首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Asynchronous amoebal cultures of temperature-sensitive mutants of Physarum polycephalum were examined cytologically, and two cell cycle mutants were identified. Genetic analysis indicated that each mutant carried a single mutation that was expressed in both amoebal and plasmodial phases. Thus it is possible to isolate cell cycle mutations expressed in plasmodia by initial isolation and analysis of amoebal mutants, a quicker procedure than the alternative of isolating plasmodial mutants directly. The two mutants were studied further by measuring nuclear DNA contents and synthesis of macromolecules. Both mutants gave results consistent with a block in nuclear division.  相似文献   

2.
Comparative measurements were made of the nuclear Feulgen-DNA content of a heterothallic and a self-fertile isolate of the myxomycete Didymium iridis. Plasmodial nuclei of both isolates contain the diploid amount of DNA. The replicated diploid (4C) values for the heterothallic and the self-fertile isolates are 5.66 and 5.95, respectively. Myxamoebae, however, are quite dissimilar in their nuclear DNA content. Those of the heterothallic isolates, Honduran 1–2 (A1) and Panamanian 2–4 (A7), have mean values of 3.81 and 3.69, whereas myxamoebae of the self-fertile Philippine-1 isolate were found to have a mean value of 6.07. Myxamoebae of the Ph-1 isolate are, therefore, at the same ploidy level as the Ph-1 Plasmodium. Mean DNA values for Ph-1 sporangial nuclei were in category 4C. Measurement of the DNA content of mitotic metaphases in sporangia at T = 6 hr confirmed that the mean DNA content of both Ph-1 myxamoebae and plasmodial nuclei is equivalent to 4C. It is concluded that nuclear phase alternance is lacking in the Ph-1 isolate and that the Plasmodium of this isolate develops by apogamy.  相似文献   

3.
Summary Light microscopical observations on mitosis in living material of the amoebal and plasmodial phases of the MyxomyceteEchinostelium minutum de Bary (orderEchinosteliales) are reported for the first time. The uninucleate amoebal cell undergoes centric, open spindle mitosis whereas the multinucleate plasmodium exhibits acentric, closed spindle mitosis.  相似文献   

4.
SYNOPSIS. Developing and mature sporangia of the true slime mold Didymium nigripes were studied with the electron microscope to follow the course of spore formation. The sporangium forms from the plasmodium as a protoplasmic bleb which differentiates into a stalk and an apical sphere containing a mass of protoplasm. Nuclei within this protoplasmic mass undergo synchronous division (presumably meiosis). The division spindle forms within the nuclear membrane which is retained intact throughout the division; centrioles have not been observed at the spindle poles. At the same time the nuclei are dividing, the protoplasm cleaves to give ultimately uninucleate spheres—the incipient spores. Capillitial threads come to lie in the furrows created by the cleaving protoplasm. A wall consisting of an inner thick component and an outer thin component forms about each sphere. Cyto-chemical tests suggest that the inner wall of the spore is cellulose-containing and that the outer component might contain chitin.  相似文献   

5.
Relative changes in plastid DNA content in each stage of plastid division were investigated in order to better understand the division cycle of plastids in spore mother cells in the horwortAnthoceros punctatus. Samples of cells stained with DAPI were observed with epifluorescence microscopy and CHIAS. In spore mother cells of this species, plastids duplicated their own DNA prior to the plastidkinesis of the first plastid division, but did not replicate plastid DNA prior to the plastidkinesis of the second plastid division. Therefore, the DNA content of those plastids in which division had been completed was reduced to half its initial value. This indicates that the DNA replication pattern of plastids in spore mother cells corresponds to that of cell nuclei during premeiosis and meiosis inA. punctatus.  相似文献   

6.
Chromosomes in degenerative and functional nuclei ofCarex ciliato-marginata Nakai were investigated during meiotic and primary pollen nuclear division. The nuclear DNA content of these nuclei was also measured using Feulgen microspectrophotometry. At metaphase of the primary pollen nuclear division, the chromosomes of degenerative nuclei were the same length as those of the functional nucleus, but only half their width. The functional nucleus divided into two, each of which moved to a pole, but the degenerative nuclei did not divide. The nuclear DNA content of the degenerative nucleus was half that of the functional nucleus and equal to that of one of the tetrads of a meiotic division. It is concluded that DNA replication was carried out in only one nucleus of the tetrad and that the other three nuclei were composed of unreplicated chromosomes at metaphase of the primary pollen nuclear division.  相似文献   

7.
《Experimental mycology》1983,7(4):319-327
Meiosis occurs in the resistant sporangium ofCoelomomyces psorophorae, confirming the hypothesis that the diplophase of this obligate parasite is restricted to the mosquito and the haplophase to the copepod host. Preparations for light microscopy indicate that two nuclear divisions occur during germination of the resistant sporangia (RS), and this is accompanied by an appropriate reduction in nuclear volume. Reconstructions of serially sectioned pachytene nuclei reveal 10 synaptonemal complexes that extend in a linear fashion through the nucleus, with their telomeres associated with the nuclear envelope. Microspectrophotometric analysis indicates that the zygote contains twice the amount of DNA found in either gametes or RS zoospores (meiospores). The latter spore contains 5.63 ± 0.64 × 10ȡ14 g DNA/cell as determined by microfluorimetry.  相似文献   

8.
SYNOPSIS. The mycetozoan genus Echinosteliopsis, resembling the myxomycete Echinostelium in some of its features, is described. The single species, E. oligospora Reinhardt & Olive, forms small sporocarps which consist of a basal disk, stalk and a sporangium with only 1–8 spores. Spores form progressively, not simultaneously, by segmentation. The spores germinate to release non-flagellate amebae which, in liquid, assume a characteristic broad, fan shape. Each ameba has one or more nuclei. The nucleus is distinctive because of refractile, globular to elongate peripheral bodies which cytochemical tests indicate to be primarily RNA. At the time of nuclear division the characteristic RNA bodies disappear and, as observed with the phase microscope and in stained preparations, optically dense material accumulates in the middle area of the nucleus. Threads, either a spindle or actual chromatin, can be seen attached to the nuclear membrane. The threads separate to opposite poles as the nucleus elongates. During this division process the nuclear membrane apparently remains intact. Synchronous binucleate divisions, as well as a tripolar nuclear division, have been observed. Uninucleate and synchronous binucleate divisions may or may not be followed by cytokinesis. The absence of cell division after nuclear division leads to the production of cells with varying numbers of nuclei. Nuclear divisions in early sporangial stages and in spores have not been observed. The spores are uni- to multinucleate. In 8-spored sporangia and in most 4-spored sporangia there is a characteristic small “stalk spore” at the apex of the stalk. The stalk spore germinates slowly, if at all, but the larger spores germinate readily. No evidence of a sexual process has been found.  相似文献   

9.
An improved method is described for making chromosome spreads of the plasmodium of the myxomycete, Physarum polycephalum. It consists of isolating metaphase nuclei, spreading the chromosomes with hot lactic acid, and staining with acetic-orcein.Most sublines derived from the Backus Wis 1 sclerotium had about 1 pg of DNA per nucleus, and had nuclei with 50 and 75 chromosomes in both the growing and sporulating plasmodium. Mature spores contained 0.6 pg of DNA, and hatching amoebae had 20–25 chromosomes and 0.6 pg of DNA. Plasmodia of the homothallic Colonia strain had a nuclear DNA content of about 1 pg, and had 35–40 chromosomes during growth and sporulation. Polyploid plasmodial sublines were found which had 1.5 and 3 times the normal DNA content and chromosome number. The polyploid sublines had the same plasmodial protein:DNA and RNA:DNA ratios as normal cultures. DNA content of nuclei varied directly with nuclear surface area. Ploidy was determined by the parent amoebae and therefore can serve as a genetic marker.A simple technique is given for completing the life cycle of P. polycephalum axenically. Germinating spores are plated without bacteria on one-tenth strength semidefined plasmodial growth medium, containing 2% agar. Plasmodia are visible in 2–4 days.  相似文献   

10.
L. W. Olson 《Protoplasma》1980,105(1-2):87-106
Summary InAllomyces neo-moniliformis meiosis takes place during resting sporangium germination. The meiospores are characteristically binucleate and biflagellate as described byEmerson (1938) andTeter (1944). A variation in the number of nuclei and flagella per meiospore from two is correlated with germination of the resting sporangia under reduced oxygen tension. The meiospores are extremely poor swimmers and are typically amoeboid. At encystment the gamma bodies of the cell are mobilized and appear involved in cyst wall synthesis. A single mitotic division of each nucleus gives rise to four nuclei. Gamete cleavage is as described for spore cleavage inBlastocladiella (Lessie andLovett 1968). The assembly of the nuclear cap and side body complex of the spore are extremely late processes in gametogenesis. The gametes are released when the single papilla dissolves. The gametes fuse in pairs and after zygote formation the cell is uninucleate with two flagella. The biflagellate zygote is an active swimming cell. The presence of homothallism or hetero-thallism inA. neo-moniliformis is discussed.  相似文献   

11.
Meiosis, a specialized cell division process, occurs in all sexually reproducing organisms. During this process a diploid cell undergoes a single round of DNA replication followed by two rounds of nuclear division to produce four haploid gametes. In yeast, the meiotic products are packaged into four spores that are enclosed in a sac known as an ascus. To enhance our understanding of the meiotic developmental pathway and spore formation, we followed differential expression of genes in meiotic versus vegetatively growing cells in the yeast Saccharomyces cerevisiae. Such comparative analyses have identified five different classes of genes that are expressed at different stages of the sporulation program. We identified several meiosis-specific genes including some already known to be induced during meiosis. Here we describe one of these previously uncharacterized genes, SSP1, which plays an essential role in meiosis and spore formation. SSP1 is induced midway through meiosis, and the homozygous mutant-diploid cells fail to sporulate. In ssp1 cells, meiosis is delayed, nuclei fragment after meiosis II, and viability declines rapidly. The ssp1 defect is not related to a microtubule-cytoskeletal-dependent event and is independent of two rounds of meiotic divisions. Our results suggest that Ssp1 is likely to function in a pathway that controls meiotic nuclear divisions and coordinates meiosis and spore formation. Functional analysis of other uncharacterized genes is underway.  相似文献   

12.
Summary Strain CL ofPhysarum polycephalum forms multinucleate plasmodia within clones of uninucleate amoebae. The plasmodia have the same nuclear DNA content as the amoebae. Analysis of plasmodial development, using time-lapse cinematography, showed that binucleate cells were formed as a result of nuclear division in uninucleate cells. Binucleate cells developed into plasmodia by further nuclear divisions and cell fusions. No fusions involving uninucleate cells were observed. A temporary increase in cell and nuclear size occurred at the time of binucleate cell formation.  相似文献   

13.
Summary The number of nuclei in spores and along hyphae of an arbuscular mycorrhizal fungiGigaspora margarita was measured in digital images of fluorescence arising from mithramycin stained cultures. Typical dormant spores (250 m diameter) contained 2000 nuclei. Eight hundred nuclei were mobilized during the first 3 days of germination. The number of nuclei in the spores nearly returned to the initial number after 22 days of hyphal growth. The average relative DNA content in the nuclei of dormant spores and in the nuclei of spores incubated for 22 days was comparable, as judged from fluorescence intensity. Hyphal elongation occurred with 460 nuclei per cm under a special set of in vitro conditions that promote extensive hyphal growth of arbuscular mycorrhizal fungi. We found an average total of 26000 hyphal nuclei per germinating spore after 22 days. The specific DNA polymerase inhibitor aphidicolin did not inhibit spore germination but it rapidly reduced the rate of hyphal growth and arrested growth after 4 days. No nuclei were produced de novo during this time. These results demonstrate thatG. margarita replicates nuclear DNA and undergoes nuclear division when grown in vitro even in the absence of a plant host.  相似文献   

14.
Ellis E. Sykes  D. Porter 《Protoplasma》1981,105(3-4):307-320
Summary Catenaria allomycis Couch (Blastocladiales) is an endobiotic fungal parasite primarily of species of the genusAllomyces. The life cycle ofC. allomycis contains both sexual and asexual phases. Synaptonemal complexes have been found in young developing resistant sporangia (RS) suggesting that meiosis occurs within the thick walled RS prior to syngamy. Ultrastructural evidence suggests that meiosis proceeds through pachytene in the developing RS and is arrested in diplotene of prophase I until the sporangia are induced to germinate at which time the meiotic process is completed. Quantitative nuclear counts in developing RS support the ultrastructural observations. Meiotic nuclei are characterized by polar fenestrae in the nuclear envelope and intranuclear plaque-like microtubule organizing centers (MTOC).Portion of a Ph.D. dissertation submitted by the senior author to the Graduate School, University of Georgia.  相似文献   

15.
In many bryophytes and vascular cryptogams mitosis and/or meiosis takes place in cells containing a single plastid. In monoplastidic cell division plastid polarity assures that nuclear and plastid division are infallibly coordinated. The two major components of plastid polarity are morphogenetic plastid migration and microtubule organization at the plastids. Before nuclear division the plastid migrates to a position intersecting the future division plane. This morphogenetic migration is a reliable marker of division polarity in cells with and without a preprophase band of microtubules (PPB). The PPB, which predicts the future division plane before mitosis, is a characteristic feature of land plants and its insertion into the cytokinetic apparatus marks the evolution of a cortical microtubule system and a commitment to meristematic growth. Microtubule systems associated with plastid division, the axial microtubule system (AMS) in mitosis and the quadripolar microtubule system (QMS) in meiosis, contribute to predictive positioning of plastids and participate directly in spindle ontogeny. Division polarity in monoplastidic sporocytes is remarkable in that division sites are selected prior to the two successive nuclear divisions of meiosis. Plastid arrangement prior to meiosis determines the future spore domains in monoplastidic sporocytes, whereas in polyplastidic sporocytes the spore nuclei play a major role in claiming cytoplasmic domains. It is hypothesized that predivision microtubule systems associated with monoplastidic cell division are early forming components of the mitotic apparatus that serve to orient the spindle and insure equal apportionment of nucleus and plastids. “Can it be supposed that cytoplasm would be intrusted with so important a task as the preparation of a chloroplast for each of the four nuclei that are later to preside over the spores before there is any indication that such nuclear division is to take place?” Bradley Moore Davis, 1899  相似文献   

16.
17.
When Eimeria maxima (gamonts) infects villus epithelial cells of the chicken duodenum there is extensive cellular enlargement with no alteration in nuclear size. Feulgen DNA microspectrophotometric measurements indicated that the infected host-cell nucleus contains the same amount of DNA as an uninfected cell nucleus. Evidence is presented to indicate that second generation schizonts of E. necatrix develop in crypt epithelial cells that are displaced/migrate into the lamina propria. The developing parasite causes cellular and nuclear hypertrophy in these cells as does E. tenella in cecal cells of the chicken. In these two cases nuclear enlargement is accompanied by induced rounds of DNA synthesis in the host-cell. Analyses indicated that the DNA content of enlarged nuclei does not fall into classes that correspond to a geometric series 2:4:6:8:16: etc. times the DNA content of a 2C equivalent, and that nuclear size and DNA content in infected cells are not significantly correlated. Autoradiographic studies on E. necatrix infected chicks administered 3H-thymidine show that DNA synthesis takes place in the nuclei of cells containing all developing stages but not mature schizonts, and that this synthesis is not a continuous process. The data suggest that intestinal cells that are capable of undergoing cell division and therefore additional rounds of DNA synthesis, can be induced by coccidial infection in the absence of concomitant cell division.  相似文献   

18.
In the heterothallic myxomycete Physarum polycephalum, uninucleate amoebae normally differentiate into syncytial plasmodia following heterotypic mating. In order to study the genetic control of this developmental process, mutations affecting the amoebal-plasmodial transition have been sought. Numerous mutants characterized by self-fertility have been isolated. The use of alkylating mutagens increases the mutant frequency over the spontaneous level but does not alter the mutant spectrum. Three spontaneous and 14 induced mutants have been analyzed genetically. In each, the mutation appears to be linked to the mating type locus. In three randomly selected mutants, the nuclear DNA content is the same in amoebae and plasmodia, indicating that amoebal syngamy does not precede plasmodium development in these strains. These results indicate that a highly specific type of mutational event, occurring close to or within the mating type locus, can abolish the requirement for syngamy normally associated with plasmodial differentiation. These mutations help define a genomic region regulating the switch from amoebal to plasmodial growth.  相似文献   

19.
Summary The cotyledon cells ofPisum sativum have high DNA contents. By appropriate culture techniques, some of these cells can be triggered into division. Two types of dividing nuclei were seen. Firstly those that were polyploid with metaphases containing chromosome numbers ranging in value from 4 x to 32 x. Included among these were unexpected numbers equivalent to 12 x and 14 x. Secondly there were cells containing giant polytene chromosomes and these progressed from prophase to a metaphase where the polytene chromosomes separated into constituent single chromosomes.  相似文献   

20.
Changes in the number of nuclei and chloroplasts were examined during the process of unispore formation in unilocular sporangia of Laminaria angustata. Just before meiosis, eight chloroplasts were always present in unilocular sporangial mother cells. The number of chloroplasts remained constant through meiosis. After the resulting four nuclei divided again (third nuclear division), a close association between a nucleus and a chloroplast developed among each of the eight nuclei and eight chloroplasts. The eight chloroplasts divided ahost synchronously before the synchronous division of the eight nuclei. Following the 16 nucleate stage with 16 chloroplasts and the final 32 nucleate stage with 32 chloroplasts, 32 unispores, each with a nucleus and a chloroplast, were fomd in unilocular sporangza of L. angustata. Immunofluorescence microscopy using an anti-centrin antibody showed that two anticentrin-stained structures (as future mitotic poles) occurred adjacent to each of the premitotic four nuclei, and each spot was located near a chloroplast. Therefore, after the third division, each of the eight nuclei established close contact with a chloroplast presumably mediated by the centrosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号