration, collisional quenchers, and anisotropy indicate that fluorophores attached to residues near the S4 segment are constrained by a nearby region of protein. The mechanism of fluorescence quenching near the S4 segment does not involve either reorientation of the fluorophore or a voltage-dependent excitation shift and is different from the quenching mechanism observed at a site near the S2 segment. Taken together, these results suggest that the extracellular portion of the S4 segment resides in an aqueous protein vestibule and is influenced by the state of the external pore.  相似文献   

14.
Hydrogen sulfide (H2S) is an endogenously synthesized gaseous molecule which, along with nitric oxide and carbon monoxide, induces a number of effects in cardiovascular system under normal and pathological conditions. In the present work, the effects and underlying mechanisms of the H2S donor sodium hydrosulfide (NaHS) on the isometric force of frog myocardium contraction have been studied. NaHS at the concentration of 100 μM induced negative inotropic effect and reduced the maximum velocity of the contraction and relaxation of the isolated ventricle strips. The substrate of H2S synthesis, L-cysteine (200 μM and 1 mM), induced the same effect, while the inhibitors of cystathionin-γ-lyase, the H2S-producing enzyme in heart, β-cyanoalanine (500 μM) and propargylglycine (500 μM), increased the amplitude of contraction. Inhibition of cystathionin-γ-lyase by β-cyanoalanine prevented the negative inotropic effect of L-cysteine. After the inhibition of adenylate cyclase by MDL-12,330A (3 μM) or phosphodiesterases by IBMX (200 μM), the effect of NaHS was less than that in the control. In the presence of membrane-penetrating analogous of cAMP, 8Br-cAMP (100 μM) and pCPT-cAMP (100 μM), the negative inotropic effect of NaHS was completely retained. The effect of NaHS significantly decreased after preliminary application of the NO donor, SNAP (10 μM), and did not change after the inhibition of NO synthases by L-NAME (100 μM). The results suggest the possibility of endogenous synthesis of H2S in frog myocardium and regulation of its contractility by the activation of phosphodiesterases hydrolyzing cAMP, which leads to a decrease in the activation of cAMP-dependent protein kinases and phosphorylation of voltage-dependent L-type Ca channels. As a result, the reduction of calcium entry into cardiomyocytes decreases the contractility of frog myocardium.  相似文献   

15.
Tissue remodeling involves collective cell movement, and cell proliferation and apoptosis are observed in both development and disease. Apoptosis and proliferation are considered to be closely correlated, but little is known about their coordinated regulation in physiological tissue remodeling in vivo. The replacement of larval abdominal epidermis with adult epithelium in Drosophila pupae is a simple model of tissue remodeling. During this process, larval epidermal cells (LECs) undergo apoptosis and are replaced by histoblasts, which are adult precursor cells. By analyzing caspase activation at the single-cell level in living pupae, we found that caspase activation in LECs is induced at the LEC/histoblast boundary, which expands as the LECs die. Manipulating histoblast proliferation at the LEC/histoblast boundary, either genetically or by UV illumination, indicated that local interactions with proliferating histoblasts triggered caspase activation in the boundary LECs. Finally, by monitoring the spatiotemporal dynamics of the S/G2/M phase in histoblasts in vivo, we found that the transition from S/G2 phases is necessary to induce nonautonomous LEC apoptosis at the LEC/histoblast boundary. The replacement boundary, formed as caspase activation is regulated locally by cell-cell communication, may drive the dynamic orchestration of cell replacement during tissue remodeling.  相似文献   

16.
Long QT interval syndrome (LQTS) type 1 (LQT1) has been reported to arise from mutations in the S3 domain of KCNQ1, but none of the seven S3 mutations in the literature have been characterized with respect to trafficking or biophysical deficiencies. Surface channel expression was studied using a proteinase K assay for KCNQ1 D202H/N, I204F/M, V205M, S209F, and V215M coexpressed with KCNE1 in mammalian cells. In each case, the majority of synthesized channel was found at the surface, but mutant IKs current density at +100 mV was reduced significantly for S209F, which showed ∼75% reduction over wild type (WT). All mutants except S209F showed positively shifted V1/2’s of activation and slowed channel activation compared with WT (V1/2 = +17.7 ± 2.4 mV and τactivation of 729 ms at +20 mV; n = 18). Deactivation was also accelerated in all mutants versus WT (126 ± 8 ms at −50 mV; n = 27), and these changes led to marked loss of repolarizing currents during action potential clamps at 2 and 4 Hz, except again S209F. KCNQ1 models localize these naturally occurring S3 mutants to the surface of the helices facing the other voltage sensor transmembrane domains and highlight inter-residue interactions involved in activation gating. V207M, currently classified as a polymorphism and facing lipid in the model, was indistinguishable from WT IKs. We conclude that S3 mutants of KCNQ1 cause LQTS predominantly through biophysical effects on the gating of IKs, but some mutants also show protein stability/trafficking defects, which explains why the kinetic gain-of-function mutation S209F causes LQT1.  相似文献   

17.
18.
Predation of bacteria by protozoa has important implications on rumen metabolism and bacterial populations. Protozoa can also restrict the passage of pathogenic bacteria to the host’s lower gastrointestinal tract. This work aimed to evaluate the predation by Entodinium caudatum (EC) and the intraprotozoal survival of Salmonella enterica serovar Typhimurium. EC cells from a monofaunated sheep were incubated for up to 105 min with a S. enterica strain producing a green fluorescent protein. Rumen fluid from a defaunated sheep (DEF) was used as a control. Fluorescence, as an index of predation, measured in the residual (protozoal) fraction was higher in EC than in DEF. 105 min after the beginning of the incubation it was higher than 30 min after. Intracellular survival of Salmonella within EC was assessed by means of a selective medium. Amounts of Salmonella in the residual fraction were higher in EC than in DEF only after 30 min. After 105 min, each protozoa engulfed 100 Salmonella cell per min. Intraprotozoal survival of ingested Salmonella was 0.0017. Predation of S. enterica by E. caudatum occurred and increased in proportion to time, but bacterial viability inside the protozoa was lower at 105 min. This study demonstrates that fluorescence emission combined with bacterial and protozoal cultures could be a reliable method for quantifying bacterial predation and viability in vitro.  相似文献   

19.
Cathepsin M: a lysosomal proteinase with aldolase-inactivating activity   总被引:3,自引:0,他引:3  
A proteinase, designated cathepsin M, that catalyzes the limited modification and inactivation of fructose 1,6-bisphosphate aldolase (EC 4.1.2.13) and fructose 1,6-bisphosphatase (EC 3.1.3.11) has been partially purified from rabbit liver. On the basis of its molecular size (Mr = 30,000), activation by sulfhydryl compounds and inhibition by leupeptin it has been characterized as a B-type cathepsin, but other properties distinguish it from cathepsins B, L, and H. Approximately 50% of the total cathepsin M activity is associated with membranes prepared from disrupted lysosomes; this fraction of the activity is also expressed by intact lysosomes. In the membrane-bound form the enzyme is active at neutral pH, but the soluble enzyme and the activity eluted from the membranes are maximally active at pH 5.0. Fasting increases the activity of cathepsin M; the increase is almost entirely in the membrane-bound fraction.  相似文献   

20.
NF-kappa B1 p105 forms a high-affinity, stoichiometric interaction with TPL-2, a MEK kinase essential for TLR4 activation of the ERK mitogen-activated protein kinase cascade in lipopolysaccharide (LPS)-stimulated macrophages. Interaction with p105 is required to maintain TPL-2 metabolic stability and also negatively regulates TPL-2 MEK kinase activity. Here, affinity purification identified A20-binding inhibitor of NF-kappa B 2 (ABIN-2) as a novel p105-associated protein. Cotransfection experiments demonstrated that ABIN-2 could interact with TPL-2 in addition to p105 but preferentially formed a ternary complex with both proteins. Consistently, in unstimulated bone marrow-derived macrophages (BMDMs), a substantial fraction of endogenous ABIN-2 was associated with both p105 and TPL-2. Although the majority of TPL-2 in these cells was complexed with ABIN-2, the pool of TPL-2 which could activate MEK after LPS stimulation was not, and LPS activation of TPL-2 was found to correlate with its release from ABIN-2. Depletion of ABIN-2 by RNA interference dramatically reduced steady-state levels of TPL-2 protein without affecting levels of TPL-2 mRNA or p105 protein. In addition, ABIN-2 increased the half-life of cotransfected TPL-2. Thus, optimal TPL-2 stability in vivo requires interaction with ABIN-2 as well as p105. Together, these data raise the possibility that ABIN-2 functions in the TLR4 signaling pathway which regulates TPL-2 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号